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This is the first of two papers dealing with a systematic study
of the linearized, unbounded medium problems in magneto-
hydrodynamics of incompressible and compressible fluids. Part I
deals with the fundamental equations which are set up quite
generally for an ideal, homogeneous and isotropic, conducting Quid
devoid of viscosity and expansive friction, subject only to the
initial assumption that the externally applied field of magnetic
induction be constant and uniform. The energy and momentum
balance in a magneto-hydrodynamic field is verified with the aid
of the exact fundamental equations and the conservation laws of
energy and momentum, for a rigid volume ffxed in the (stationary)
observer's inertial frame of reference, are displayed in differential
and in integral form. By successive eliminations there is obtained
a sing1e partial differential equation in the particle velocity from

which the unwanted second-order terms are merely dropped in a
linearized small amplitude theory, a process which is fully justified
by considering the special case of infinite conductivity, zero dis-
placement current, and incompressible Quids. Also, assuming that
a particular solution of the linearized magneto-hydrodynamic wave
equation has been obtained, it is shown how to compute quite
generally, from the linearized Maxwellian set, the accompanying
electromagnetic field vectors expressed in terms of the assumed
velocity field. These computations are carried out for plane homo-
geneous waves and for time-harmonic cylindrical waves. The
actual determination of particular wave functions appropriate for
incompressible and compressible Quids, together with the computa-
tion of the corresponding wave numbers, is reserved for the sequel
to this paper, Part II.

I. INTRODUCTION

HE field of magneto-hydrodynamics, like hydro-
dynamics itself, is essentially nonlinear, for the

interaction between a moving conducting Quid and the
electromagnetic field also contains nonlinear terms. The
importance of the new 6eld, especially in cosmic physics,
has been attested by a score of papers on various sub-

jects such as solar physics, cosmic radiation, stellar
oscillations, 'geomagnetism, propagation in an ionized

atmosphere, etc., in which nonlinear phenomena are

very much in evidence. A brief account of these re-

searches, together with a complete bibliography, has
been given by Lundquist' in an excellent review paper.
In this paper, except where noted, we confine our atten-
tion to the important class of linearized problems which

give rise to time harmonic magneto-hydrodynamic
waves in compressible and incompressible Quids.

The underlying fundamental notions in the theory of
magneto-hydrodynamic waves in an incompressible

Quid were originally given by Alfven' in the course of his

researches on the theory of sun-spots. The theory of
magneto-hydrodynamic waves was Grst considered in

some detail by Walen' who set up the magneto-hydro-

dynamic equations starting with the principle of con-

servation of energy. Laboratory experiments in magneto-

hydrodynamic waves in mercury have been reported by
Lundquist, ' and more recently using liquid sodium by
Lehnert. '

*This research was supported by the U. S. Air Force, through
the Once of Scientific Research of the Air Research and Develop-
ment Command.

i S. Lundquist, Arkiv Fysik 5, 297 (1952).' H. Alfven, Nature 150, 405 (1942); Arkiv Mat. Astron. Fysik
829, No. 2 (1942). See also H. Alfven, Cosmtcal Electrodyaamtcs
(Oxford University Press, London, 1950), Chap. 4.' C. Walen, Arkiv. Mat. Astron. Fysik 30A, No. 15 (1944).

4 S. Lundquist, Phys. Rev. 76, 1805 (1949).' B.Lehnert, Phys. Rev. 94, 815 (1954).

Waves in an ionized gas in the presence of a magnetic
field have been considered by Astroms and magneto-
hydrodynamic waves in a compressible Quid of inGnite

conductivity have been studied by Herlofson. ' A more
systematic account of plane magneto-hydrodynamic
waves including the eGects of Gnite conductivity, vis-
cosity, and compressibility of the medium is found in a
paper by van de Hulst. ' Time harmonic cylindrical
waves in compressible and incompressible Quids have
been considered by Lundquist. ' Also, in a recent paper,
Hines'" develops some generalized magneto-hydro-
dynamic formulas, using an extension of the magneto-
ionic approach, which are applicable where a purely
macroscopic point of view is no longer tenable.

However, nowhere do we 6nd a complete account of
the fundamental equations without simplifying assump-
tions injected from the outset, nor a systematic analysis
of the linearized, unbounded media, and boundary value
problems in the field of magneto-hydrodynamics of
incompressible and compressible Quids. In this paper,
Part I, we propose to fulfill this need by 6rst giving a
detailed discussion of the general linearized theory of
magneto-hydrodynamic phenomena in an unbounded,
homogeneous and isotropic, conducting Quid embedded
in a constant and uniform Geld of magnetic induction,
and then examining in general the structure of plane
homogeneous waves and of time-harmonic cylindrical
waves. The application of the theory to the speciGc
cases of incompressible and compressible Quids and the
actual determination of the fundamental wave functions
corresponding to all possible modes of propagation is
reserved for the sequel to this paper, Part II.

' E. Astrom, Nature 165, 1019 (1950).
r N. Herlofson, Nature 165, 1020 (1950).

