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Magnetic Moments of Conjugate Nuclei
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Many experimentally-observed magnetic moments of conjugate (semi-mirror} nuclei deviate approxi-
mately the same amount from the Schmidt limits. It is shown that the theoretical magnetic moments
provided by a simple form of the collective model are such that the difference between the deviations of a
pair of conjugate nuclei is small. Those experimentally-observed exceptions to this rule where the difference
between the deviations is quite large (such as I" —Mo") can be explained by modifications of the collective
model to include the effects of (a) shell model structure and (b) configuration admixing. In fact, the relative
importance of the various dynamical features of the nucleus can be assessed, qualitatively at least, from
the size and sign of the magnetic moment deviation difference of a pair of conjugate nuclei.

INTRODUCTION

HE symmetry properties, angular momentum and
parity, of the ground states of most odd-even

nuclei are correctly predicted by the independent-
particle shell model of Mayer' and Haxel, Jensen, and
Suess. ' But this model seems less successful in deter-
mining the dynamical features of the nucleus as
exemplified by the deviations of the experimental mag-
netic moments of odd-even nuclei from the predicted.
Schmidt values. The magnetic moment deviations indi-
cate that either an incomplete magnetic moment oper-
ator is being used or that the independent-particle
shell-model wave functions are a rather poor description
of the complex nuclei.

Attempts to explain the magnetic moment deviations
of the heavier nuclei by means of additional magnetic
moments arising from meson effects have not been too
successful. A detailed investigation by Ross' on meson
exchange moments, normalized to explain the H' and
He' magnetic moment anomalies, indicates that the
experimentally observed magnetic moment deviations
cannot be adequately accounted for on the basis of
meson effects.

Recent attempts to explain the observed magnetic
moment deviations have centered about the collective
model approach of Bohr4 ' and Mottelson and/or the
modification of the Mayer-Jensen shell model due to
con6guration mixing. Both methods have resulted in a
substantial improvement for I=L+1/2 nuclei. The
pure collective model (without configuration mixing)
contradicts observations by predicting no deviation for
I=1/2 nuclei and by predicting deviations outside of

' M. Goeppert-Mayer, Phys. Rev. 78, 16 (1950).' Haxel, Jensen, and Suess, Z. Physik 128, 295 (1950).
'Mare Ross, Phys. Rev. 88, 939 (1952). Additional references

concerning meson effects and magnetic moments are to be found
in this reference.

'A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
26, No. 14 (1952).

'A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat;fys. Medd. 27, No. 16 (1953).

the Schmidt line for many I=L 1/2 nuc—lei. The
con6guration mixing approach in an extreme form as
suggested by Volkovs predicts deviations for I= I. 1/2—
nuclei too far inside the appropriate Schmidt line. The
more fundamental con6guration mixing calculations of
Blin-Stoyle" gives excellent agreement for all I=1/2
nuclei (I=L+1/2 and I=L 1/2) as we—ll as an
unambiguous explanation for the anomalous closed
shell plus one nucleus, Bi"'. However, it is difficult to
believe that the many observed large quadrupole
moments can be explained in terms of only mixed
con6gurations which involve only a few particles.

Undoubtedly, complex nuclei inust be described both
in terms of collective phenomena and mixed configura-
tions. In. fact, Bohr and Mottelson considered the
mixing of the con6guration of the last odd particle due
to interaction with the surface oscillations. However,
if possible, it would be desirable to try to determine
the relative importance to the magnetic moment of the
collective motion of the nucleons as opposed to the

admixing of diferent configurations.

