
P H YS ICAL R EVI EW VOLUM E 97, NUM BER 5 MARC &I 1, 1t&55

Boson-Fer*nion Scattering in the Heisenberg Representation*
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(Received October 27, 1954)

It is shown that the S-matrix for boson-fermion scattering can be
simply expressed in the Heisenberg representation. By performing
a time integration one obtains the S-matrix in the Schrodinger
representation, which has the same form as the conventional
perturbation theory sum over states. Suitably limiting the nature
of the intermediate states entering into this sum leads to integral
equations for certain matrix elements which are equal to the S-
matrix elements on the energy shell. These equations appear in a
completely renormalized form. For example, in the Axed source
limit, the four pion-nucleon scattering states satisfy the same

equation (with different numerical coeflicients). The equations are
nonlinear, but involve only the scattering phase shifts. The
equivalent equation for photopion production is linear, and in the
Axed source limit can be written down from a knowledge of the
experimental scattering phase shifts. The zero-pion-mass theorems
of Gell-Mann and Goldberger (concerning the isotopic spin inde-
pendence of the zero-energy S-wave scattering) and of Kroll and
Ruderman, LPhys. Rev. 93, 233 (19S4)] follow simply from the
formalism.

l. EQUATION FOR THE 8-MATRIX We proceed by commuting a;*(q) through to the left
and u;(q') through to the right in Eq. (1.1). SinceE shall for simplicity derive our results for only

one process: the scattering of symmetric pseudo-
scalar mesons by a nucleon. The method is easily
generalizable to other processes of interest: in Sec. II
we state without proof the results for Compton scat-
tering and photopion production.

We start from Dyson's definition' of the 5-matrix for
the scattering of ag ith meson in momentum state q to a
jth meson in state q', the scattering nucleon going from

p to p":
- (—s)"

s=Z
7t=P

[&~(x), a'*(q)]=3 "~"*!(2qo)'

[a (q'), 4~(x)]=3s e "l(2qo)'*,

(1.3)
and

(1.4)

we obtain (for q@q' and p&p'):

! cxe"*( (—i)"
5=—s

~
C„,u, (q') p „dti .Ch

(2qp) & ( . ort!=

XI'[H, (t,), H, (t„),O, (x)]c„ I, (1.5)
dti . dt„(C „,a, (q').

Cxdy

XP[Hr (ti) Hr (t.)]a;*(q)4„) (1.1) .
'

J (4 I);

Here I' is Dyson's time-ordering operator and a* and
a are, respectively, creation and annihilation operators
for single mesons. Also

Hi ——ig iP(x)ysr, &(x)rP;(x)dr. 3m l it(x)f(x)—dr.

——',3'') y, (x)y;(x)dr,

( "(—&)"
X~ 4'r, Q tdti dt.=0

XI'[H, (ti), ",H, (t.), O, (y), O;(x)7C „ I

I
dxe"'& "'*( ~ (—s)

i)i) —
~
4„., g ) Ch, .Ch„

(4qoqo')' & =o rt!

XE[Hr(ti), .Hr(h„), d s(x)yi, (x)8;;

y2y;(x)d, (x)]e„~, (1.6)

[y;(x)y;(x)]'dr, . (1.2)
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' F. J. Dyson, Phys. Rev. 75, 1737 (1949).' Throughout this section we shall distinguish Heisenberg
operators from interaction representation operators by using bold-
face type (A) for the former. State vectors are represented by
capital Greek letters. 4~ is an eigenstate of the unperturbed
Hamiltonian of momentum p, and energy ps= (p;s+m)&, where m
is the observed Fermion mass. +„ is an eigenstate of the total
Hamiltonian with the same momentum and energy. A four-vector
inner product is written px= p„x„=p'x'—ppxp=p x—ppxp. The
subscripts i, j, k, etc. , refer to the space-like components of a four-
vector as well as to isotopic spin indices. Integrations over three-
dimensional volumes are written J'dr„over four-dimensiona
volumes, /'Ch.

where

O, (*)='gg(x)&...y(x) —@ y, (x)+) d„(x)y.(x)d. (x).