H. C. van de Hulst, Problems of Cosmku/ Aereodynumics
(Central Air Documents Office, Dayton, 1951), Chap. 6.

' Reference 1, Sec. C."C. 0, Hines, Proc. Cambridge Phil. Soc. 49, Part 2, 299-307
(1953).
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2. FUNDAMENTAL EQUATIONS

The systematic study of the linearized, unbounded
medium problems in magneto-hydrodynamics requires
the simultaneous solution of the Maxwellian equations
for a moving medium and the Eulerian equations of
motion of the Quid in the presence of the ponderomotive
force density of electromagnetic origin. To simplify the
analysis from the outset, we assume a homogeneous and
isotropic conducting Quid of infinite extent embedded in
a uniform magnetic field. Furthermore, we consider only
ideal Quids devoid of viscosity and expansive friction.
Finally, since our approach is purely macroscopic, we do
not consider phenomena in ionized gases at low densities.

2.1 Maxwellian Equations

First, we assume that the homogeneous and isotropic
medium is characterized, in rationalized mks units, by
the rigorously constant macroscopic parameters" p, , e,

and 0-. Furthermore, we adopt here Minkowski's rela-
tivistic electrodynamics of moving bodies, according to
which the Maxwellian set becomes"

(I) VXe+ls(8h/Bl) =0, (III) V h=0,
(II) VXh —e(eje/Bf) = j, (IV) V e= ri/e,

(V) j=rlv+o (e+vXB),
(1)

(VI) rlri/Bl+ V j =0,

where e and h represent the electric and magnetic
intensities of the induced field, j the current density in
the medium, v the velocity of the Quid, and 8 the total
magnetic induction prevailing at a point and repre-
senting the sum, B=Bp+lsh, of the externally applied
6eld Sp (which is assumed constant and uniform
throughout this investigation) and the induced Qeld lsh.
Equation (IV) defines the electric charge density by the
unconventional symbol ri, and (V) exhibits the current
density vector as the sum of the convection current qv

plus the conduction current o (e+vXB). Finally, (VI)
expresses the principle of conservation of charge (equa-
tion of continuity) that governs the behavior of the
charge and current densities.

It must be clearly understood that, in (I—VI), all field

vectors are referred to the (stationary) observer's
inertial frame of reference in which the Quid is moving
with the instantaneous velocity v= v(r, l), where r is the
position vector of the point of observation referred to
the said inertial frame. Admittedly, the set (I—VI)
applies rigorously only to uniformly moving bodies and
its application to more complicated kinds of motion may
be regarded at least as a first approximation. Fortu-

"In this paper we assume a Quid with the permeability and
dielectric constant of vacuum, i.e., p,c=c 2. The extension of the
theory to media having more general electric and magnetic
properties can be readily made, but is not considered here.

'2 See, for example, R. C. Tolman, Relativity, Thermodynamics,
and Cosmology (Oxford University Press, London, 1934), Sec. 52;
C. Mglller, The Theory of Relutsosly (Oxford University Press,
London, 1952), Sec. 73.

nately, however, if the Quid motion is nonrelativistic
(s«c) and if the accelerations produced by the electro-
ma, gnetic forces are small, which is the case in the
present instance, the set (I—VI) adequately describes
the electromagnetic field associated with (slow moving)
accelerated bodies. "

f=rie+jXB, (3)

in which e is the electric intensity and 8 the tofal field of
magnetic induction. In Euler's Eq. (VII), the total
time derivative of the velocity is given by

dv/dt= Bv/Bt+ (v V)v= riv/Bl+ ,'Vs'+ (V-'Xv) Xv, (4)

in which the latter form is invariant.

2.3 Energy and Momentum Balance

The system of equations (I—VIII), together with Eq.
(3), are suQicient to describe completely the behavior
of a magneto-hydrodynamic field. In particular, it is
instructive to verify from these equations, which of
course apply to the complete nonlinear theory, that the
phenomenon is governed by the laws of conservation of
energy and momentum. To this end we consider first the
power per unit of volume developed by the pondero-
motive force density of electromagnetic origin; that is,
introducing the conduction current density

J=j—riv= ~(e+vXB),
we compute from (3) the power per unit of volume

f v=rl(e v) —j (vXB)=—J'/o+j e,

in which the second form is obtained from the first by
eliminating vXB with the aid of (5). Next, we replace j
in the last form of (6) by the left member of (II) and,
making use of (I), we obtain finally

f v= J'/o (8/Bl) L-s,ee'+-', lsH'—)—V —(eX8), (7)

which expresses the power per unit of volume in terms of
the conduction current density J and of the electro-
magnetic field vectors e and H, where H is the tolal
magnetic intensity, H= Hp+h.

"R.C. Tolman, reference 12, p. 101; C. Mgller, reference 12,
p. 200.