CONJUGATE NUCLEI

Schawlow and Townes' observed that conjugate
(semi-mirror) nuclei, i.e., an odd-even nuclear pair (one
nucleus having Z odd protons while the other has Z
odd neutrons), have nearly the same magnetic moment
deviation from their respective Schmidt lines. This
result can be explained by assuming that (a) the odd-
particle wave functions are primarily responsible for
the magnetic moment deviation, and (b) the odd-

particle wave functions are the same in both nuclei.
In this connection, it is convenient to define the

' A. B. Volkov, Phys. Rev. 94, 1664 (1954). Additional refer-
ences concerning configuration mixing are to be found in this
reference.

r R. J. Blin-Stoyle, Proc. Phys. Soc. (London) A66, 11 (1953).
e R. J. Blin-Stoyle and M. A. Perke, Proc. Phys. Soc. (London)

A67, 885 (1954).' A. L. Schawlow and C. H. Townes, Phys. Rev. 82, 268 (1951).
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magnetic moment deviations in the following manner:

ps —p
gP

1Pg —
2

gs —p
gN

where p~ and p~ are the intrinsic magnetic moments
of the proton and neutron, p, 8" and p, q~ are the respec-
tive Schmidt values of the magnetic moment, and p,

~

and p~ are the corresponding calculated or experimental
magnetic moments. If the even particles are coupled to
zero angular momentum, then regardless of the com-
plexity of the odd-particle wave function,

a~=a& or a&—a&=0, (2)

provided the odd-particle wave functions are the same
for the nuclear pair (charge symmetry). '

The experimental deviations for sixteen cases of
conjugate nuclei are listed in Table I."The last column
lists the quantity A~ —A~ which is a measure of the
validity of Eq. (2). It can be seen that with the excep-
tion of four cases A~ —A~ is either quite small or else
small compared to 5"and A~ themselves. Of these four
cases, two (Au"' —Ba"' and Pr"' —Pd"') are poorly
measured. In the worst case (I"'—Mo") I"' with a
spin of 5/2 is in a region of very close competition with
nuclei having a spin of 7/2 (the same competition is
not evident among the corresponding odd-neutron
nuclei). The competition between the g7/Q and dsts levels
probably accounts for the extremely large magnetic
moment deviation of I"' and the resulting large value
for h~ —h~. In the final case which is poor, the deviation
of Nb" appears to be too small when compared to
other g9/2 nuclei. The interpretation of this case in
terms of shell-model structure is discussed later.

CONJUGATE NUCLEI AND THE
COLLECTIVE MODEL

It has been suggested' that the mirror property of
the magnetic deviations of the conjugate nuclei repre-
sents an argument against the collective model of the
nucleus. The number of even particles in the nuclei of
the conjugate pair are generally quite different because
of the neutron excess. For this reason it would seem
likely that the core contribution should be quite
different for the two nuclei, leading to rather large
values of 6"—A~. However, it is found that the
collective model of Bohr and Mottelson without con-
figuration mixing also predicts small values (not zero
as in the configuration case) for AP —AN.

The small values predicted for A~ —A~ are a conse-
quence of ignoring any possible shell structure in the
core, e.g. , by assuming a particular coupling (strong or
weak) to be valid for both nuclei of the pair. The data
for the magnetic moments of conjugate nuclei show
for instance that the strong-coupling limit of the col-

' All data are from P. F. A. Klinkenberg, Revs. Modern Phys.
247 65 (1952) unless otherwise note4.,

lective model without configuration mixing cannot be
valid for several pairs. While this conclusion is not new,
the approach may lead to some clarification as to the
limitations which must be placed on the various forms
of the collective model.

The magnetic moment operator for the odd-proton
nucleus may be written as

pP=t oL&+(t —-')~ '+Z (t —l)

+EN( jN+ttNrrN)] (3)

where primes indicate the last odd particle and the
summations extend over the core particles. p, o is the
nuclear Bohr magneton, c is the Pauli spin operator,
and I is the total angular momentum of the nucleus.

The corresponding magnetic moment operator for
the odd-neutron nucleus is

P~ tto(ttNrrN +ZPt 3P+ (ttP s)trP]+EN ttNrrN)' (4)

The wave function for the odd-proton nucleus is
written as

4r"(I')= Z ~ (~ )Z&j, lt, Jlf —t, t lg, lt, l, ~)
X&7,"(&P)@;~"(P). (5)

Cq&(AP) is the angular part of the core function of the
odd-proton nucleus having angular momentum X, a s
component of angular momentum p, , and A~ particles
in the core. (j, 'A, M—tt, tt

~ j, X, I, M) is the appropriate
Clebsch-Gordon coefFicient as defined in Condon and
Shortley. "P,~ is the wave function of the odd particle
having total angular momentum j. The summation
over j thus includes the possibility of con6guration
admixing due to the interaction of the odd particle with
the surface. p includes all other required quantum
numbers to specify the wave function such as the
occupation numbers for the surfons (quantized surface
vibrations), as well as all summations necessary to give
the required symmetry properties of the wave function.
a~, q, ; includes the remainder of the core wave function
as well as the normalized probability amplitudes for
the expansion. A similar wave function holds for the
odd-neutron nucleus.

