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Variational Principles in Irreversible Thermodynamics with Application to Viscoelasticity
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General differential equations are derived for the time history of a thermodynamic system undergoing
irreversible transformations. This is done by using Onsager s principle, and introducing generalized concepts
of free energy and thermodynamic potentials. From these equations it is shown that the instantaneous
evolution of the system satisfies a principle of minimum rate of entropy production. It is also shown how
Prigogine's theorem for the stationary state fits into the present theory. Another variational principle is
established for the case where certain variables are ignored in analogy with the methods of virtual work
in mechanics. This principle which applies to complex physical-chemical systems is developed more speci6-
cally for viscoelastic phenomena, and as an example the differential equations for the defIection of a visco-
elastic plate is derived.

1. DTTRODUCTION

"'T has long been known that a physical system
~ - undergoing transformation has a tendency to move
in a direction of increasing entropy. This is usually
expressed from a statistical viewpoint by stating that
the evolution is toward a more probable state or more
disorder. This principle is formulated mathematically
in classical thermodynamics by the property that the
Helmholtz thermodynamic potential is a minimum at
equilibrium. This 6eld of thermodynamics which deals
with equilibrium problems could more justi6ably be
called thermostatics.

There has recently been growing a new body of
knowledge which deals essentially with nonequilibrium
or irreversible phenomena and which more properly
deserves the appellation of thermodynamics. Great
impetus was given to this development from a uni6ed
standpoint by Onsager's theorem which is essentially a
reciprocity law of coupled irreversible phenomena. The
question of the existence and formulation of variational
principles dealing with such irreversible phenomena is
the object of the present paper. It will be shown, for
instance, that it is quite a general property that a system
tends toward the most disordered state but that this
occurs with a minimum rate of production of this
disorder or entropy.

A first step in this direction was made by Prigogine'
who formulated a theorem of minimum production of
entropy for a thermodynamic system which is in a
stationary state, i.e., in a steady state of Qow. Such a
system for instance is one which is traversed by a steady
Qow of heat. We are concerned here with principles
which are of a more general nature and which do not
require steady Qow.

Section 2 develops the basic differential equations for
irreversible phenomena by the application of Onsager's

principle. A quite general formulation is obtained for a
perturbed system by the artifice of adjoining to the
system considered a large heat reservoir at constant

* Consultant.' See S. R. De Groot, Thermodynamics of Irreversible I'rocesses
(Interscience Publishers, inc. , New York, 1952).

temperature. The entropy of the total system gives a
generalization of the concept of thermodynamic poten-
tial for the case of nonuniform temperatures. Several
solutions of the basic equations are presented in Sec. 3
based on results obtained by the writer in a previous
publication. ' Equations for a perturbed system were
also derived by statistical methods by Onsager and
Machlup. '

A principle of minimum production of entropy is
established in Sec. 4. It deals with the instantaneous
direction of evolution of the systems under any non-
equilibrium conditions. Section 5 deals with relaxation
modes and leads to a new vie~point in formulating the
variational principles for stationary Qow.

The case of a system for which certain coordinates
are hidden is taken up in Sec. 6. The variational prin-
ciple developed in this connection constitutes a powerful
tool for the calculation of a wide variety of phenomena,
involving, e.g., chemical reactions and heat transfer
in complicated systems. It is also of particular usefulness
in viscoelasticity. How this is done in general is shown

by introducing the operational tensor for the stress-
strain relations. ' As an example in Sec. 7 it is applied
to the derivation of the integro-differential equations
for the deQection of a viscoelastic plate.