Equation (1.6) can now be transformed by recognizing
that an expression of the form

I

( -(—s)" f

~
C~., P —

~l dt, dt„.
n=o g t

X&[Hr(ti)~ ' ' '~ Hr(t )~ &i(x)~ &s(y)~ ' ' ']4'n l~ (1 7)

(where the A 's are functions of the field. variables at th.e
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pomts x, y, etc. , but not of their time derivatives) can
be written equally well

(+n PLAi(x) Ap(r)j'p ) (1.8)

re" e ""
dxdy( —(@„,P[O, (y), 0;(x)g%„)

(4qoqo')'

where the operators A„(x) now have Heisenberg repre-
sentation time dependence and the 4~'s are exact single-
particle energy-momentum eigenstates of the entire
Hamiltonian.

The identity of (1.7) and (1.8) may be proved in two
ways. The first consists in calculating the scattering of a
free nucleon by an arbitrary external symmetric pseudo-
scalar Geld, p;&'&(x), both in the Heisenberg and inter-
action representations and equating the coefIicients of
P,&'i (x)p;&'(y) under the integral in the two forms of the
S-matrix. The second is a direct calculation of the type
used by Gell-Mann and the author. ' Their proof was
given for vacuum expectations of ordered products, but
applies to other eigenstates provided the self-mass is
properly subtracted from the interaction Hamiltonian
so that there is no self-energy of these states.

We may therefore rewrite Eq. (1.6):

2. DiSCUSSiON OF THE RESULT

Before further discussion of our result we list similar
formulas for two other scattering processes. Their
derivation is completely analogous to that given in Sec.I
for meson-nucleon scattering.

A. Compton scattering (by a nucleon
interacting with pions)

es eg

(4kpkp') '
f '

—2ie'8" e'&~ o"(+ P*(x)P(x)% )

dxdye"*e —'"' (+, , PLj;(y), j;(x)g@„) . (2.1)

The theorem of Gell-Mann and Goldgerger follows
simply from Eq. (1.11). Ignoring the trivial normaliza-
tion factor (4qpqp') &, it is obvious that

«', jlslq, s)=(—q, 'ISI —q', j),
so that for q'= —q=0 (which is only possible for @=0)
(j~S~i)=(i~S~ j) and the scattering is a symmetric
function of i and j.It must therefore be a multiple of 8;;
and independent of isotopic spin to this approximation.

+20'(x) 0 (x)3+.)) (19)

If it were not for renormalization terms, the first-
matrix element in Eq. (1.9) would be simply the time-
ordered product of the interaction densities. With a Spy

and a ) term, however, it is actually the combination
that appears there that is simple, since the meson field
satisfies the equation of motion:

B. Photopion production (to lowest order in e)

0
S +

ze;

(4qoko)l "

Here k„' and e,' are the final photon four-momentum
and polarization, k„and e; the initial photon four-
momentum and polarization. P(x) and P*(x) are the
charged meson Geld operators, and j;(x) is the current
density operator.

or P(x)J 1

—=0;(x), (1.10)

i rdye-'p—&~ @„,P ( '—p,')
J

where p is the renormalized meson mass. Our final
formula is thus

~e'~e '~
S=-

(4qpqo')'

' M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
4 The author has learned from Professor Goldberger and Pro-

fessor Nambu that they have separately obtained results sub-
stantially equivalent to this equation.

4pb')
X P(y), j;(*) e, I (22)

&t*b)

Here q„ is the meson four-momentum, k„and e; the
photon four-momentum and polarization. The curly
brackets represent the cases (neutral, positive, nega-
tive} production. Also j;(x) and P, &&* have the same
meaning as in Eq. (2.1).

As to renormalization: the two terms in Eq. (1.11) are
not separately finite. Part of the X term must be
used to cancel a 4-meson divergence arising from the

L( s—pP)P$' term. Essentially the same is true of Eq.
(2.1), where divergences in the two terms cancel against
each other. To lowest order in e', however, each term of
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Eq. (2.1) is finite as it stands if the matrix-elements are
expressed in terms of the renormalized coupling con-
stant g, and the renormalized nucleon and meson
masses. In Eq. (2.2) [as well as in Eq. (1.11)],a further
renormalization is necessary, one which in any practical
calculation can be done with no di6iculty. That is, each
meson operator P, (x) must be divided by the mesonic
wave-function renormalization, Z3'. This extra factor is
introduced because of the well-known ambiguous limit,

A = lim (q'+ pP) 6p'(q),
q2+ ~2~p

,
~e"*dx(@„,A(x)% „) (2.3)

is given by

e""*dx(+,, A(x)+„)

where A (x)=A(x;, 0) is the Schrodinger representation
operator function of the space coordinate x;=x.