In most calculations involving low-lying states or
ground states only the values X=O, 2 (X= I represents
a dipole vibration at much higher energy) are considered
important. In the perturbation calculation of Milford'
the values X=O, 2, 4 are used since it can be shown
that the odd particle interacts with the odd ) in the
second order. In the following work it is assumed that
) assumes only even values.

With the use of these wave functions and the mag-
netic moment operators given by Eq. (3) and Eq. (4),

"E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge University Press, New York, 1951), Chap.
III."F. J. Milford, Phys. Rev. 95, 1297 (1954).
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it is found that

l(j, 7~, I IJ, ,—I/, Ij, x, I, I)l'

p jp
+(/ x (+N) +r

shares in the total angular momentum of the nucleus,
then the respective share of the even particles in the
core angular momentum would be expected to be
diferent for the two nuclei of the conjugate pair. Thus
regardless of specific nuclear forces and the coupling
of the core to the single odd particle, the neutron
excess alone could possibly lead to large values of
gp gN

The second effect of the unequal number of particles
is related to the coupling of the single odd particle to

TABLE I. The magnetic moments and magnetic moment
deviations of conjugate nuclei in order of ascending total angular
momentum and mass.

Conjugate
nuclei Z N

H3 1 2
He 2 1

Single-
particle
state l;

SI/2

Sl/2

Magnetic
moment d,p or 5&

2.979 —0.081 +0.034—2.127 —0.115

(j', 7i, I I/, , ply', —7(, I, I)
&~~~7

x(j",x, I, I I
j",x, I I/, , p)—

P31
Si29

Nl&
C13

15 16
14 15

Sl/2
$1/2

Pl/2
Pl/2

+1.312—0.555
0.724 +0.014
0.710

—0.283 —0.008 —0.041
+0.702 +0.033

Bll
Bee

P3/2

P3/2

2.689—1.177
0.482 +0.098
0,384

X Cq~ A
pjp'

+2 (/N

PN

No cross terms occur between core states since all
values of X are even.

It is now necessary to simplify Eq. (6) in a manner
which is consistent with the usual assumptions of the
various forms of the collective model. An especially
simple case is the Bohr-Mottelson strong-coupling
model without configuration mixing. In this case there
is no admixture of diferent single particle j states.
The only value of j is assumed to be that prescribed
by the shell model, i.e., j=I. Furthermore, the core
angular momentum is restricted to ) =2. Kith these
conditions Eq. (6) becomes

/i.
/'