2. BASIC THERMODYNAMIC RELATIONS

We consider a system I defined by n thermodynamic
state variables. These state variables are taken here to
be of quite general nature and may represent such varied
physical quantities as a strain tensor, electric charges,
local temperatures, concentrations, etc. The entropy of
such a system is defined by subdividing it into cells and
summing the entropy for each of these cells. This
assumes, of course, that each cell is in a state of quasi
equilibrium so that its entropy may be de6ned as if it
were in equilibrium. The legitimacy of this definition
was investigated by Prigogine. ' It could also be com-
puted directly, of course, by means of Boltzmann's
relation expressing the entropy directly in terms of

s M. A. Biot, J. Appl. Phys. 25, 1385 (1954).' L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).
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SI+SII~ (2.1)

Let us now find an expression for the entropy S. We
consider the heat dh absorbed by System I from the
reservoir II. Conservation of energy requires:

&7s= &Ur —g; Qgq;, (2.2)

where U& is the internal energy of System I and Q; is a
generalized "external force" conjugate to the state
variable q;. This equation may be considered to define
the external force as a perturbation acting upon the
system in a very general sense. It can be for instance a
stress or an electromotive force or can be proportional
to a chemical amenity as defined by De Donder. The
external forces may be considered part of the isolated
system by adding corresponding large energy reservoirs.
The increment of entropy acquired by the reservoir II
is therefore:

certain statistical or disorder parameters as done in
problems of second-order transitions.

The system is characterized by e variables g; which
are dined as the departure from a certain reference
state taken as origin and for which g;=0. Only small
departures from the reference state are considered and
it is assumed that in this range of variation the system
remains linear. This will generally be true if the system
is in the vicinity of an equilibrium state.

In order to apply the principles of irreversible ther-
modynamics we must consider an isolated system. We
therefore adjoin to system I a system II which is a
large reservoir at constant temperature T. The total
system I+II is now assumed to be isolated and its
entropy is expressed as the sum of the entropies of
each system:

From (2.4) we also derive that under the forces Q;,
the entropy S of the system I+II is given by

TS= —V++; Q;q;. (2 7)

TBS/Bq;=g; b;,q;; (2 9)

namely, the derivatives of the entropy are linear func-
tions of the time rates of change j;of the state variables
and the matrix of coeKcients is symmetric,

(2.10)

It should be noted in applying Onsager's relations
(2.10) to arbitrary perturbations that because of linear-

ity the principle of superposition is valid and that the
system responds as a succession of relaxations under
successive applications of constant force increments.

We introduce the quadratic form

D= 2 Q b;,q;q;. (2.11)

The factor T, which is the constant temperature of the
reservoir II, is introduced as a factor for convenience.

If the system is displaced from the zero level by
applying the external forces very slowly and reversibly,
the system follows a succession of equilibrium states
given by the condition that the entropy is a maximum,
i.e., by the e equations:

BS/Bq;= 8—V/Bq,+Q;=0 . (2.8)

Ke now consider irreversible processes for which the
partial derivatives of the entropy do not vanish.
Onsager's principle' may be applied to this case. It may
be stated in the following form, which is formally dif-
ferent from the usual one but may be seen to be
equivalent:

dh
dSzz= ——=—

T

dUr Q;+g —dq, ,
T 'T (2.3)

and the increment of entropy of the total system will be

From (2.9) we derive

1 BS 1 BS
D= TP q, = T--

2 ~ Bg; 2 Bt
(2.12)

dS=dSz—
dUr Q;

+Z dqi ~

i T.

~S=dSi+ &Sn,
(2.4)

The quadratic form D is positive-dehnite since it is

proportional to the time rate of production of entropy.
From Eqs. (2.7) and (2.9), we derive the basic rela-

tions of irreversible processes. :

TS'=TSr —Ur ———
~ Q u;;q,q; (2.5)

Since we are dealing with an equilibrium state, the
entropy S' is a maximum and the quadratic form

We now define the reference state or zero state for
which all coordinates g;= 0 as that for which all external
forces Q, are zero and in which the system is in equi-
librium at uniform temperature T. The entropy S' of
the system I+II when Q, =O, derived from (2.4), is

given by

Z o'q+Z~&'q =Q' (2.13)

By using the quadratic expressions V and D, they may
be written in the Lagrangian form:

BV/Bq~+ BD/8q; =Q;. (2.14)

The invariant V plays the role of a potential energy
and D that of a dissipation function.

