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The relation of functional analysis to the Hamiltonian approach to strongly interacting quantized fields
is examined. The propagation of fermions in an external unquantized boson field provides the basis for the
solutions, as in the Green function method. The functional method may be useful in studying real nucleons

and bound states.

UNCTIONAL methods have recently been used by
Edwards and Peierls! to derive an approximation
to Green’s function for the propagation of a nucleon
including radiative corrections from Green’s function
for the propagation in an external field; their method is
a development of the technique invented by Schwinger.?
Matthews and Salam?® have shown how the work of
Edwards and Peierls may be extended ; they derive the
complete Green function for nucleon propagation by
using functional integrations of the type first used in
field theory by Feynman.* These functional techniques,
which are deduced from the quantum-mechanical form
of the action principle, have been developed in the hope
that they will make possible approximation methods
other than perturbation theory ; however, the difficulties
in using these methods are considerable, and there is no
easy way of estimating the accuracy of any suggested
approximate solution.

The functional methods of Schwinger and Feynman
have all the advantages of covariant formulation, but
they are necessarily difficult to apply to fields which
interact strongly. The functional method can be intro-
duced more easily in a simple single-time approach to
the problem of strongly interacting fields; in fact the
direct approach using the Hamiltonian appears to
require the notion of propagation in an external field
and a functional procedure. The form of the resulting
equations suggests that they might be more suitable
for approximations to strongly bound states and to real
nucleon states.

As an example we use the theory of nucleons and
charged pseudoscalar mesons with a charge independent
pseudoscalar coupling. The Hamiltonian H is given by

H=Hy+H;+Huy,
with

HM=%fd3x{gc-qc—{—q2(grad¢'grad¢)—|—62#2(¢'¢)};
HN=hcfd3x{\l./(7-grad)¢+'<w}> ey

H =§fd3x¢(c-¢) 5
I \/Z Y 3
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6= (p1,2,03), m= (m1,m2,m3) are Hermitian vectors in
isotopic space; X t=2ix, v.2=1 (j=1,2,3);and ¢, ¢
are 8-component nucleon variables (¥=yy*). The
commutation relations are given at one time ¢ (and all
manipulations are carried out at this time):

[=(x0), =(x',) ]-=0=[4(x,0), $(x',) 1,
[ri(x,0), e (x') 1= — ih3 8 ® (x—x') ;

[ (x0, # (') e =0=[w(x,0), ¥ (') 1,
[0 (x,0), ¥ (%' 1) 1= 80,0 ® (x—X).

Hy and H; could be written in a charge self-conjugate
form, rather than (1), but that is not necessary for the
discussion.

In perturbation theory the problem of finding the
eigenstates ¥ of H is solved by first diagonalizing
Hi+Hy, while in any strong-coupling theory it is
essential to try first to solve the eigenstate problem
either for Hy+H; or for Hy+H;. The strong-coupling
method of Wentzel®® and the intermediate-coupling
method of Tomonaga®3 start from Hy+H;, so that
the nucleon recoil has to be added as a perturbation.
Apart from the difficulty of allowing for nucleon recoil,
these theories become very complicated because of the
nature of the nucleon source functions which appear in
H;. Because the three components Y7 % do not
commute, it is not possible in practice to diagonalize
H)+H; by a single canonical transformation; as a
result, any effective manipulation is very difficult.
(Scalar or pseudoscalar uncharged meson theory with
the simplest coupling has only one component ¢y or
¥v% occuring in Hy, and a simple canonical transfor-
mation solves the problem®—apart from nucleon
recoil.)

The advantage of first diagonalizing Hy-+H; is that
the meson variables ¢ (x,f) which appear in H; commute
with each other and with all nucleon variables; the
#(x,f) can therefore be treated as functions (not
operators) in Hy+Hy, and they will be written ¢’ (x)
to indicate that they are eigenvalues. The nucleon
eigenstates ¥y[ ¢’ and eigenvalues E[ ¢'] determined
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(Hy+Hi[¢' W[ ]=E[¢'Wn[4'] 3)

are functionals of ¢’(x). They obviously describe the
behavior of the nucleon field in an external meson field
¢’ (x).

The solutions of

H¥=EV 4)

are directly related to the solutions of (3). We use a
representation for ¥ specified by some complete set of
eigenvalues for the nucleons, and by ¢’ (x). Hjs behaves
like a number insofar as the nucleon components of ¥
are concerned, but it has nonzero matrix elements
between states with different ¢’(x). The solution ¥ can
therefore be written

Y= 3 a[¢'1¥n[4'],

S(¢")

(5)

where W[ ¢'] is a normalized solution of (3). For the
moment we relax the condition that ¥y[¢'] is nor-
malized and write

V=3 Yn[¢]

8(s”)

(6)

S(¢’) is some set of functions ¢’'(x) over which the
summation is to be carried out. The set .S(¢’) need only
be large enough to ensure that (8) below has a solution,
or an approximate solution; one advantage of this
method over that of Edwards and Peierls! is that non-
enumerable sums need not appear.

The solution of (4) is thus

> Hy¥n[4¢']= Z (E EL¢'D¥nlg'].

S(¢")

(™)

In this representation

and (7) gives the eigenvalue equation

s<¢'> d3x[( ) o’ (x) o¢’ (x)

+c*(gradg’ (x) - gradg’ (x))+c’u*¢’ (x) - ¢ (x) 1 Un[ 4]

= X (E—E[¢'DTn[4"], (8)
S(¢%)

with the eigenstate ¥ given by (6).
It is easy to derive equations equivalent to (8) for
other representations; for example, with operators g,
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P« given by
$(X) =2k qre™ %, =(X)=2x pre %,

the eigenvalues qi’ can be used to label the boson com-
ponent, and an equation similar to (8) with py replaced
by (%/%)(8/8qx) is obtained.

Some idea of the techniques which are required may
be obtained by looking at the degenerate case in which
g vanishes [see (1)]. The solution of (3) is Uy[ ¢’ =Ty,
E[¢']=Eyw, and (5) becomes

V= 3 a[¢T¥n.

S(¢")

In (8) the term (gradg’(x)-gradg’(x)) can be replaced
by —¢'(x)-V2¢'(x), and the summation over ¢’ can
be limited to the set Si(¢’) of normalized functions
¢’ (x) for which

V2’ (x)+k*¢’

Equation (8) reduces to

(x)=0, (k real).

)
skw) fd3 { o¢’ (x) 3¢’ (x)

e (o) ¢'(x>-¢'<x>}a[¢'j=EM

Sk

al¢'],
(¢7)

where Ey=E— Ey. The set Si(¢") can be reduced to a
single function:

[ ¢7=TI1 /(6/),

i=1
and a particular solution is

f(#5)=exp(—3y5),

yi= (ﬂ%@)%fdgx%z(x)- |

In general the choice of the set S(¢’) has to be varied
according to the solution which is required; for ex-
ample, to study real nucleons, functions ¢’(x) which are
nonzero only near x=0 are required. The interpretation
of the eigenstates ¥ given by (6) and (8) is obtained by
classifying the solutions by the eigenvalues of those
operators which commute with H. The vacuum state
should be the eigenstate of least energy. Further details
of the method will be given elsewhere.

Note added in proof—Equation (9) is separable and
its solutions can be studied by assigning ¢'(x;,) to the
sth cell of space. If a cell is of volume 6x, a solution is
flo/ 1=10f(¢;(x;)) with f,(¢)=Hn(Z) exp(—3Z?).
Z=(0x-c/m)} (K+17) ¢, (x,).