/(/,
~=Q I (I, 2, —I I/, I/ I I, 2, I, I) I

'—

Cu&3 29 34
Cu'5 29 36
Cr&" 24 29

P3/2
P3/2

P3/2

2.226
2.385—0.474

0.683 —0.058
0.614 —0.127
0.741

CP' 17 18
CP7 17 20
S33 16 17

79
Ba"' 56 79

A/2
d3/2
/j3/2

d3/2

A/2

2.226 —0.304 —0.036
2,385 —0.244 +0.024

+0.644 —0.268

0.16 —0.02 +0.14
+0.835 —0.163

AP' 13 14
Mg25 12 13

d 6/2

~5/2

+3.641—0.855
0.502 —0.051
0.553

I'2' 53 74
Moe7 42 53

Pr'4le 59 82
Pd' 46 59

Rb8' 37 48
ZQ67b 30 37

d&/2

A/2

~5/2
d 5/2

f8/2

f5/2

+2.809—0.914
0.865
0.512

0.353

+3.58—0.6
0.53 —0.2
0.68

1.353 —0.214 +0.052
+0.876 —0.256

0.291
0.287

0.004Mn" 25 30 (fv/2)', 1=5/2 3 468
Ti4' 22 25 (fq/2)', J=5/2 —0.787

V&1 23 28
Ca43e 20 23

f7/2
f7/2

5.148—1.318
0.281 —0.030
0.311

Co&9 27 32
Ti4'" 22 27

fv/2
f7/2

4.648—1.104
0.499
0.422

0.077

C)," Ap Nb" 41 52
Ge"d 32 41

ge/2

ge/2

6.166—0.877
0.273 —0.268
0.541

PN+ P ~'/."i'(A )) . (7)
pp —

~ N

In'"b 49 64
In"' 49 66
Srs7 f 38 49

ge/2

ge/2

ge/2

5.522
5.534—1.089

0.554
0.545
0.430

0.124
0.115

However, a more general simplification of Eq. (6) is
desirable for the purposes of further study. The diferent
numbers of even particles in the nuclei of the conjugate
pair can agect 5P—5N in two ways. First, if the core

a F. Alder and K. Halbach, Helv. Phys. Acta 26, 426 (1953).
b H. Walchli, Oak Ridge National Laboratory Report ORNL-1469,

1952 (unpublished).' Hin Lew, Phys. Rev. 91, 619 (1953).
d C. D. Jeffries, Phys. Rev. 92, 1262 (1953).
e C. D. Jeffries, Phys, Rev. 90, 1130 (1953).' t", D. Jeffries and P. B. Sogo, Phys. Rev. 91, 1286 (1953),
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the nuclear core. The excitation energies of the nuclear
core oscillations depend among other things on the
nuclear radius and, therefore, on the number of particles
in the core. Thus, even assuming the charge inde-
pendence of nuclear forces, the coupling of the single
odd particle to the surface oscillations would be
different for the two nuclei of the conjugate pair due
to the different polarizabilities of the nuclear cores.
Formally, this means that in general, u~, i, ;(A i )
&n~ i;(AN) in Eq. (6) since Ai WAii. However, the
problem of calculating the correct excitation energies
of the nuclear core oscillation is sufficiently complicated
that most investigations involving calculations of mag-
netic moments assume an average excitation, i.e., an
average polarizability of the nuclear core. These state-
ments, of course, deal with a simple form of the collec-
tive model which ignores all shell structure.

In the light of the previous considerations, a general
simplification of Eq. (6) which is consistent with the
magnetic moment calculations of most investigators is
to assume that

in the oscillation. The work of Bohr and Mottelson
indicates that this is probably an overestimate of the
number of particles participating in the vibration.

If every particle has an equal share of the angular
momentum, then

(C "(A)l *IC "(A)&

1
=—(C,s(A)

I p ~p yp ~,, I
C,s(A)&

A P N

1=—(c, (A)ls Ic, (A)&
A

c "(A)l j*lc, (A)&

1=—(c~"(A) I 2 j&*+&j~ I
c),"(A)&

A I' N

n~, y, ;(Ai) =n, , g, , (A~) for all y, X, j.
Physically, Eq. (8) embodies the assumptions that (a)
the nuclear forces are charge-independent and (b) the
properties of the core are independent of the number of
particles constituting it.

In the absence of shell effects, the two assumptions
leading to Eq. (8) are at best approximate. As the
number of protons in the core increases, the effect of
Coulomb repulsions will tend to destroy the charge
independence of the nuclear forces (as exemplified in
the different ordering of the shell model states for
protons and neutrons). However, the properties of the
core tend to become more uniform with increasing
numbers of core particles, which justi6es to some extent
the use of Eq. (8) as a first approximation. In a later
section, Eq. (8) is modified to include the influence of
shell structure, lack of charge symmetry, and the
different polarizabilities of the nuclear cores.