2.2 Eulerian Equations

For an ideal conducting Quid devoid of viscosity and
expansive friction, the hydrodynamic equations of
motion and the equation of continuity (conservation of
mass) are

(VII) p (dv/dl)+ V'P = f;
(VIII) Bp/Bt+V' (pv) =0,

where p is the density of the Quid, p the hydrodynamic
pressure, and f is the ponderomotive force density which,
in the assumed absence of gravity, must be equated to
the Lorentz force density acting on the charge and
current distribution, i.e.,
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Proceeding similarly, we can also express the Lorentz
force density itself in terms of the electromagnetic field
vectors. Introducing for the purpose the to/ul Maxwell's
electromagnetic stress tensor'4

g, = «Lee —-', e'g j+tt LHH —-'H'~~ j (8)

where g denotes the iderrtfttctor, and taking its (tensor)
divergence we have

V Zt = «/e V e+ (VXe) Xe)
+p,[HV H+(VXH) XH), (9)

with the aid of which we obtain directly from (3),
making use of (II) and (IV) to eliminate respectively
the current and charge densities, the desired expression
for the Lorentz force density

f= V Zt .tt«(—cl/Bt) (eXH), (10)

in which there appear only the electromagnetic field
vectors e and H.

terpreted as the (reversible) rate of doing work per unit
volume associated with pressure fiuctuations. And,
finally, the divergence term on the right side of (14) is
readily interpreted as the rate at which energy Qows
through the walls into the unit volume, the Qow con-
sisting of electromagnetic energy and total mechanical
energy (kinetic plus potential). Equation (14) was used
by Walen" as the starting point for his derivation of the
magneto-hydrodynamic equations, except that Walen's
equation, as written, is correct only for incompressible
fluids (V v=0) and only if one replaces the total time
derivative of the electromagnetic energy density by the
partial derivative.

To clarify the above interpretation of the energy
balance, suppose we multiply both sides of (14) by the
element of volume dv. and integrate throughout a rigid
volume fixed in the observer's inertial frame of reference.
In this way, making use of the divergence theorem, we
obtain

Energy Balance

To verify the energy balance, we take the scalar
product of v and the vectors on both sides of (VII) to
obtain

pv (dv/dt)+v Vp=f v. (11)

Next, making use of (4), we note that the first term
above can be written as

pv (dv/dt)=pv («tv/Bt)+i2pv Vv'

= W~t) (lp ')+V (lp 'v), (12)

in which the latter form is deduced from (VIII). Simi-
larly, the second term may be written as

v. VP= V (Pv) —PV.v= V. (Pv)+(P/p)(dp/dt), (13)

in which again the latter form is deduced with the aid of
the equation of continuity.

Substituting into (11) the forms (12), (13), and (7)
and transposing terms, we obtain finally the equation

(~/~t) (-'pv')+ (d/~t) (s «'+-'p&')
= —J'/o —(P/p) (dp/dt)

—V feXH+(-,'pv'+P)v), (14)

which represents in differential form the conservation of
energy in a magneto-hydrodynamic field per unit volume
axed in the observer's inertial frame of reference. In
fact, the terms on the left side of (14) represent the time
rate of increase of the total energy (kinetic plus electro-
magnetic) stored per unit volume, and this rate of in-
crease must be accounted for by the terms on the right
side. Thus, the term —J'/tr represents the rate of Joule
heat loss per unit volume, which is an irreversible
process, whereas the term —(p/p)(dp/dk) may be in-

"W. Heitler, The Qrtantttm Theory of Radiation (Oxford Uni-
versity Press, London, 1944), second .edition, p. 7; see also J. A.
Stratton, Electromagnetic Theory (McGraw-Hill Book Company,
Inc. , New York, 1941), Secs. 2.5 and 2.6.

L 'p '+ ( '-e'+ 't -&')]tf-
dt "v

I n feXH+(-', ps'+P)v)da, (15)

which expresses in integral form the conservation of
energy for a fixed volume in a magneto-hydrodynamic
field. Thus, the volume integral on the left represents
the time rate of increase of the total (kinetic plus
electromagnetic) energy stored within the fixed volume,
and the volume integral on the right accounts, re-
spectively, for the irreversible Joule heat loss through-
out the volume and for the reversible rate of doing work
associated with pressure fluctuations. And, finally, the
surface integral on the right measures the time rate of
influx of electromagnetic and total mechanical energy
through the walls of the fixed volume.

Momeetum Balance

To establish the momentum balance we need only
refer to (VII), noting that the erst term on the left may
be written as

p(dv/dt) =p(8v/Bt)+p(v V)v
= (8/Bt) (pv)+ V (pvv), (16).

where the latter form is deduced with the aid of (VIII).
Then, replacing Vp by V (pg), where Q is the idemfactor,
and substituting into (VII) the forms (16) and (10), we
obtain after transposing terms

(8/Bt) (pv)+tt«(rl/«it) (eXH)
= V [Zt (pv)v P3j, (17)— —

'e C. Walton, Arkiv Mat. Astron. Fysik ABO, No. 15, 2 (1944).
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which represents in diGerential form the conservation of
momentum in a magneto-hydrodynamic Geld per unit
volumegxed in the observer's inertial frame of reference.
In fact, the terms on the left side of (17) express the
time rate of change of the total mechanical plus electro-
magnetic momentum contained in a unit volume and
this must be equal to the force acting on the matter and
the electromagnetic field within the unit volume as ac-
counted for by the divergence term on the right. Thus,
this force which acts through the walls of the unit
volume is seen to consist of three terms: the electro-
magnetic stresses, the inQux of matter carrying mo-
mentum, and the net force due to the pressure acting at
right angles to the walls of the unit volume.