Thus an expression of the form

which arises in calculating outgoing or incoming meson
lines in the S-matrix. Our calculation is such that we
first performed the multiplication and then took the
limit as p'+q'-+0. The result of this limiting order is
2 =Z3. It is well known' that A must be set equal to Z3&

in order for the renormalization program to work, and
plausible arguments can be given for this choice. This
problem is not of immediate interest here, since it is
already present in the conventional definition of the 5-
matrix [Eq. (1.1)].The extra factor Zo' is easily recog-
nized and removed in any calculation.

In order to make practical use of the Eqs. (1.11),
(2.1), and (2.2) it is convenient to transform them to the
Schrodinger representation. This is accomplished by
making explicit use of the Heisenberg representation
time dependence

A(x) =A(x, , xo) =e*"*'A(x;,0)e
—'"*o

—eislxoA (x)e
—iHzo

f
dxekkx(@, eifIxpA (x)e

—iHxo@ )
eJ

d+ —sA:pxp~spp'xp~ —sypxp

dr, (%„,A (x)4~)e'"'*

=2~8(&o+po—po')) dr. (e„., A(x)e, )e"*,

whereas one of the form

"dxdye'"'e ""(+,8[A(x), B(y)]+~)

is given by

(2.4)

) dxdye"*e 'o&(+ ~ 8[A(x),'B(y)]%„)

=—&(&o—qo+Po —Po')! +„, , d~ e'"'*A(x)
i

d7. „e 'o rB(y)( ' 1

z po+qo—in &—

+ d~„e 'o rB(y)&-po- &o-in

r

dr, e'" *A(x) @n I

!2'
=—&(&o—qo+ po—po') P—

d~*e"'A (x)+- I! +-, d~,e "»(y)+. !

&.—po+qo —i

d „e "&B(y)%„!!4, d', e'" *A(x)%'„!

E~ PQ ko on
~ (2 5)

The sum is over the complete set of stationary states +„
of the Hamiltonian.

By means of Eqs. (2.4) and (2.5) we see immediately
that the scattering matrix elements occurring in Eq.
(1.11), Eq. (2.1), and Eq. (2.2) can be written as sums

over states in a manner strongly reminiscent of old-

fashioned first- and second-order perturbation theory.
There are two essential but not independent diGerences:

(a) Every possible intermediate state W„which is
allowed by the conservation laws will enter into the
sums.

(b) The matrix elements must be calculated. between
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exact eigenstates of the Hamiltonian rather than be-
tween first approximations to these eigenstates (as is
done in perturbation theory). Since the only property of
the intermediate states which we have used is their
completeness and orthogonality, they may be chosen in
the most convenient way; that is, they may have
incoming waves or outgoing waves or any other bound-
ary conditions that leave them all orthogonal.

3. INTEGRAL EQUATIONS FOR PION-
NUCLEON SCATTERING

We consider the expression

(p', q, jlo'(*) I p)
—= (+.'-'(q, j), o'(*)+.)
—= (+y' '(q, j), ( '—t')0'(&)+.) (3 1)

where 4'„ i &(q, j) is an incoming wave scattering state
whose plane wave part consists of a nucleon of mo-
mentum P' and a jth meson in momentum state q. The
charge and spin quantum numbers of the nucleon are
suppressed in this notation. Now

+" '(q j)=U'(, 0)~*(q)c' (32)

and O'„=U(0, —~)C'p, where U(ti, tp) is the unitary
operator describing the time development of a state
vector in the interaction representation. ' Thus

&p', q, jlo'(*) I p)

=(C",~ (q)U(, 0)( '—t')&'(*)U(0, — )~.)
(—i)"

=
I

c„., u;(q) P ) dt dt
~=0 gt

XP[Hr(ti), , Hr(t„), 0;(x)74 „ I, (3.3)

where, as in Sec. I,

O'(*)='g&(*)~ "W( )-&~'~'(*)+&~'(*)~.(*)~.(*).

Using the same technique as in Sec. I, we commute a;(q)
through the P-bracket in Eq. (3.3).We find easily:

&p, q, jl o,(*)lp)
Xe'o

t

(2qp)& 0

X dti, ' dt P[Hr(ti), ' ' 'Hi (t ),

X&;,e (*)e.(*)+20'(~)e (*)7+. I

dye ""( (—i)"
I

c~., P ~~ dti dt~.
(2qp)& E p=o N!

