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The equivalence of averages calculated in canonical and microcanonical ensembles is shown to depend
on the validity of a steepest-descent approximation. It is demonstrated that the microcanonical and canonical
procedures yield different values for the order parameter below the Curie temperature for spherical model

dipole lattices.

E propose to show that averages calculated in
the microcanonical' ensemble reduce to corre-
sponding values obtained in the canonical ensemble
providing the microcanonical calculation can be evalu-
ated by a steepest descent method. When this condition
is not satisfied, we shall demonstrate by means of an
example—the spherical model of a ferromagnet?? that
the canonical ensemble can yield incorrect results.
This note was stimulated by the astute observation of
Lewis and Wannier? that the integration in the complex
plane in the Berlin-Kac spherical model calculation
can apparently be avoided by using a canonical treat-
ment of the spherical constraint. We say apparently
because Lewis and Wannier® have since then discovered
a discrepancy between their canonical treatment and
the corresponding microcanonical treatment of Berlin
and Kac in evaluating a fluctuation in the spherical
constraint.
Consider a phase or configuration space described
by the set of variables e={e, €2, - - -ex} and an exten-
sive phase function ¢ (e). By extensive we mean that the
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value of ¢ (e) is proportional to N, the size of the system
An ensemble canonical in the energy U(e) and in ¢ (e)
has the partition function:

0()= f expl—BU(9— () Je, (1)

where 8= (kT)™!, and { is the variable conjugate to ¢ (e).
The condition that ¢(e) possess the mean value KN

leads to
(¢(e))=—1(9/3t)(InQ)=KN. (2)

The mean value of any other observable H(e) is given
by H (i), where

H)=[0() T f H(9 exp[—BU()—16( Mde, (3)

and /, is the value of ¢ determined by (2).
The corresponding partition function in an ensemble
microcanonical with respect to ¢ is

0= f exp(—BU)des (KN —). (4)

Using the usual integral representation for a delta
function
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8(KN—g) = (2mi)1 f dtexp[i(KN—¢)]  (5)
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we can express Q) in terms of the canonical partition
function

Q= (2mi)™1 f ’ exp[ NKt+1nQ(¢) 1dt. 6)
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Thus the microcanonical partition function is a weighted
superposition of canonical partition functions over
various values of the intensive parameter ¢. If, however,
¢(e) is a suitably chosen (i.e., “macroscopic”’) variable,
we may expect from (1) that for large N, Q(f) has the
form [Z(#)]". The exponent in (6) then possesses only
terms of order V and a steepest descent evaluation is
permissible. The saddle point {=¢, may be located by
setting the derivative of the exponent in (6) equal to
zero, which leads identically to Eq. (2)! Thus the major
contribution to Q comes from canonical ensembles in a
small interval around /,, the canonical value of the
intensive variable ¢.

The mean value of H(e) in the microcanonical
ensemble can be shown by a similar argument to be:

(H(9)= (2wiQ) f HG) exp[NKi+InQ() T, (7)

or

(H(€))==H (t,). ®)

Passage from (7) to (8) however requires (a) the exist-
ence of a saddle point which imposes requirements on
the nature of ¢(e), (b) that InH(¢) is not of order N,
so that the saddle condition in (7) does not differ from
that for (6) and (c) that H(f) does not possess a singu-
larity in the immediate neighborhood of #,. Conditions
(b) and (c) impose requirements in the nature of H (e).
All of these conditions must be met before (8) is valid,
i.e., before the canonical and microcanonical ensembles
yield the same mean value for H (e).

It may now be of interest to illustrate these remarks
by applying them to the spherical model of a dipole
lattice, for which ¢(e)=K> ¢?, where K=mnu?/(2kT).
Lewis and Wannier found® that the mean of the variable
H(e)=2>¢;* is not given correctly by the canonical ap-
proach. They point out, however, that the sum )¢
determines the fluctuations in the constraint ¢(e) and
state that ‘““discrepancies are particularly apt to occur
in those averages which are connected with fluctuations
in the assumed constraints.” They say however that
the canonical method is adequate for the derivation of
“all thermodynamic properties.”

We shall show that the last remark is not always
valid by demonstrating that the order parameter (a
thermodynamic variable proportional to the magnetiza-
tion in the ferromagnetic case) and its moments are not
given correctly by the canonical approach. According
to I(7.4) the order parameter can be defined as

S(=N"F|yn|=|Zxel/N, ©)

where plus signs are to be used in the ferromagnetic
case, and alternating signs if the mode y,, with the
largest eigenvalue A, (i.e., lowest energy) corresponds
to antiferromagnetic order. The mean value of [S(e)]”
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in the canonical ensemble using a slight modification of
1(7.5) is given by

Sn()) =[NK(t—An) I""T((n+1)/2)/T(1/2). (10)

After the saddle value for £ is inserted,® (10) becomes
Sate)=[1—(T/Te)]"*2"T((n+1)/2)/T(1/2). (11)

It is clear from (10) that no choice of ¢, will make
Sau(ts)=[S1(t)J* This condition should be obeyed,
however, in the limit N— since the order parameter
S1 is a macroscopic thermodynamic variable below
the Curie temperature (i.e., the relative fluctuations in
S, are of order N—%).

The above discrepancy arises because of the singu-
larity in S,(f) at i=X\,.. Below the Curie temperature,
the saddle point® #, differs from \,, only by terms of
order (1/N). Thus condition (c¢) is violated and the
saddle point or canonical method is invalid. With the
help of (6), (7), I(7.1), and 1(7.6) the correct #th mo-
ment is given by

f Su() (t=2)? expl NK (1= T/T.) (=)t

Sa=

)

f (=) exp[ N K (1— T/T) (1= o) Jdt
’ (12)

where the contour C extends from — e to A, below the
real axis, counterclockwise around A,,, and back to —
above the real axis. With the help of the Hankel integral
formula,” we obtain

Sa=[1—=(T/Te) 1",

the correct result for the spherical model.

The spherical model need not be an adequate repre-
sentation of a dipole lattice. But it forms a perfectly
valid example for comparing the canonical and micro-
canonical procedures. We may conclude that the
complex integrations required by the microcanonical
procedure can only be avoided (using a canonical
procedure) when these integrations are easy to perform
by a saddle point method.

There is no guarantee, furthermore, that the canonical
procedure is valid for all thermodynamic properties.
However, once the canonical value H(¢) has been ob-
tained for a given thermodynamic variable, it should be
easy to verify whether conditions (b) and (c) for the
validity of the canonical method are satisfied for the
variable H.

(13)
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