To gain further insight into the momentum balance,
it is instructive to integrate both sides of (17) through-
out a rigid volume fixed in the observer's inertial frame
of reference. Thus, making use of the (tensor) divergence
theorem, we obtain

—~" [pv+pe(eXH))dr
«~v

f
n Z,da — (n v)pvda — npda, (18)

which expresses in integral form the conservation of
momentum for a fixed volume in a magneto-hydro-
dynamic field. The volume integral on the left represents
the time rate of change of the total mechanical plus
electromagnetic momentum contained within the fixed
volume and therefore must be equal to the total force
acting on the matter and the electromagnetic field
within the volume. This force is fully accounted for by
the three surface integrals on the right of (18).The first
surface integral denotes the force acting on the Gxed
volume which arises from the electromagnetic stresses
across the bounding surface; the second surface integral
accounts for the inQux of matter carrying momentum
across the walls of the fixed volume and may be inter-
preted as the force resulting from the impact of the
moving Quid on the bounding surface; and the third
surface integral is merely the net force acting on the
Gxed volume by virtue of the normal pressure on the
walls of the volume.

2.4 Reduction to One Fundamental Equation

In order to solve a given magneto-hydrodynamic
problem we would like to eliminate from the system
(I-VIII) all but one of the dependent vector variables,
but this is impossible in general because of the com-
plexity of the equations and because of nonlinearity.
However, it proves possible to obtain quite generally a
single vector partial diGerential equation in the Quid

velocity v in which there remain only a number of
unwanted second-order terms that one eventually
ignores in a linearized theory. To this end we Grst take

the curl of (I) to obtain, making use of (II),
[V2 p—e(B'/Bt'))e= p(Bj/Bt)+VV e, . (19)

from which, making use of (V) to eliminate V e and
multiplying vectorially into the coestaet vector 80 both
sides of the resulting equation, we obtain

[0+e(B/Bt))[V pe—(B'/Bt')) (eXBO)

+ [VV. (vXB))XB,
=p(BIBt)[ + (BIBt))(jX&o)

—[VV ("))XIl' (2o)

Next, to proceed with the elimination, we rewrite the
Eulerian equation (VII) in the form

F=f, F=p(dv/—dt)+Vp, (21)

from which, introducing the Maxwell's electromagnetic
stress tensor for the induced field,

Z= ~[ee—-', eg)+ti[hh —-',hg), (22)

and its (tensor) divergence

V Z=e[eV e+(VXe)Xe)
+p[hV. h+ (VXh) Xh), (23)

we obtain, making use of (3),

jXBO——F—V 'Z+pe(B/Bt) (eXh),

where the vector F denotes the hydrodynamic term

(24)

F=p(dv/dt)+ Vp= p(Bv/Bt)
+-,'pVv'+p(VXv) Xv+Vp. (25)

Similarly, making use of (V) and (24), we obtain

eXBo=o-'[F—V' Z+pe(B/Bt) (eXh))-(./. )( X~.)-( X~)XF., (26)

with which we have completed the elimination of the
electromagnetic Geld vectors, except for second-order
terms, from the vectors jXBO and eXBo which still
remain in (20).

Thus, finally, substituting into (20) the expressions
(24) and (26), we obtain the complete and exact
magnetohydrodynamic equation in the Quid velocity,
namely

[~y.(B/Bt))[V2—pe(B2/B»))
X{n-'[F—V' 2+pe(B/Bt) (eXh))
—(g/ )(vX )—(vX&)X&o}+ [VV (vXS))X&o

=p(B/Bt) L~+-~(B/Bt))[F V&+p. (B/—Bt) (eXh))
—[VV (gv))XBO, (27)

the notable feature of which being the fact that all the
troublesome terms which render its solution in the
present form completely intractable appear only as
quadratic terms. Therefore, it is suggested that in a
linearized theory we merely drop the unwanted second-
order terms. However, to justify this procedure more
fully, we consider next the special case of infinite con-
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ductivity and zero displacement current which serves as
a guide post.

2.5 Infinite Conductivity and Zero Displacement
Current

It has been claimed by Walen" that, in the limit of
infinite conductivity and zero displacement current, the
magneto-hydrodynamic equations for an incompressible
Quid become linear. We propose to show that Walen's
statement is true only in the following restricted sense:
that in this limiting case there exists a class of solutions
(magneto-hydrodynamic waves) of the linearized equa-
tions which also satisfy the nonlinear system except for
an uninteresting quadratic term in the Quid velocity. To
this end, let us examine the limiting form of (27) as
0—+~ and e—+0. In this limit, we have merely

(VX[VX (vXB)jjXBp
=p(B/Bt) [p(Bv/Bt)+ ',pVv'-

+p(VXv)Xv+7'P —p(VXh)Xh), (28)

where B=Bp+ph and in which quadratic terms are still
very much in evidence. Dropping these terms outright,
however, we obtain the much simpler linear equation

[VXVX(vXB,))XB,=pp(B'v/Bt')+t V(BP/Bt), (29)

which can be solved exactly.
Thus, putting Bo=e+o and assuming V v=0, we

obtain for the left side of (29)

