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Functional Analysis and Strong-Coupling Theory
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The relation of functional analysis to the Hamiltonian approach to strongly interacting quantized fields
is examined. The propagation of fermions in an external unquantized boson 6eld provides the basis for the
solutions, as in the Green function method. The functional method may be useful in studying real nucleons
and bound states.

~UNCTIONAL methods have recently been used by
Edwards and Peierls to derive an approximation

to Green's function for the propagation of a nucleon
including radiative corrections from Green's function
for the propagation in an external field; their method is
a development of the technique invented by Schwinger. '
Matthews and Salam' have shown how the work of
Edwards and Peierls may be extended; they derive the
complete Green function for nucleon propagation by
using functional integrations of the type first used in
field theory by Feynman. 4 These functional techniques,
which are deduced from the quantum-mechanical form
of the action principle, have been developed in the hope
that they will make possible approximation methods
other than perturbation theory; however, the difficulties
in using these methods are considerable, and there is no
easy way of estimating the accuracy of any suggested
approximate solution.

The functional methods of Schwinger and Feynman
have all the advantages of covariant formulation, but
they are necessarily difficult to apply to fields which
interact strongly. The functional method can be intro-
duced more easily in a simple single-time approach to
the problem of strongly interacting fields; in fact the
direct approach using the Hamiltonian appears to
require the notion of propagation in an external field
and a functional procedure. The form of the resulting
equations suggests that they might be more suitable
for approximations to strongly bound states and to real
nucleon states.

As an example we use the theory of nucleons and
charged pseudoscalar mesons with a charge independent
pseudoscalar coupling. The Hamiltonian II is given by
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isotopic space; ~X~=2i~, ~s2=I (j=1, 2, 3); and P, lt

are 8-component nucleon variables (P= Py4). The
commutation relations are given at one time t (and all
manipulations are carried out at this time):

$22(x, t), 22(x', t)] =0=Pit(x, t), ii(x', t)],
L2r, (X,t), $1,(X',t)1 = —ill;1,5&" (X—X');

[P(x,t), P(x', t) )+——0= Lit (x,t), it (x', t)]~,

LP.(X,t), P, (X',t)]+=8.rats&(X —X').

(2)

HN and Hr could be written in a charge self-conjugate
form, rather than (1), but that is not necessary for the
discussion.

In perturbation theory the problem of finding the
eigenstates N of H is solved by first diagonalizing
HM+HN, while in any strong-coupling theory it is
essential to try first to solve the eigenstate problem
either for HM+Hr or for HN+Hr. The strong-coupling
method of %entzel" and the intermediate-coupling
method of Tomonaga~s start from HM+Hr, so that
the nucleon recoil has to be added as a perturbation.
Apart from the diKculty of allowing for nucleon recoil,
these theories become very complicated because of the
nature of the nucleon source functions which appear in
Hr. Because the three components lJrr, yeller do not
commute, it is not possible in practice to diagonalize
HM+Hr by a single canonical transformation; as a
result, any effective manipulation is very difIicult.
(Scalar or pseudoscalar uncharged meson theory with
the simplest coupling has only one component it/ or
py'lt occuring in Hr, and a simple canonical transfor-
mation solves the problem' —apart from nucleon
recoil. )

The advantage of first diagonalizing HN+Hr is that
the meson variables P(x, t) which appear in Hr commute
with each other and with all nucleon variables; the
P(x,t) can therefore be treated as functions (not
operators) in HN+Hr, and they will be written ii'(x)
to indicate that they are eigenvalues. The nucleon
eigenstates +NLp') and eigenvalues E[ii'j determined

HM+Hr+HN1
with

HM ———', dsxf 22 22+c2(gradual gradli)+cst12(p p)),

HN = J'tc dsx{ljr(y grad)P+z~),

sg
Hr ——— lJsxp(~ y)ysllt, .
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(H~+HrLP'7)'p~LN'7=Ero'7'p~l &'7 (3)

S(@')
Ls'7q Ls'7,

are functionals of P'(x). They obviously describe the
behavior of the nucleon field in an external meson 6eld
P (x).

The solutions of
H+=~ (4)

are directly related to the solutions of (3). We use a
representation for 4' speci6ed by some complete set of
eigenvalues for the nucleons, and by P'(x). H~ behaves
like a number insofar as the nucleon components of 4'
are concerned, but it has nonzero matrix elements
between states with diferent P'(x). The solution 4' can
therefore be written

p& given by

y(x)=Ppqge'" *, ~(x)=P p e
—'" *

the eigenvalues q~' can be used to label the boson com-
ponent, and an equation similar to (8) with pj, replaced
by (h/i) (8/8q&) is obtained.

Some idea of the techniques which are required may
be obtained by looking at the degenerate case in which

g vanishes! see (1)7.The solution of (3) is 4~Lp'7=ql~,
E$P'7=E~, and (5) becomes

S{y')

In (8) the term (grad/'(x) grad/'(x)) can be replaced
by —P'(x)'PP'(x), and the summation over p' can
be limited to the set Sl, (g') of normalized functions
P'(x) for which

|7 P'(x)+lr P'(x) =0, (lr real).
where 4'~Lp'7 is a normalized solution of (3). For the
moment we relax the condition that %'&Lp'7 is nor- Equation (8) reduces to
malized and write

q= 2 q~B'7. —', Jd'x P—
satan & J 8P'(x) 5P'(x)

S(p') is some set of functions P'(x) over which the
summation is to be carried out. The set S(@') need only
be large enough to ensure that (8) below has a solution,
or an approximate solution; one advantage of this
method over that of Edwards and Peierls' is that non-
enumerable sums need not appear.

The solution of (4) is thus

E H ~
I
~'7= Z (E-EL~'7)q L~'7.

+c'(1'+t')0'(x) 0'(x) aLN'7=E~ & al 0'7,
Sg(4')

where E~ E E~. The——set—S~(g') can be reduced to a,

single function:
3

L&'7=re f(~,'),

and a particular solution is

S(4') S(@') f(e) =exp( —ky),
In this representation

~(x)=-
i Sy(x)

and (7) gives the eigenvalue equation

(5) '
~d'x

l
—

l

——
e to'» (i ) 5&'(x) 8p'(x)

= Z (E—EL~'7)q L~7, (8)
S($')

with the eigenstate 0 given by (6).
It is easy to derive equations equivalent to (8) for

other representations; for example, with operators qj„

(c2($2+t 2) ) $

y;=
l l

' 'dQxt(2x).
5'

In general the choice of the set S(p') has to be varied
according to the solution which is required; for ex-
ample, to study real nucleons, functions P'(x) which are
nonzero only near x=0 are required. The interpretation
of the eigenstates 4' given by (6) and (8) is obtained by
classifying the solutions by the eigenvalues of those
operators which commute with H. The vacuum state
should be the eigenstate of least energy. Further details
of the method will be given elsewhere.

Note added ie proof Equation.—(9) is separable and
its solutions can be studied by assigning @'(x,) to the
sth cell of space. If a cell is of volume bx, a solution is
fLp,'7=II,f.(g, (x.)) with f, (g,) =H~(Z) exp( —-', Z ).
Z= (5x c/8)'*(k'+ p') l(P (x,).