It is interesting to note the thermodynamic signi-

ficance of V and S. From (2.4), we have

(2.6)
TdS =TdSi dUr+2' Q'~q '. —(2.15)

is positive-definite.
Now, suppose that the only external force acting on the

system is a constant pressure I'. The conjugate variable
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is the volume —e, and we may write

P Q;dq, = P—dv

Integrating (2.15),
(2.16)

~z —T~r = t/' (2.18)

may be considered an extension of Helmholtz's free
energy concept.

Equations (2.13) and (2.14) for a system in the
vicinity of equilibrium apply to a large class of phe-
nomena. They may involve, e.g. , mechanical dissipation
and elastic forces, heat transfer, chemical reactions,
electric currents and charges, as well as the coupling
between these phenomena. It may be shown that an
excess temperature applied to a boundary is an external
force with the entropy Qow as the conjugate coordinate.
In problems which are open to treatment by either
classical or quantum statistics, the expression for V
may be obtained directly from the partition function.
Equations (2.13) and (2.14) may also be represented
by a network of springs and dashpots or an Rc net-
work. Such a network constitutes therefore an analog
computer for the large class of phenomena included in
the present theory, 4

3. SOLUTION OF THE BASIC EQUATIONS AS
RELAXATION MODES OR STATIONARY

FLOW

Consider a system to which constant forces Q; are
suddenly applied. The system will obviously tend
toward some sort of new equilibrium state. This equi-
librium state will either be one of static equilibrium
where all coordinates are constant, or one in which
there is steady Qow, i.e., in whi. ch all coordinates vary
proportionally with time. Proof of this follows from
expression (4.10) in reference 2 which gives the general
solution of Eqs. (2.1) in the operational form:

—TS= Uz —TSz+ Pzt (2.17)

If the temperature is uniform throughout system I,
this expression represents its Gibbs thermodynamic
potential so that —TS may be considered as the ex-
tension of the concept of thermodynamic potential for
the case of nonuniform temperature and any kind of
external force Q;. Similarly, the expression

general and is not restricted by any singularity of the
matrices or multiplicity of the roots.

If the forces Q, are constant and are suddenly applied
at the instant t=0, they may be represented in terms
of the unit step function 1(t) as

Q, =Q;*1(t), (3.3)

with constants Q;*. Substituting in (3.1), we make use
of the operational relation

1
1(t)=—(1—e "").

P+lz, lz,
(3 4)

We omit the factor 1(t) in (3.4) and (3.5). If none of
the roots are zero, we see that the system toward a set
of constant equilibrium values for the coordinates q;.
The variable part of the motion may be resolved into
a sum of columns, each of which is characterized by a
certain exponential decay and which we may call modes
of relaxation. However, if some of the roots X, are zero,
then there is a term of the type C@"/p in expression
(3.1) corresponding to the operational relation

-1(/) =t, (3.6)

which yields in expression (3.5) an additional term of
the type

q;=tP c; Q,~. (3.7)

This corresponds to a stationary Row. We have thus
established that the system tends toward a fixed devia-
tion or a steady Row. With

(3 8)

we may also write

We first assume that none of the roots X, are zero. Hence
(3.1) may be written

g, .(8) —
~ g . .sQ 8

q'=2 Z -+~'~ Qz"—2 2- e "" (3.5)
g'=y ', s 8

{...'
q'=Z Z +&'i Q~

i z e p+g,
(3.1) and q;* represents the stationary state velocities.

(3.9)

where p=d/dt and —X, are distinct roots of the deter-
minant:

det)~, ;+P&,, i
=o (3 2)

with p as unknown. We have shown' that the values of
), are never negative and that the solution is completely

4 The possibility of extending the electric analog to phenomena
involving coupling between heat transfer and mechanical energy
was pointed out by C. F. Kayan, "Electrical analogger appli-
cation to the heat pump process, "Heating Piping and Air Con-
ditioning, July, 1958.