[VXVX (vXBo)jXBp——Bos[B'v/Bz' — V( Be/ B)z), (30)

and introducing the phase velocity

V.= aBo(pp) —
&,

which we will henceforth refer to as Atfven's phase
velocity in honor of its discoverer, ' we re-write (29) in
the form

(B'v/Bz') V '(B'v/Bt')— —

=V[(p73 ')(BP/Bt)+(B */B )] (32)

Taking the divergence of the vectors on both sides of
(32) and recalling that V v=0 has been assumed we
obtain

V'[(tsBp s) (Bp/Bt)+ (Bv,/Bs) j=0, (33)

i.e., the expression within the bracket must be a solution
of Laplace's equation everywhere. Therefore, we must
have

(pBo ') (Bp/Bt)+ (Be,/Bz) =constant, (34)

which allows the computation of the (excess) pressure in
terms of the z component of velocity. Furthermore,
substituting (34) into (32) we obtain the one-dimen-
sional vector wave equation

(B'v/Bss) V. s(Bsv/Bts) =0—-(33)
"Reference 3, Eqs. (9) and (10), p. S.
'r H. Alfven, Arkiv Mat. Astron. Fysik 29B, Qo. 2 (1942).

e= —vXBp, (37)

from which, making use of (II), we have

p(Bh/Bt) = VX (vX Bo)=Bp(Bv/Bs), (V' v=0). (38)

Noting that, as a consequence of the form of the solution
(36), (Bv/Bt) = —V, (Bv/Bz), we obtain from (38) the
important result:

h//H p
—v/V. ,

——

where Hp Bo/ts and V——, is given by (31), the choice of
sign depending on the direction of propagation. Equa-
tion (39) may be rewritten, making use of (31), in the
symmetric form

(p)'h= ~(p)'v, (40)

which expresses the fact that, in this special case, the
vectors v and h are everywhere parallel or antiparallel
provided that the Quid is incompressible. Thus, finally,
making use of (40) in the original nonlinearized wave
equation (28), we obtain exactly

(VX[VX (vXBp) j)XBp

= ts(B/Bt) [p(Bv/Bt)+ spVv'+Vp j, (41)

which differs from the linearized form (29) only in the
presence of the quadratic term —,'pV'e' I the bracket to
the right, hence proving our original contention.

2.6 Linearized Form of the Fundamental Equations

Although the exact magneto-hydrodynamic equation
(27) does not reduce strictly to linear form, even in the
special limiting case considered above, the particular
solution (39) does suggest an absolute criterion, inde-
pendent of the conductivity, for the applicability of
small amplitude linear theory. Thus, we need only
assume that the Quid velocity always remains small in
comparison with Alfven's phase velocity, e«V, in
which case, by virtue of (39), the induced magnetic
intensity will always remain small in comparison with
the externally applied magnetic intensity, h&&HO. If this
is true, then all second-order terms appearing in (27) can
be safely neglected in an approximate linearized theory.
Thus, neglecting ph in comparison with Bp, i.e., replacing
B by Bp wherever it appears in the fundamental equa-
tions and dropping all second-order terms from (27), we

whose most general solution may be written as

v(x y, s t) =v+(xy)f(s V—,t)+v (x y)g(z+U, t), (36)

where f and g are arbitrary, dimensionless, single-
valued, Gnite, continuous, and differentiable functions
of their respective arguments and where v+ and v are
arbitrary velocity amplitude vectors independent of s
and t.

Ke propose to return to the infinite conductivity case
in more detail in the sequel to this paper, Part II. Here,
we merely wish to use (36) to solve for the induced
magnetic 6eld h. Thus, using the linearized form of (V),
we obtain in the limit of infinite conductivity:
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obtain the linearized form of the magneto-hydrodynamic
wave equation, namely,

$o+ e(B/Bt))[V' —pe(B"/Bt'))$o 'F —(vXBo) XBo)
=pfcr+e(B/Bt))(BF/Bt) oP—'V (vXBO))XBO, (42)

where F denotes here the linearized form of the hydro-
dynamic term (25), which now reduces to

II. ComPressible Fluids (Magneto Ac-oustics)

For an ideal compressible Quid, devoid of viscosity
and expansive friction, we have in addition to the
equation of continuity (VIII) an equation of state
which yields the functional dependence between the
pressure and the density. For example, for an ideal gas
subject to adiabatic processes we have

F=p(Bv/Bt)+Vp. (43) P/Po= (p/po)', (46)

The important feature of Eq. (42) is that it exhibits
the Quid velocity v as the sole dependent variable. That
is, we have successfully eliminated the electromagnetic
6eld vectors in a linearized theory. This possibility ap-
parently had been overlooked in the literature even for
the special case in which the electric displacement cur-
rent is altogether neglected. Once in possession of the
fiuid velocity for a given case, as determined from (42),
the computation of the accompanying electromagnetic
field vectors is readily effected by making use of the
original (linearized) Maxwellian equations.

In the important theoretical case of infinite con-
ductivity we readily obtain from (42), letting o~~, the
much simpler equation

f VX LVX (vXBo))+u (eB'/Bt') (vXBO) }XBO

=ti(BF/Bt), (44)

which should be compared with (29). As we have seen,
considerable simplification ensues in (42) and (44) if we
neglect altogether the electric displacement current, as
commonly done by most writers on the subject, which
we can do here by merely putting &=0. However, we do
not propose to make this approximation now, for it
obscures some of the essential features of the resulting
wave phenomenon, although we do intend to examine in
the end the limiting form of the general results as one
neglects the electric displacement current.