XP[Hr(ti), , Hr(t-), o b) O'(&)7C'o
I

' M. Gell-Mann and M. Goldberger, Phys. Rev. 91, 398 (1953).

,(+' [~' 0 ( )0 (*)+20'(*)ol (*)7+ )
(2qo)'*

p e ""gyB., P[o (~), o'(*)~.). (35)
(2qo) &

Equation (3.5) follows from Eq. (3.4) by the same
arguments as those given in Sec. I [Eqs. (1.7) and (1.8)7.

Comparison of Eqs. (3.5) and (1.11) shows that

(3.6)

so that on the energy shell (i.e., when pz'+qx —pz ——kx,
where kz'+p, '=0) the quantity (p', q, jlO;(x) lp) is
essentially the meson-nucleon 5-matrix with the delta
function of energy and momentum left out. It is not,
however, the conventional T-matrix, since in the fixed
source limit it depends primarily on the variable q and
only trivially on the Fourier transform variable pz'+q&,—pz, whereas the T-matrix depends nontrivially on both
of its variables. It is this fact that makes our integral
equation for (p', q, jlO;I p) become, in the fixed source
limit, an integral equation for the phase shifts.

We now transform Eq. (3.5) to the Schrodinger
representation by performing the yo integration. We
find, setting x=0:

&p', q, ~lo'(o) Ip)

(e„., [3;,y, (0)y, (0)+2y, (o)4;(0)7e,)
(2qo)'*

(O' 0 '(0)%' )
(2qo)' ..=p+.

X (O' 0 '(0) 2 )/(E pp —
qp

—in)

(@,, 0;(0)@.)
(2qo)', „=", ,

X (~., Oi(0)~.)/(En- po+qo-zn'). (3.7)

In Eq. (3.7) the momentum p„ is the total momentum of
the state +„.The sum is again over all the stationary
states of the Hamiltonian.

Equation (3.7) is the first of a series of coupled
integral equations which may be derived in a com-
pletely analogous manner to the derivation of Eq. (3.7).
The iteration procedure is almost obvious for p-wave
scattering. (As far as S-wave scattering is concerned
this formalism does not appear particularly useful. ) We
retain, as a first approximation, only the single-nucleon
and the single-nucleon plus single-meson intermediate
states (and of course drop the li term). The single-
nucleon intermediate states provide an inhomogeneous
term; the nucleon-plus-meson states involve the same
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matrix element that appears on the left-hand side of
Eq. (3.7).

Now

= —I:(P~'—Pi)'+~'1
X~,.(p'-p) g,I'„(p', p).,Z,~, (3.8)

where 6p, and I'5, are the renormalized meson-propaga-
tion function and nucleon-meson vertex operator, re-

spectively, and g, is the renormalized coupling constant.
In accordance with the discussion of Sec. I we may drop

Also,

&gc
r~ hp

2m

since 0; is a self-adjoint operator. Equation (3.7) thus
becomes

the factor Zo&. Furthermore, for (5P)'/m'«1, L(gP)o
+& ~~i' (~p) = » a"d I' (P P) = (i7(p ) v N(p) )
that in the nonrelativistic region we will have

g „., 0;(0)e,)=—ig, (g(p'), &„,~(p) )

&p', q, jlo, (0) I
p&=—

(e, , o;(0)e,.„&. &)(e, „&' ~0,(0)e„)
(2qo)'*'- &(p'+q) —&(1i')—qo

(4, , 0,(0)+, , ")(4, , ', 0;(0)@„)

E(1—a) —&(1)+qo

po +qp po qo

&p", q', k
I 0;(0) I

p')*&p", q', k
I 0;(0) I p&s(y" +q' —p+q)-

po +qo —po+qo

&p", q, k-lo, (0) I p) &p", q', klo, (0) I
p&~(u"+e' —p' —a)

(2qp)»=i ~ (2m)'

(3.9)

and
(@,& &(qi, q, j, k), ( I )y (x)e„)—

(+~' '(qi, j), ( ' I")0'(&)+'+'(qo k—)»

etc., leading to integral equations which. will be coupled
to Eq. (3.9).Arbitrary numbers of pions can be included

in this way, although the complexity of the problem
increases tremendously with each order. The point we

would like to emphasize in favor of our scheme is that,
as long as the meson-meson interaction is omitted, to-

where the inhomogeneous term is essentially known, at
least for small momenta.

The motivation for including only one-meson inter-
mediate states is twofold. (1) It simplifies the problem.