4. A GENERAL PRINCIPLE OF MINIMUM RATE
ON ENTROPY PRODUCTION

In the previous section we have formulated the
general solutions of the system in its evolution toward
equilibrium. A somewhat related question is the fol-
lowing. In the configuration space of the state variables
q;, the thermodynamic state of a system is represented
by a point of coordinates q;. When not in equilibrium
the system is subject to forces, both internal and ex-
ternal, which are expressed by Q;—8V/Bq; and which
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we shall call "dis-equilibrium forces. "These forces may
be considered as proportional to the derivatives of the
generalized thermodynamic potential. The instan-
taneous direction of evolution of the system in the con-
6guration space is represented by the velocity vector j;.
The velocity components j; are also denoted by J; in
the literature and are called Quxes. The question arises
whether the direction of this vector can be determined
by a variational principle.

Let us first write the fundamental equation (2.14)
in a somewhat diferent form. We denote the dis-
equilibrium forces by

(4.1)X,=Q;—BV/Bq;.

The Lagrangian equations (2.14) are then written

BD/itq; =X;. (4.2)

Consider now the quadratic form D as a function of the
m velocity components, and the condition that D be an
extremum when we consider all possible values of the
vector q; under the constraint that the vector q; satisfy
the relation

g; X,q;= const, (43)

with given values of the forces. This leads to the ab-
solute variational condition,

(BD/Bq, hX;) bq; =—0, (4.4)

with an undetermined Lagrangian multiplier k. Except
for this factor, the variational condition (4.4) is equiva-
lent to the equation of motion (4.2). The variational
principle therefore determines the direction of the
velocity vector j;.The undetermined magnitude of the
vector may be fixed by the condition

2D=Q; X,q;, (4 3)

Hence,

BD
2D=Q q, =Q q;X;.

gi

2dD=Q; q,dX~+g; X;dq;.

(4.6)

(4.7)

which expresses that the rate of energy dissipation is
equal to the power input.

Since D is a position-definite quadratic form, the
extremum corresponds to a minimum. Moreover, D is
proportional to the rate of entropy production associ-
ated with the velocities j; of the system. Hence, we
state the following theorem:

Coesiderieg a system which is rot ie equilibrium, its
instantaneous velocity direction is such that the rate of
entropy production is a minimum for alt possible velocity
vectors satisfying the condition that the power input of the
dis equilibrium for-ces is constant.

A dual form of Eqs. (4.2) are obtained if we express
D in terms of the forces X; instead of j;. From Euler's
theorem on homogeneous functions, we have

Since

we derive

aD
dD=Q dq;=Q X,dq;,

i ()gs i

dD =+;q,dX, .

(4.8)

(4.9)

We therefore have the dual form of Eqs. (4.2):
BD/r)X, = q, . (4.10)

We may state a dual minimum entropy production
theorem identical with the above except that the vari-
ables X;and q; are interchanged. The minimizing vector
X; for D is then in the configuration space of the forces.

It should be noted that the minimum theorems ex-
pressed here may be formulated in other mathematically
equivalent forms. For instance, we may state that Eqs.
(4.2) are equivalent to the statement that the quantity

P=D—Q, X;q; (4.11)

is a minimum. Another equivalent statement is that
under the restraint that the energy dissipated is a
constant the power input is a maximum. Certain known
minimum theorems on energy dissipation in electro-
dynamics and Quid mechanics are particular cases of
the above. 4

5. MINIMUM PRINCIPLE FOR STATIONARY STATES
AND RELAXATION MODES

We have seen in Sec. 3 that if there are characteristic
roots X, of the system which vanish, the system will
tend toward a stationary state which is de6ned by (3.9)
and for which all velocities are constant. This stationary
state is such that for all coordinates q; in the direction
of motion the "restoring force" vanishes, i.e.,

c)V/Bq;= 0.