Depending on the exact nature of the hydrodynamic
term F, which appears in Eqs. (42) and (44), we
recognize two distinct classes of /ineurised problems:

I. Incompressible Fluids

For an ideal incompressible Quid the condition of
incompressibility demands that dp/dt=0, whence the
equation of continuity (VIII) reduces to

V.v=0 (45)

which means that the velocity field must be solenoidal.
In this case, therefore, we must seek solutions of the
magneto-hydrodynamic wave equations (42) or (44),
with F as in Eq. (43), subject to the divergence condi-
tion (45). The pressure P then remains in F and, there-
fore, must be determined in the course of solving for v
from (42) or (44). We find. later, Part II, that magneto-
hydrodynamic waves in an incompressible Quid can be
of two types: devoid of pressure Quctuations and ac-
companied by a pressure wave.

3. PLANE WAVES

At the outset we take the constant externally applied
field of magnetic induction parallel to the s-axis, i.e.,
Bo——e,Bo, and we make the assumption that the pressure
and the Cartesian components of the 6eld vectors
exhibit the common space-time dependence charac-
terized by the dimensionless factor

f(r, t) =exp(i(k r—~t)}, (51)

where co is the fixed angular frequency of the time
harmonic oscillations and k is the vector propagation
constant, which in general turns out to be a complex
vector. The function f(r, t) satisfies the three-dimen-
sional scalar Helmholtz equation

(V2+k')/=0, (52)

where k'=k k is in general complex and must be de-
termined, for a particular solution, from the magneto-
hydrodynamic wave equations (42) or (44).

Further, since the direction of the constant vector So

where 7 is the ratio of specific heats and po is the pressure
corresponding to the equilibrium density po. Quite
generally, however, if we have available an equation of
state between p and p, then (linearizing)

VP= (dP/dp)OVp= V, Vp; V,= (dP/dp)0&, (47)

where V, is the velocity of sound in the medium. In
particular, if the adiabatic condition (46) holds, we
obtain

V.= (vpo/po)'. (48)

Inserting (47) into (43) and making use of the
linearized form of the equation of continuity,

Bp/Bt+po(V v) =0, (49)

we can eliminate the pressure and the density, obtaining

BF/Bt= pp(B'v/Btm) poV, 'VV—v. (50)

Therefore, we must now seek solutions of the magneto-
hydrodynamic wave equations (42) or (44) after in-
serting for BF/Bt the expression on the right of (50). It is
shown later, Part II, that magneto-hydrodynamic waves
in a perfect compressible Quid can be of two types:
devoid of pressure fluctuations (as in the case of
incompressible fluids), and accompanied by a pressure
wave (magneto-acoustic waves) of which there are two
distinct modes.
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F= ipppv+ipk— ; k v=0, (54)

in the case of incompressible Quids, Class I problems;
and, instead of (50),

ippF=——p)'ppv+ppVP(k v)k, (55)

where V, is defined by (47), in the case of compressible
fluids (magneto-acoustics), Class II problems.

To deduce the linearized equation in the Quid velocity
v that results from the elimination of the electromagnetic
6eld vectors e, h, and j, we need only make similar
substitutions in the magneto-hydrodynamic wave equa-
tion (42), obtaining

(~p+io) (k' ip'p p) [o 'F—Bp'(vX-e,)—Xe,)
=ippp(M p+io)F ioBpP[e, (—kXv))(kXP.), (56)

which is valid for finite conductivity. And, either from
(44) or else letting o~ pp in (56), we obtain

Bp'( (k' —io'pp) (vXeg)
—[e, (kXv))k) Xe,= —ipipF, (57)

which applies in the case of infinite conductivity. In
both cases, the vector F is given by (54) or (55) de-
pending on the class of problems being discussed.

In either class of problems, it is clear from the
postulate of plane waves as given by (51) and (53) that
the elementary solutions of the vector equations (56) or
(57) must be of one or more of the following three
forms:

v1= 8pvplP vp =nX vi ——(n Xe„)vs; vp ——nope, (58)

where f is given by (51) and vp is an arbitrary velocity
amplitude which, according to the conditions imposed
by a linearized theory (Sec. 2.6), must be much smaller

constitutes an obvious axis of symmetry of the problem,
we postulate that the vector propagation constant k,
which can assume an arbitrary direction with respect to
the externally applied magnetic field, can be written
quite generally as

k=nk=e, k,+e,k„
where n is a unit vector in the direction of propagation
and k and k, represent, respectively, the transverse and
longitudinal wave numbers. We find in Part II that,
only in the case of inhnite conductivity, does the system
sustain plane homogeneous waves in which n is a real
unit vector and the wave number k is also real. When
the conductivity is hnite, the resulting plane waves are
still homogeneous, but now the wave number k is
complex. In both cases, it is possible to set up plane
wave solutions which are nonhomogeneous, i.e., equi-
phase and equiamplitude planes no longer coinciding,
which means then that n is a comp/ex unit vector, but
we have not found these solutions of practical interest.