(2) Since the experimental I' wave scattering s-hows a
low-energy resonant behavior, one might hope that the
single-meson terms would dominate the sum in Eq.
(3.7) for small external meson energy.

It must unfortunately be emphasized that in a theory
with strong coupling there is no compelling reason for
thinking that this approximation is a good one, as
compared, say, with the Tamm-Dancoff scheme, where

the successive approximations follow noninteracting
states.

Higher approximations can be included in either of
two ways: (1) Higher terms in the series (3 7) can be.
calculated in Born approximation and lumped with the
inhomogeneous term in Eq. (3.9), or (2) An analogous
calculation to the one leading to Eq. (3.7) can be
performed for amplitudes of the form

gether with intermediate states involving pairs, these
equations are automatically expressed in terms of the
renormalized masses and coupling constant so that no
new divergences will appear. This is the main advantage
of the present method as contrasted with the Banco' or
Bethe-Salpeter approximation scheme.

In the fixed-source limit, Eq. (3.9) simplifies
considerably. The appropriate matrix-element is

(q, j, r'
I 0;(k) I r), (where 0;(k) =i (f/p)s kr; and

I r) is
a one-nucleon state), and satisfies the equation

(q, j, "lo,(k)l.&

pfi'
I

—
I (r r,e qs k r;r,a ks q)—

(2qo)' &p3

l lr" 10 (2s'=)=p

&p, i, "Io (q) I
'&*&p, i, "Io'(k) I.&

X
pp

—
qp

—ztx

&P, i, r" lo'(k)
I
r'&*(P, i, "IOJ(q) Ir&I

(3.10)
po+qo

Here f is the rationalized, renormalized, pseudovector
coupling constant.

Equation (3.10) immediately yields an equation for
the phase-shifts. We define g, (q) =o'p'pi sin8(q), where
i=1 stands for the (—'„-',) state, i=2 for the (—',, oo) and
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(-'„-',) states and i=3 for the (-'„-,') state. Then

lg (p) I'
g «=—— +—

3 47r p ooq ql eJ p coy —
G7q

—zG

I g i (p) I

'—g
I go (p) I

'+ 16
I go (p) I

'

9 (oo,+oi,)
2 f' q' q' r d~. Ig (p) I'

gs(q) = ———,+—
3 4' p ooq qr ~ p (oy Goq zrr

&fgsl' —2 lgil'+4!gol'

9(oi„+ooq)

4 P q' q' t doi.
I gs(P) I'

gs(q) =-—,+—
3 47I p (dq qr ~ p oop coq zQ

4l g I'+4l g I'+
I g I'

(3.11)

where jjz=J'e'"'*j(x) ez, p is the nucleon magnetic
moment operator and &p, i, r" IO, (q) I r) is the meson-
nucleon scattering matrix element that satisfies Eg.
(3.10).

4. KROLL-RUDERMAN THEOREM

We shall now show how Eq. (2.2) immediately leads
to the Kroll-Ruderman' th eorem on threshold photo-
production.

At threshold ii=0 so that the first term in Eq. (2.2)
does not contribute. The 5-matrix is thus given by

I dxdye'"'e
(4qoko)' &

(
- 0o(y)

X
I

iIr. ,, & ( '—p') pb), j;(x) iIr. I, (4.1)
0*(y)

9 (oi n+oiq)

Here oi, = po (p'+p') ——l.
The coupling of the various amplitudes is not in

contradiction with the over-all conservation laws; for
example, the Igil' term in the g, equation takes into
account a self-energy Process modifying the (so, so)

scattering.
We 6nally remark that a linear integral equation may

be derived for the y—x production matrix element by
methods that are completely analogous to those we have
used to obtain Eq. (3.9). In this case we must consider
the matrix element (@„.(q, j), j(x)@„),where j(x) is the
current density. The inhomogeneous term now consists
not only of the contribution of single nucleon states to
the sum over states but of the direct production term
Lessentially the first term in Eq. (2.2)j. The kernel of
the equation (if the sum is restricted to single meson
states) is just the matrix element 0;(x) which turned up
in the meson-scattering problem, and which for the
6xed source P-wave theory is trivially related to the
scattering phase shift.