In that direction the system remains under constant
dis-equilibrium forces:

X;=Q;. (3.2)

The minimum theorem of the previous section applies
to this case, but the condition of constant power input
1s now

(5.3)Qs Q~qs= const.

A corresponding statement is of course valid for the
dual form of the theorem.

The minimum principle considered until now deter-
mines the instantaneous velocity of the system. There
are, however, as we shall now proceed to show, diGerent
variational properties which refer to the long-range
time history of the system.

Let us evaluate the rate of entropy production during
the evolution of the system toward equilibrium or a
stationary state. We have seen in reference 2 that the
general equations (2.14) may be written by using

4 See, e.g. , J. H. Jeans, The Muthematicu/ Theory of E/ectricity
aid Magnetisrn (Cambridge University Press, London, 1933),
p. 321.
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normal coordinates $,. The transformation is

q'=Z. 4 "E., (5.4)

~s= j j j. (5.5)

where p is the modal column corresponding to the
relaxation mode s. The corresponding normal forces are

responding to the stationary velocities are kept constant.
This latter property of the stationary state corresponds
to a theorem already formulated by Prigogine' but
derived in a diferent way.

Another variational property refers to the modes of
relaxation themselves T. he modal column p satisfy
the equations:

The modal columns have the property of being orthog-
onal, namely,

Q;a;,& X,—Q, b;,P =0,

which result from the variational condition that

(5.15)

Z aij4'j 4'~ =Z bijou'j 4'~

Normalization is in such a way that if ),/ ~,

(5 6) D= 544"4»

be an extremum under the constraint

V= i2a;;g,&;=const.

(5.16)

(5.17)
2 b "4 '4 '=1' (5.7)

and if ),= ~,
Za't4"4 =1 (5.8)

&=!Z. ~.&.'+lZ. ~.', D=!ZP, (5.9)

where the $P terms correspond to cases of infinite roots.
Equations (2.14) become (p= d/dt):—

(p+&.)$*="., h= n

Solutions of the first equations are

(5.10)

With these coordinates, the functions V and D become

As a familiar example of a system tending toward a
steady state, we might visualize the one-dimensional
Row of heat across a wall, one side of which is suddenly
brought to a constant higher temperature. The system
tends to a steady state when the distribution of tem-
perature is linear and the rate of entropy production
is constant. The only remaining time varying coordinate
is the total entropy input which is proportional to the
time. The unsteady part of the temperature distribution
is a superposition of sinusoidal modes, each with its
own exponential decay.

0. VARIATIONAL PRINCIPLE FOR THE CASE OF
HIDDEN COORDINATES

(1 e xst) ~~—

p+x, x,
(5.11)

If some of the roots ), are zero, we denote them by X

and write
m=t m

The rate of production of entropy is

Up to now we have involved all the degrees of freedom
in the variational equations. However, it is possible to
introduce a variational principle which involves only a
partial number of the total degrees of freedom. We
have shown' that for a system with e degrees of free-

dom, if k variables are observed, the forces applied to
these degrees of freedom are expressed in terms of the
coordinates as

dS 2D 1
2Xst ~ 2 ~ 2

dt T T
(5.12)

with

k

Q;=PT;;q;, (6 1)

7''t=E D'~ +D't+D'~'p,
p+rg

TQ=T'
leads to a quadratic invariant:

5.13X,f,=X„$—= =X .