Besides the simplification of Eq. (6) entailed by the
assumption of Eq. (8), it is necessary to make some
further assumptions to allow the evaluation of the
matrix elements of Eq. (6). In treating the interaction
of the odd particle with the core in terms of surface
oscillations, the identities of the particles of the core
are ignored. Thus it seems reasonable to assume that
the angular momentum of the core is equally distributed
among all the particles participating in the oscillation.
For the liquid drop model the number of particles
participating in the surface vibration can be shown" to
be of the order of (3jX)A, where A is the number of
particles in the core and X is the angular momentum of
the oscillation. Since we shall assume that on the
average X= 2, all the particles are assumed to participate

'3 J. M. Blatt and V. I". Weiskopf, Theoretical XNclear Physics
(John Wiley and Sons, Inc. , New York, 1952), p. 302,

where ZL I. and Sq ~ are the orbital and spin wave
functions, respectively. Pl.s(A) are the required proba-
bility amplitudes.

Implicit in the applications of the collective model
(weak or strong coupled) is the assumption discussed
in connection with Eq. (8), that the properties of the
surface for sufficiently heavy nuclei are at most slightly
dependent on the number of particles A~ or AN of the
core. This assumption leads to the simplification Eq. (8)
and to the related simplifying assumption

PI.s(Ax) =Pz, s(A ~) =Pr.s

Furthermore, the various forms of the collective model
assume that the magnetic moment of the core is due to
a gyromagnetic ratio

g.=Z/A (12)

associated with the angular momentum X of the core.
This is equivalent to the assumption that

5=0, L=X. (13)

This assumption or the more general assumption
that S&L and small is probably justified if the nuclear
forces are predominantly of the Wigner or Majorana

where A is the number of particles in the core, S' is the
s component of the total spin (in the spin-orbit sense)
of the core, and J' is the s component of the total
angular momentum of the core (this is, of course,
equivalent to )~*).

The core wave functions can be expanded in an LS
representation

Cq (A)= p pr, s(A)p(L, S, p —ms, tesIL, S, )l,, li&
L,S

X&r." "sos s (1O)
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(space exchange) type. "The energetically most favored
state of given t would be that state with maximum
space symmetry, which justifies the assumption Eq.
(13).With these various assumptions, Eq. (7) becomes

3 ( iUp ZN)
(

0.436 —0.523
I+1 ( Ai A~)

(14)

while Eq. (6) becomes

n g 'Pr, s'
y, X, j,L, S

I(I+1)+XP.+1)—j(j+1)
X I 1

X i 0.436 ——0.523
Ap A~)

X(X+1)+S(5+1)—L(I+1)
2X(X+1)

(1V~—1.195ZN) (Zp —0.835N'p)
X

Ag
(15)

g.=Z/A 0.45.

With this value, Eq. (14) becomes

AP —6~=0.012/(I+1),

(16)

(17)

TAsLz II.The values of 6 —6+ for the conjugate pairs I"'—Mo"
and Au" —Ba"' for different values of S, L, and X.

2
3
2
1

3
2
1
0
6
2
8

$187 MO97

0.023,—0.004
0.037
0.064
0.032
0.023
0.064
0.089
0.107—0.087
0.160—0.165
0.215

gP —gN

0.095
0.179
0.227
0.262
0.143
0.213
0.262
0.297
0.311
0.070
0.382
0.011
0.448

Au»7 —Ba»5
X=2

0.052—0.024
0.090
0.166—0.100
0.052
0.166
0.241
0.278—0.251
0.430—0.403
0.580

'4 R. G. Sachs, Nieclear Theory (Addison-Wesley Press, Cam-
brids'e, 1954), p. 190.

where the assumption Eq. (13) has not been used in
this case. In these equations NI, Zp are the number of
neutrons and the number of protons in the core of the
odd-proton nucleus while E~, Z~ are the same for th, e
odd-neutron nucleus.

When calculating magnetic moments in the strong
coupling limit of the simple collective model, Bohr and
Mottelson make the approximation

which is sufFiciently small compared to the average
magnitude of A~ or A~ to constitute a quasi-mirror
theorem for the magnetic moments of conjugate nuclei
as calculated by the assumptions of the Bohr-Mottelson
strong-coupling collective model.