The resulting equation for the 6xed source theory
follows:

&q,j, r'I j»l.)(2qo)'

ef ( 2q e),o (k—q)q
!r' (fiyri 6;irs) I

o eI,+—

p & (q—k)'+p, ' )

Pr,qr q, pXk e„)
Pg'0

e(1+rs) ~ dr,
g. egin qr, r

4m ",i a (2qr)s

&p, i, " I o, (q) I;&*&p, i, r I,» I,&

X

&» i "'I j»lr'&*&p, i r" lo~&q) I.&

(3.12)

with q =0, qo=p, ko+E(ki)=p+m, p =0, po =m.
The coeKcient of e; in Eq. (4.1) is a 'pseudovector, and

must be of the form s;= (4qoko) lLAo'&+Be'kk&j. Since
we are going to let k,—&0, we neglect the second term,
and attempt to calculate the coeKcient A. We multiply
s; by k;. Thu s, if we call

Ns(y)
(&'—~') 0(y) =O(y),

0*(y)
we find

;k;= "d*d k, '" —'-(, , &5O( ), ;(*)3 „)

=s~r dxdye' *e 'q"

s~~dxdye' *e '—qo

8

Bx;

X(+„,PLO(y), Bp(x)/Bxo]e„)

8
~l ob), p( )j

a*,

+~( —y )Lp(*) o(y&j

=ko dxdye"*e 'qv(+, p—Lp(x) O(y)+ )

i dxdye—'"'e 'qvb(xo —yo)

X(+,,, Lp( ), O(y)je, ). (4.2)

The first term in Eq. (4.2) vanishes with k like ko k; and
is thus a contribution to A of order ko/m —p/m. This can

¹ M Kroll and M. A. '.Ruderman, Phys. Rev. 93, 233 ($954).
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be seen most easily by expanding it into a sum over
states such as the one in Eq. (2.5). Then the quantity
p(x) enters only in the form J'e' *p(x)dr, which, as
k,—&0, is a c-number, the total charge, and hence has no
o6'-diagonal matrix elements. That part of the sum
having a free nucleon as intermediate state vanishes
identically, since q=0 and (4'~, J'O(y)dr„%'„) =0. Thus
we need keep only the second term of (3.2) as k~0, so
that we may write

Ao;k,=. i —dxdye'"'e ""5(xp y—p)

X (q'. , Lp(*), O(y) j+.) (4 3)

The commutator in Eq. (4.3) can be explicitly
calculated, since the two operators are to be taken at the
same time.

Since

Pp(y)
)

rp

( '—I') 0(y) (
=ige(y) ~r- ve(y)

P*(y) '

Npb) Np(y)—O' N(y) +l 0 (y)P (y) Nb)
N*(y) N*b)

and

The integrated matrix element on the right of Eq.
(4.5) can be evaluated exactly. It is

—i(2m)'b(kg —qg+ pg —p), ')[—(k —
q) P—p'j

0
.(( —q),')' g. .(p', p) —v ', (. )

where the delta function is 4 dimensional and h~, and
F5, are, respectively, the renormalized meson propaga-
tion function and meson-nucleon 3-vertex operator. g. is
the renormalized mesonic coupling constant.

Now I'p, (p', p) =y,g((p' —p)q'), so that, to order k',
I'p, (p', p) =ppg(0)=pp. Similarly hp, (Ap) =1/[(Ap)'
+ppj+~1/~2sothat[p2+(gp)21' (gp) 1+~F2/gz2
We Gnd, therefore,

Ao,k, (27r—)4i5 (k q+ p—p')—

0
X —v2 N(p')ieg, y up(p), (4.7)

where we have dropped the factor Z3' as discussed in
Sec. I. In the c.m. system, y= —k, p'=0. cc(p')ig, ppn(p)
is thus given by

(m(0), ig,Py, m( k))=—ig.e k/2m(1+ k'/m'), (4.8)

p(x) =ie[pp*(x) y*(x) pp(x)—P(x)$ aIld
)1+

+et*(x)
( ( e(x),

2

eg.
A = —(2m)48(k —q+p —p') —V2 .

2m
(4.9)

we find, for xo——yo, The S-matrix is given by
0

L (*) O(y)]= ~( —y)( '—') —0(), (44).(,) I' s=—
so that

A,k, =—

(2x.)4
8(k—q+p —p')eq o

(4qpkp) l

0 p,

X —v2 +~— (4.10)

for neutral, positive, and negative threshold production,
X

~
+~, ( ' —p') —P(x) 4'& ~. (4 5) respectively. Equation (4.10) is equivalent to the result

P*(x) ~ of Kroll and Ruderman.