We may state the following property: The rate of (6.2)
production of entropy is a rnonotomcalty decreasing fInc
tioe zvhich tends toward a coestaet. A/l higher time deriva-

ti res of the entroPy atso decrease ntonotonica&&y and tend where the D's are constants, the r's are decay constants,

to sero. and p is the time operator. The symmetry of the coef-

We note that j„$ are proportional to the dis-

equilibrium forces X„X applied to each normal coor-
dinate:

YVe may write the rate of entropy production as
1=2 Z &~iq~qi~ (6 3)

The stationary state corresponds to X,=O. Therefore,
in the stationary state the entropy production con-
sidered as a function of the dis-equilibrium forces is a
minimum under the constraint that the forces X cor-

and Eq. (6.1) may be expressed by the relation

g;Sq;=bl=(P; 2';;q, jSq;, (6.4)

to be satisfied identically for all virtual displacements

Sq,.
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(6.s)0'pv —~ ~ pv eijp
ii

with

This variational principle, as formulated here, applies
to all phenomena expressible by the basic thermo-
dynamic equations on which the present paper is based
and is therefore quite general. As an example of the
fecundity of this principle, it is of interest to formulate
it more specifically for the case of a viscoelastic con-
tinuum. In terms of the stress tensor r„, and the strain
tensor e„„,it was shown' that for an anisotropic material
the relations are

j) p= v

0, p&v,

~pvepvp
pp

(7.1)

with the operators Q and R given by

The stress-strain law of such a material is expressed
operationally as'

0.„,=2Qe„„+5„.Re,

P ij g D ije+D ij+pD& &j

~ p+r,
(6.6)

pQ' p&'
Q=Q +Q+Q„', R=P +R+R„'. (7.2)

s p+p&» p+r»

The corresponding operational invariant is, without the
summation signs, I= 2PP1( (6.7)

With Cartesian components of displacement I, e, m,
the strain tensor is defined as

and the variational principle may be expressed as

o.„„6eI""= 0I. (6.8)

BR 1 (BP 8'ii'&t

e„=—,etc. ; e „=-) —+—
~, etc. (7.3)

ah' '
2 &ah ay)

f

~„Ae~"dV = I'„ShedS,v»s (6.9)

The usefulness of this formulation lies in the fact that
since the internal stress field is in equilibrium, the total
virtual work is equal to that of the forces applied to the
boundary of the continuum. Denoting by Ii„ this
boundary force and. by xl" the'boundary coordinates,
we have

We consider a plate of thickness 2h. The xy-plane is
parallel with the faces located at »= &h/2. We choose
as a representative deformation:

u= »q2(h), v= 0, w =qi(h). (7.4)

This constitutes a two-dimensional bending and shear-
ing deformation parallel with the xs-plane. The func-
tions qj, q2 of x are to be determined. Components of the
strain tensor are

where the volume integral is taken in the volume V
bounded by S. Hence the variational principle in the
form

8&;&;= BQ/Bh = »dq2/dh&

e»=e„=e „=e„,=0, (7.s)

,

t', "
~„~h CS= " " "

Vd V.
Js 3 J

(6.10)
8 = zqg+ —dqy/dh.

The invariant I is

The procedure exempli6ed here for a viscoelastic con-
tinuum is not restricted to the case of a stress field and

may be used to analyze the time history of complex
physical chemical systems, by means of a suitable choice
of generalized coordinates in a way quite analogous to
the example treated hereafter. The disappearance of the
virtual work of the internal forces is then replaced by
the more general condition of conservation of mass and

energy Quxes between the interacting cells.
In the above derivation dynamic effects have been

neglected. It can be easily verified that the acceleration
of the observed coordinates may be included by in-

troducing the virtual work of the inertia forces as done
in the expression of d'Alembert's principle.