Introducing the substitutions V'= ik and 8/R= ipi, —
which are a consequence of (51), we obtain, instead of
(43) and (45),

than Alfven's phase velocity (31), that is, np«V, . As
illustrated in Fig. 1, which is drawn for a rea/ propaga-
tion vector k, the first two proposed solutions vi and vp

are solenoidal, k v= 0, while the third one is irrotational,
kXvp ——0. It is clear from (54) that only the first two
solutions v~ and v2 are admissible in the case of incom-
pressible Quids, whereas the solution v3 must necessarily
be present in the case of magneto-acoustics, at least
whenever pressure Quctuations accompany the wave
phenomenon. Finally, it is seen from (52) that all three
velocity vectors (58) are linearly independent solutions
of the three-dimensional vector Helmholtz equation,

(V'+k') v= 0. (59)

The actual selection of a particular solution (58) and the
determination of the corresponding wave number
from either (56) or (57), will be found in Part II, where
we discuss the application of the present theory to
incompressible and compressible Quids.

Assuming that an appropriate particular solution of
the vector equations (56) or (57) has been selected from
(58), we can proceed quite generally from the linearized
form of (1) to the computation of the electromagnetic
field vectors e, h, and j in terms of the known velocity v.
And, at every stage of the analysis, it proves extremely
useful to examine the limiting form of the results as the
conductivity becomes infinite and as we neglect the
electric displacement current.

Thus, making use of the linearized form of the
Maxwellian set (I—VI) we obtain, by successive elimina-
tions, the held vectors

i~kX (vXB,) kX (vXBp) kXe
r )

GPp 6 ZGOJL4(T 0~~

io ((p~Pp p+ipipa) (vXBp) —[k (vXBp))k)

(pi p+io) (kP pPp p ipplio)— —

~ —vXBp, (60)
g~ QO

o (ppp+io) (kp ioplip) (v—XBp)—iop[k (vXBp))k

(GM+zo') (k —Gl pp —z(ojxo')

- (i/ppp)((k' —~'l p)(vXBp) —Lk (vXBp))k&.

We postulate again that the externally applied held of
magnetic induction is parallel to the s-axis, Bp ——e+p,

And, in case we neglect the electric displacement cur-
rent, we can obtain from (60) the corresponding limiting
forms by merely putting e =0. We then And that the
forms of e and h for the case of infinite conductivity
remain unaltered whether we retain or neglect the
electric displacement current, but that such is not the
case for the current density j.

4. CYLINDRICAL WAVES
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Z
0

FzG. 1. Elementary plane wave solutions of the vector equation
in the particle velocity.

soiF=o~ pev+peV, 'VV v, (65)

in the case of magneto-acoustics.
Next, resolving every vector into its transverse

and longitudinal components, i.e., v= vi+e,v„V=Vi

+e, (cl/clz), we deduce from (42) the form of the
magneto-hydrodynamic wave equation which applies to
cylindrical waves in the case of Rnite conductivity,
namely

(oie+io) (Vs+i''ps) Lo 'F+Bp'vgj
snip(oie+io)F+—soBp'$VPvi VgVg vgj, (66—)

and we then assume that the pressure and all the field
vectors can be deduced from the scalar function of
position and time

f(r i) —g@(~)ei(sz—"t) (61)

where r= y+e,z is the position vector of the point of
observation and 2 is a constant of dimensions meter'
sec—'. The dimensionless factor p(y), which is a function
of the transverse coordinates only, is assumed to satisfy
the two-dimensional scalar Helmholtz equation

(VP+y')y=0, (62)

where V&' is the transverse part of the Laplacian opera-
tor, V =Vp+(ci/ciz)', and y is the transverse wave
number. As a consequence of (62) the space-time func-
tion (61) satisfies the three-dimensional scalar Helmholtz
equation:

(V'+E')/=0, E'=y'+k', (63)

where k is the longitudinal wave number. In general,
is chosen as a positive definite quantity whose actual
value, for a given mode of propagation, is dictated by
boundary conditions on a cylindrical coordinate surface
with generators parallel to the applied field, whereas k'
turns out to be in general complex.

Making the substitution 8/Bt= ioi—in a, ccordance
with (61), we have, instead of (43) and (45),

F= —ioipv+VP; V v=0, (64)

in the case of incompressible Quids; and, instead of (50),

vi ——VX (e,P) =Vf Xe„
vs ——(ik) 'VXvi= (ik) 'VXVX(e,g),
vs ——ViP,

(68)

where p is defined by (61) and k is the longitudinal
wave number. The first two proposed solutions v~ and v2
are solenoidal, V v =0, whereas the third one is irro-
tational, V)&v3 =0. As in the case of plane waves, it is
clear from (64) that only the solenoidal solutions vi and
v2 are admissible in the case of incompressible fluids,
whereas the irrotational solution v3 must of necessity
appear in the case of magneto-acoustics, at least when
the wave phenomenon is accompanied by pressure
fluctuations. Finally, it is seen from (63) that all three
velocity vectors (68) are linearly independent solutions
of the vector Helmholtz equation:

(V'+E')v=0, E'=y'+k', (69)

where y and k are the transverse and longitudinal wave
numbers, respectively. As a consequence of (69) it is
readily shown from the linearized form of the Maxwellian
set (I—VI) that the electromagnetic field vectors e, h,
and j are themselves solutions of the vector Helmholtz
equation with E' as in (69).