A result similar to Eq. (17) can be obtained by a
direct calculation using the magnetic moment given by
Bohr and Mottelson Ltheir Eq. (IV-6)7. It is found
that if the strength of the coupling of the odd particle
to the surface oscillations is the same for both nuclei
of the conjugate pair, then

—O.044&~~—~~&0.07& (18)

in the range of experimental interest regardless of the
coupling strength. In the strong-coupling limit, the
same result holds regardless of the specific individual
coupling strengths for the two nuclei.

An examination of the nineteen entries in the last
column of Table I shows that ten cases, or more than
half, fall outside the limits set by Eq. (18). Even more
interesting is a consideration of those cases involving
nuclei with more than 65 nucleons since the collective
model should be most valid for heavier nuclei. Of the
seven cases involving heavier nuclei, only one (an
I=I.—1/2 conjugate pair) satisfies the criterion of
Eq. (18). Thus the mirror property of conjugate nuclei
is most apparent for lighter nuclei where the conditions
leading to Eq. (2) are more likely to hold.

CONJUGATE NUCLEI AND NUCLEAR MODELS

The various expressions obtained for the quantity
A~ —d ~ are of considerable interest since any system-
atic error arising from the assumption made would
probably tend to cancel. Thus a study of A~ —A~ is a
more sensitive means of investigating some aspects of
the diRerent nuclear models than a similar study of 6
or A~ alone. However, the very complicated nature of
the nucleus as well as the extensive nature of the
assumptions made to obtain Eq. (14) and Eq. (15)
allow conclusions of only a qualitative nature. In this
spirit the eRect of modifying the various assumptions
leading to the above equations will be studied.

Equation (15) is used to determine the effect of
replacing g, = 0.45 by the appropriate values of Z&, E&,
A~ and Z~, S~, A~, as well as for dMerent values of
S, I., and X for the core. Only j=I is considered in the
following discussion. For a coxnparatively light conju-
gate pair such as V5I —Ca4', it is found that theoretically

~

AP A~
~

~& 0.030 for all values of 5, L u—p to 5= 6 and
I= 8. Thus the observed small value of
= —0.030 is even compatible with Eq. (15) for the
values of S/0 and S&1.. This observation is generally
true for the lighter (A(65) conjugate nuclei because
of the relatively small neutron excess and the conse-
quent cancellations of terms in. Eq. (15).

The application of Eq. (15) to a medium-heavy

conjugate pair such as I"'—Mo" and a heavy conjugate
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n, s z(A)=
Es (A) —Ep (A)

(19)

pair such as Au"~ —Ba"' is given in Table II. The
importance of the increasing neutron excess is shown
in the general increase in magnitude of AP —A~ for
the same P, S, and L. The core angular momentum P =4
is not allowed for the Au"' —Ba"' conjugate pair with
the assumption that j=I=3/2. The application of
Eq. (15) with X =4 is given for the I"r—Mo" conjugate
pair, and it is seen that there is a significant increase
for given S and L of hP —5~ as ) increases. This may
be of considerable importance for some conjugate pairs,
since MilforcV2 has shown that X=4 occurs with signifi-
cant probability in the straightforward perturbation
calculation with the collective-model Hamiltonian.
However, it is interesting to note that the values
obtained for A —A~ from Eq. (15) for I" —Mo are
almost all smaller than the observed value of AP —A~
=0.353. The results of Table II give further confirma-
tion, for this conjugate pair, of the importance of
con6guration mixing mentioned earlier, i.e., the occur-
rence of j/I and the breakdown of the assumption of
Eq. (8).

For the conjugate pair Au" —Ba"' it is seen that the
experimental value of 6 —6~=0.1.4 can be obtained
by Inany values of 0&~S~&6, 0~&L~&8 and X=2. The
majority of the calculated values of AP —A~ are posi-
tive, and the magnitude increases with increasing S,
L, and ) . This general property leads to the expectation
that AP —A~ if the collective model is valid. For the
heavier conjugate nuclei (A) 65 for both nuclei), it is
found that AP —6~)0 for five out of seven cases. It
is interesting to note that the remaining two cases
which have AP —6~&0 have even neutron shells which
are either closed or two more than closed.

