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x= 0 and x= l, the variation of J is

d qs (dqi5J= B— 5qsdx+Qh l +qs lbqs
~0 dX' &dx ) d'qs (dqi l (d'qi dqsl

=Qhl —+q. I, Qhl +
dx)dx dS

(d qi dqs)+ l5qi d' (" ) Eliminating qs we find
l dx' dx 7

that multiplying 8qs in (7.9) must vanish. We derive the
diBerential equations:

If a force f is applied to the surface of the plate per
unit area in the s-direction, the virtual work of this
force is

d4qi f 1 d'f

dx4 B Qh dx'
(7.12)

pl
f8wdx=

0

f8q,dx.
J0

(7.10)

Applying Eq. (6.10) of the previous section, the varia-
tions (7.9) and (7.10) must be equal. The expressions
multiplying 5qi in (7.9) and (7.10) must be equal and

The erst term on the right-hand side corresponds to a
bending deflection while the second term corresponds
to a shearing deformation. We must remember that
the differential equation (7.12) is also an operational
equation in the time variable since B and Q are time
operators. It is therefore also an integro-differential
equation.
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The use of Coulombic wave functions rather than plane waves for the free electron states is found to
increase the calculated rate of capture of electrons by a factor of about 200 at liquid helium temperatures.
Results calculated for shallow traps in Ge and Si are now found to be consistent with the upper limit set on
the photoconductive lifetime by the experiment of Burstein, Overly, and Davisson. The Born-Oppenheimer
and Hartree approximations used in our calculations were found to yield identical results at low tempera-
tures in these materials.

'HE thermal ionization of an electron from a
trapped state into the conduction band has

previously been calculated using plane (or Bloch)
waves for the final state. ' ' Such a procedure neglects
the effect of Coulomb attraction on the final state
which should be represented by a Coulomb wave func-
tion. It is well known that the correct wave function
has a density at the origin higher than the plane wave

by the Sommerfeld factor y/[1 —exp( —y) 7 with y= 2s./
(ha), where h is the propagation constant of the final
state and a is the eGective Bohr radius of the electron
in the crystal. It is important to note that during
ionization the major contribution to the total transition
probability comes from final states with ku«1, so that
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the correction factor is always large. At room tempera-
ture the factor is about 50, at He temperature it is
about 200. On capture, only electrons with ku«1 have
large capture cross sections. And in any case, only elec-
trons of thermal velocities are present, which at most
temperatures of interest have ha&1.

We have made a calculation of the ionization and
capture probabilities in Si and Ge using Coulombic
wave functions. The calculation was done both in the
Hartree and the Born-Oppenheimer approximation.
Results were applied to the case where the highest
phonon energy is larger than the ionization energy, i.e.,
one-phonon processes are possible. Then both approxi-
mations yield the same result if multiphonon processes
are unimportant, i.e., at low temperatures. The Hartree
approximation in first order gives one-phonon processes
only at any temperature, while the Born-Oppenheimer
approximation gives many-phonon processes at higher
temperatures. This result is independent of the par-
ticular mechanism considered for the interaction as
long as one restricts oneself to an interaction potential
that is linear in the displacements of the atoms from
their equilibrium positions. We considered two types of
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interaction of the electron with the lattice, the Bardeen-
Shockley' deformation potential and the interaction
used by Goodman, Lawson, and SchiG' which depends
exclusively on the motion of the impurity atom. With-
out committing ourselves as yet to a particular mecha-
nism, we consider an interaction potential of the form

V=Itr lB, (-r,g)q, (g),

where

P= gt yi g
~
B,(~)s.~'8[I/h ~,(~))d~,

A(T)= t expL —E(k)/kpTjdk,

where qi(~) is the amplitude of the mode of propagation
vector ~ and of type t. Denoting the matrix element of
Bi(r,~) between the final and initial unperturbed elec-
tronic states (a for initial state, k for free state with
propagation vector k) by Bt(~)s and with a corre-
sponding notation for the matrix elements between
like states, we obtain' for the transition probabilities
to state lr and from state Ir:

f
W,.=h—' expfiE, .f/h+f(&) jjh(f)+/g(f))'jdf,

We/ h
J expt —iE& t/h+f (t)$(h (f) + $g (1))')df,

f(t) = (I (t,ce) (B —B..)'/(2hMce') ), (2)

h(f) = (LC (t,~)+ (2n+ 1)i(h /2M)

X t hB~./(E~ —E.))'),
g(f) = (C (t,te)hBs. (Bgg—B..)L2Mce(Eg —E.)j-'),

C (t,ce) = (n+1) exp(icef)+n exp( —io~f) —(2n+1).