The actual selection from (68) of a particular solution
or a linear combination thereof for a given case, and the
computation of the longitudinal wave number k in
terms of a preassigned transverse wave number y are
eGec ted in the course of solving the magneto-hydro-
dynamic wave equations (66) or (67). The details of
these computations, as they apply to incompressible and
compressible fiuids, will be found in the sequel to this
paper, Part II.

Once in possession of an appropriate particular solu-
tion of the magneto-hydrodynamic wave equations (66)
or (67), we can. proceed quite generally from the
linearized form of the Maxwellian set (I-VI), as in the
case of plane waves, to the computation of the electro-
magnetic field vectors e, h, and j.Making use of the fact
that these vectors satisfy the vector Helmholtz equation

The actual proof that the velocity vectors (68), or linear
combinations thereof, constitute elementary solutions of the
magneto-hydrodynamic wave equations (66) or (67}will be given
in Part II.

and proceeding similarly with (44) we obtain the corre-
sponding wave equation which abides in the case of
infinite conductivity,

BssDBs/Bz'+oi'pe)vi+ViVi vg]= —uuliF. (67)

In both cases the vector F assumes the form (64) for
incompressible fluids or the form (65) for magneto-
acoustics.

To obtain the velocity Geld corresponding to a par-
ticular situation we note, in complete analogy with the
above discussion for plane waves, that the elementary
solutions of the magneto-hydrodynamic wave equations
(66) or (67) must be of one or more the following three
forms" ~
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(69), we obtain by successive eliminations:

VX (vXBo) iVX (vXBo) iVXe
/'

E —GPp6 zippo 0~~
io $(cu'go+i~pa) (vXBp)+ VV ' (vXBo)j

(poo+za) (K pp ps—soon—a)

a(coo+ia) (K"- po'p p)—(vX Bp)+i a' VV (vXBp)

(too+ia) (KP ro'—ps ice—pa)

'- (i/(op) $(KP—a)spo) (vX 8p)+VV. (vXBo)),

which are seen to agree with (60), corresponding to
plane waves, if we merely replace V by ik and write ko

instead of E'.
In case we neglect the electric displacement current,

we need merely put o=-0 in (70) to obtain the corre-
sponding limiting forms. It is noteworthy to point out
once more that, in the case of inGnite conductivity, the
forms for e and h remain unaltered whether we retain or

(70) neglect the electric displacement current, but that such
is not the case for the current density j.

In conclusion, the author wishes to express his sincere
appreciation to Professors David S. Saxon and Leon
KnopoG, of the Physics Department and Institute of
Geophysics, respectively, for many illuminating dis-
cussions that proved extremely fruitful in the course of
these studies.
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An analysis of a plasma immobilized by a magnetic field shows that each kind of charged particle has a
general drift perpendicular to the gradient of the field, but that there is no corresponding electric current
density. There is an exact cancellation arising from the gradient of the Larmor radius. The current density
which is present arises exclusively from the particle density gradient and is not associated with any drift of
matter.

'N an inGnite, completely ionized plasma in a mag-
~ ~ netic field where the pertinent variables density and
magnetic Geld are each a function of one coordinate
only which lies perpendicular to the Geld, it is generally
accepted that

BP—Bs'= 87r(ep —et)kT, (1)

where 81 and 82 are the field strengths at points where
the total particle concentrations are el and n2, respec-
tively, and T is the absolute temperature of the plasma.
This equation is usually derived by applying magneto-
hydrodynamic principles through the equations:

Vp=jXB, 4~j=VXB,
4m Vp= (VXB)XB= (B.V)B——,'M'

(B V)B=O under symmetry assumed,

p= rrkT.

Equation (1) should also be derivable from analysis
based on the microscopic structure of such a plasma,
and it is worth while to do this because the derivation
brings to light a peculiar and possibly important

~ Knolls Atomic Power Laboratory —operated by the General
Electric Company for the U. S. Atomic Energy Commission.

property of the plasma. An analysis along somewhat
similar lines but using large volume elements instead of
small ones has already been given by Spitzer, ' but added
insight is gained by the present method.

We adopt a local right-handed Cartesian coordinate
system and x- and y-axes in the plane of the paper and
magnetic field normal to it. We orient the system so
that at the origin, which is the point of interest, the
magnetic Geld, 8, and plasma density, n, are functions
of x only, and the space variations of e and 8 are as-
sumed to be small in the span of the average orbit
diameter. We consider a volume element dxdy (being
unity along s) at the origin. This is illustrated in Fig. 1.

The current density at the origin will then be

j= (eg„v„—eQ, v,)/dxdy, (2)

where the summations are over all positive ions and all
electrons in the element dxdy at any instant. It will

suffice (a) to make the detailed analysis for one kind of
particle, and we choose ions, (b) to omit s-components
of velocity, and (c) to neglect collisions, which lead to
diffusion eBects which may be superimposed on those

' L. Spitzer, Jr. , Astrophys. J. 116, 299 (1952).