It is now desirable to investigate qualitatively the
possible effect of shell structure on the values of hP —A~.
The occurrence of shell structure manifests itself by
the increased stability (binding energy) associated with
certain given (magic) numbers of either protons or
neutrons in the nucleus. The collective model interprets
this increased stability in terms of an increase of the
surface tension of the core with a subsequent increase
in the energy necessary to excite core oscillations.
Simple perturbation considerations relate the proba-
bility amplitudes n~, z, ; to this excitation energy by the
proportionality rr~, z, ; 1/(Ez —Es), where Ez is the
excitation energy of the X core oscillation and Eo is the
energy of the zero-order state, in our case the shell-

model wave function. In considering the inhuence of
shell effects on the value of AP —A~, this perturbation
approach will be assumed.

Equation (6) is simplified by assuming that only
j=I and X=O, 2 occur, that S=O, and that Eq. (9) is
valid. Furthermore, it is assumed as a consequence
perturbation theory that

TABLE III. The values of d —A~ taking into account the eBects
of shell structure on the collective model.

Conjugate
nuclei

Au197
Ba135

A/2
A/2

79
56

118
79

hB(A) Exp.
(Mev)

0.35
0.79

0.143

Theoretical
gP gN

—0.227

I127

Mo'7

Pr141
Pdl05

Rb"
Zn"

Nb"
Ge"

In113
In115
Sr"

d5/2

d5/2

~5/2
d 5/2

f5/2
f5/2

g9/2

g9/2

g9/2

ge/2

g9/2

53
42

59
46

37
30

41
32

49
49
38

74
53

82
59

48
37

64
66
49

0.64
0.77

1.6
0.56

0.85
1.04

0.93
0.68

0.55
0.55
1.9

0.353

—0.2

0.052

—0.268

0.124
0.115

0.190

—0.472

0.021

—0.099

0.224
0.227

where the constant C~ is taken to be independent of
both A and the energy of excitation AE(A). Generally
CI will vary with these quantities, but this variation
does not significantly alter the following considerations.
With these assumptions, Eq. (6) becomes

gP gN
3[C,[s 1 1 ÃP 1

+
I+1 [AE(Ap) j' pp

', Ap I——
1 Z+ 1

[AE(A~)j'.p~ A~ I (20R)

for I=I,+1/2 nuclei, and

3(C,
~

1
-

1 X

I+1 [DE(Ap) j' pp ', Ap 2I+1——

Zg 2-+-
[AE(A~)]' p~ A~ 2I+1

(20b)

for I=I. 1/2 nuclei. —
The above equations now include a contribution to

AP —A~ from the single odd particle states which
previously had vanished because of the assumption of
Eq. (8). Equations (20) are applied to those heavier
conjugate nuclei mentioned previously, i.e., conjugate
nuclei both of whose members have 2)65. The results
of this application are given in Table III. The energy
of excitation of the core AE(A p) or AE(A~) is assumed
to be the experimentally-observed P =2 first excited
state for the appropriate even-even nucleus given by
Scharff-ooldhaber. "For convenience, the coeKcient CI
is chosen to make rr~ s rs(A) = 1 for that nucleus of the
conjugate pair having the lowest excitation energy.
This last choice would lead to ~AP —A~~ (theoretical)
~&

~

AP —A~~ (experimental), with the signs of both

"Gertrude Scharff-Goldhaber, Phys. Rev. 90, 587 (1953).
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TABLE IV. The values of 6 —6 when the single particle states
are different for the nuclei of the conjugate pair.

Conjugate pairs
with T=L+~

Conjugate pairs
with I=L—~x

3/2

0.34

0.62

5/2

1.01

—0.92

'7/2

1.27

—1.27

9/2

1.41

—1.43

r'(&~) =1, =~„,~, ;~r(&rr) =0,
(21a)

AV, 2,j=r+1 (+p) = 1
p A Y, x, rr r+1(+p)

being the same if the assumptions leading to Eq. (20)
are valid.