Here the angular braces ( ) denote an average over the
modes of one type and a summation over all types.
The indices ~ and t have been suppressed in 8, n= mean
quantum number and or, the frequency of the mode in
question. M is the mass of one Ge atom. E& and E, are
the unperturbed final and initial electronic energies
and E& is their diGerence plus the energy change due
to the shift of the equilibrium positions of the atoms.
To obtain the ionization probability 5';,„we have to
integrate 8'~ over all final free electron states, while for
the capture probability 5'„~we take the average of 8' &

over the thermally distributed k-states of the electron.
If the exponential containing f(t) is expanded the
integration over t can be performed immediately, giving
rise to delta functions. At low temperatures in Ge and Si,
only the first term in this expansion, representing one-
phonon processes, is important. ' If, in the neighborhood
of k=0, the matrix element ~Bi(~)q, ~' is proportional
to k", we obtain at low temperatures:

W;, =F1VQsA (T) exp( I/koT)/(64rr'MI—),
(3)

W„n =FQ/(8w'3'),
e J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

For the methods used consult M. Lax, I. Chem. Phys. 20,
1752 (1952). For a review of the literature see M. Lax, The IN
glence of Lattice VibratI'ons on E/ectronic Transitions in Solids,
Proceedings of the Nov. 1954 Atlantic City Conference on Photo-
ductivity Uohn Wiley and Sons, Inc. , New York, 1955).

7 The same conclusion was obtained by Y. Yafet for transitions
between bound states (private communication).

k"=A(T) ' k~ expL —E(k)/ksT]dk,
J

yi, =k"/(h) ".

Here 0 is the volume of the unit cell and I the ioniza-
tion energy. If the mechanism causing the transition
is the deformation potential, the 8 are given by

Bt(r,e) = (i/~2Ei(et(~) ~) exp(i~ r), (4)

where the et(~) are unit polarization vectors. It is ade-
quate to use a Debye spectrum (longitudinal speed
of sound=e) in the present calculation. To get an
order of magnitude result it is probably adequate to
use a scalar eGective mass m*. For the deformation po-
tential interaction, we thus obtain8

Wio~= 32QEi (rrrt MI'D) (red) 2tts ti h ksT

Xexp( —I/ksT), (5)

W„n= 256rr*'QEis(VaMIv) —'(rpa) '
X (2~*a'h-'k, T)—'* (6)

where a is the eGective Bohr radius= Bohr radius times
dielectric constant times ratio of electronic to eGective
mass; 7-0 is the propagation constant of those modes for
which bee(rs) =I, and V is the volume of the crystal.
These equations apply if ksT« I and ksT«(ks8 —I),
where ko8 is the Debye energy.

For e-type silicon, using as ionization energy I~0.04
ev and an interaction constant EI ——15 ev, we obtain

VW...—(40/T) *'X10 ' cm'/sec.

If we assume 10"minority carriers (acceptors) per cm'
to be present and have one donor and one acceptor
level only, the lifetime of free electrons at 4'K is of
order 3X10 sec. This is consistent with experiments
on the photoconductive lifetime by Burstein, Oberly,
and Davisson" who find an upper limit to the lifetime
of 10—' sec. If one uses the interaction of Goodman,
Lawson, and SchiG, ' the value for the capture proba-
bility at O'K is smaller by a factor of about 17.

~Details of the above calculations will be submitted to this
journal shortly.

~ This value for the interaction constant is obtained by using
the formula (see reference 5):

4(2 )&eh'Me'

30(me)'t'(koT)1EP'

taking p= 1200 cms/volt-sec (M. B. Prince, Phys. Rev. 93, 1204
(1954)g, and letting (m*) 't'= (m&mern~) &X-', L(1/m&)+(1/m2)
+(1/m&)1 with m&=ms=0. 19m; ma=0. 98m.

"Burstein, Oberly, and Davisson, Phys. Rev. 89, 331 (1953).