7. APPLICATION TO THE BENDING OF A
VISCOELASTIC PLATE

As an example of the variational method, we shall

treat the problem of two-dimensional bending of a
viscoelastic plate of isotropic homogeneous material.

y 1 yvI= zo'„,» = ~g,„(!,+o, e,, (7.6)

In order to apply the variational principle (6.10) we

must integrate I over the volume. We 6rst integrate
along the thickness of the plate and obtain

8 (dq2) ' Qh (dqg
I+ I +q2 I,

&—((2 2 Edh) 2 ECh )
(7.7)

with 8= (h'/12) (2Q+E). We then integrate with
respect to x

(&l (&(&(2 g t&i (cq q
2

dh ~ ld»= —,
( [Ch

2 ~, &dh&

0& (' (cB+—'

( +q )
dh. (7.8)2" (Ch )

If we assume that by~ and 8g~ are zero at the end points
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x= 0 and x= l, the variation of J is

d qs (dqi5J= B— 5qsdx+Qh l +qs lbqs
~0 dX' &dx ) d'qs (dqi l (d'qi dqsl

=Qhl —+q. I, Qhl +
dx)dx dS

(d qi dqs)+ l5qi d' (" ) Eliminating qs we find
l dx' dx 7

that multiplying 8qs in (7.9) must vanish. We derive the
diBerential equations:

If a force f is applied to the surface of the plate per
unit area in the s-direction, the virtual work of this
force is

d4qi f 1 d'f

dx4 B Qh dx'
(7.12)

pl
f8wdx=

0

f8q,dx.
J0

(7.10)

Applying Eq. (6.10) of the previous section, the varia-
tions (7.9) and (7.10) must be equal. The expressions
multiplying 5qi in (7.9) and (7.10) must be equal and

The erst term on the right-hand side corresponds to a
bending deflection while the second term corresponds
to a shearing deformation. We must remember that
the differential equation (7.12) is also an operational
equation in the time variable since B and Q are time
operators. It is therefore also an integro-differential
equation.
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Thermal Ionization and Capture of Electrons Trapped in Semiconductors*

HERMANN GUMMEL AND MELVIN LAX
Physics Department, Syracuse University, Syracuse, Eem cwork

(Received October 27, 1954)

The use of Coulombic wave functions rather than plane waves for the free electron states is found to
increase the calculated rate of capture of electrons by a factor of about 200 at liquid helium temperatures.
Results calculated for shallow traps in Ge and Si are now found to be consistent with the upper limit set on
the photoconductive lifetime by the experiment of Burstein, Overly, and Davisson. The Born-Oppenheimer
and Hartree approximations used in our calculations were found to yield identical results at low tempera-
tures in these materials.

'HE thermal ionization of an electron from a
trapped state into the conduction band has

previously been calculated using plane (or Bloch)
waves for the final state. ' ' Such a procedure neglects
the effect of Coulomb attraction on the final state
which should be represented by a Coulomb wave func-
tion. It is well known that the correct wave function
has a density at the origin higher than the plane wave

by the Sommerfeld factor y/[1 —exp( —y) 7 with y= 2s./
(ha), where h is the propagation constant of the final
state and a is the eGective Bohr radius of the electron
in the crystal. It is important to note that during
ionization the major contribution to the total transition
probability comes from final states with ku«1, so that

* Supported in part by the U. S. Air Force, through the 0%ce
of Scientific Research of the Air Research and Development Com-
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the correction factor is always large. At room tempera-
ture the factor is about 50, at He temperature it is
about 200. On capture, only electrons with ku«1 have
large capture cross sections. And in any case, only elec-
trons of thermal velocities are present, which at most
temperatures of interest have ha&1.

We have made a calculation of the ionization and
capture probabilities in Si and Ge using Coulombic
wave functions. The calculation was done both in the
Hartree and the Born-Oppenheimer approximation.
Results were applied to the case where the highest
phonon energy is larger than the ionization energy, i.e.,
one-phonon processes are possible. Then both approxi-
mations yield the same result if multiphonon processes
are unimportant, i.e., at low temperatures. The Hartree
approximation in first order gives one-phonon processes
only at any temperature, while the Born-Oppenheimer
approximation gives many-phonon processes at higher
temperatures. This result is independent of the par-
ticular mechanism considered for the interaction as
long as one restricts oneself to an interaction potential
that is linear in the displacements of the atoms from
their equilibrium positions. We considered two types of