It is seen in Table III that with the exception of the
Au"' —Ba"' conjugate pair, A —A~(theoretical) agrees
in sign with A~ —A~(experimental), with shell effects
leading to the negative signs of the Pr'" —Pd'" and
Xb93—Ge7' conjugate pairs. These shell e6ects appear
in the increased value of DE(A) for that nucleus at or
near a closed shell. All those conjugate pairs which
either have different signs (one case) or which do
not satisfy the condition

~

D~—A~
~
(theoretical))~~A —A

~
(experimental) are either (a) I=I. 1/2—

conjugate nuclei, or (b) conjugate nuclei in which one
nucleus is in a region of very close competition between
several single particle states. Nuclei with I=L 1/2—
are not adequately explained by the simple collective
model, ' "with the theoretical deviations tending in the
opposite direction with increasing I compared to those
observed. Therefore, it is not surprising that the
conjugate pairs with I=I.—1/2 do not display optimum
behavior in Table III.

In all other cases where
~
A P—d,~

~

(theoretical)
(~AP —

A~t (experimental), and in the case of Au""
—Ba"', there are different degrees of close competition
between single-particle states of diferent j for the odd-
proton nuclei and odd-neutron nuclei. This competition
can be seen by examining the observed ground state
spins of nuclei in the region of the conjugate nuclei.
For a nucleus in a region of close competition between
different single particle states, it is no longer likely' that
n~, 2, ,„1is negligible, and it is, therefore, necessary to
consider the case of configuration mixing. The term
configuration mixing is used in the sense that diferent
single-particle states (single-particle configurations) are
admixed in the general odd-proton wave function,
Eq. (5), or the odd-neutron equivalent.

In order to obtain an indication of the importance
of configuration mixing, two simple but extreme cases
are considered: for conjugate pairs with I=L+1/2,

while for conjugate pairs with I=L—1/2,

~,, 2,; r'=(~rr) =1, ~,, x,;~r(~~)=o,
(21b)

~,, 2,; r P(&r)=1, ~,, )„,~r i(~r)=0.

In either case the parities of the odd-particle states
must be the same. These cases correspond to the Bohr-
Mottelson strong-coupling collective model, where the
final angular momentum I is obtained by coupling a
diferent single-particle state to the surface oscillations
for each of the two nuclei of the conjugate pair.

The values obtained for A~ —A~ by using the condi-
tions Eqs. (21) in Eq. (6) subject to the assumption
Eqs. (9) are given in Table IV. It is immediately seen
that the calculated values of 6"—d,~ are, for the
appropriate I, larger than any experimentally observed
h~ —A~. The particular cases considered are appro-
priate for the I"'—Mo'r (I=I+1/2=5/2) conjugate
pair and the Au"' —Ba"' (I=I. 1/2=3/2) —conjugate
pair listed in Table III. I" is in a region of very close
competition between d5/2 and g7/2 single particle states,
while Au"' is in a region of close competition between
d3/~ and s~/2 single particle states. It is significant that
the appropriate values of A~ —A~ in Table IV have
the correct sign to account for the observed values of
A~ —d~ for these two conjugate pairs. A more general
calculation shows that the value of A~ —A~ depends
linearly, to a 6rst approximation, on the probability
(not probability amplitude) of occurrence of the ad-
mixed state. Therefore, if shell effects are not con-
sidered, the large I'-'7 —Mo' value of 6 —6 can be
explained by about a 30 percent probability for the
g7/2 state occurring in the I" wave function. Similarly,
about a 25 percent probability for the s~/2 state in the
Au"' wave function will account for the Au"' —Ba"'
experimental value of A~ —A~.

CONCLUSIONS

The calculated magnetic moment deviations of conju-
gate nuclei are exactly equal (mirror property) accord-
ing to the nuclear model of Volkov' and are nearly
equal (quasi-mirror property) according to the strong-
coupling Bohr-Mottelson' model. An analysis of the
observed magnetic moment deviations shows that
neither property (mirror or quasi mirror) holds for
those heavier conjugate nuclei which should most
closely approximate collective-model nuclei. However,
it has been shown that the experimental results can be
explained in terms of a simple form of the collective
model, subject to modifications which incorporate shell
structure in the core and/or the configuration mixing
of diGerent single-particle states.


