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tential has a depth of 67 Mev. One of the most obvious
consequences of this change is that the spacing of
shell-model energy states would be considerably in-
creased. Other consequences of this change and their
relevance to experiment will be discussed in a separate
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The framework for a unified theory of nuclear structure is described in which the wave functions for
different nuclear models are obtained by transformations on the actual nuclear wave function. This for-
mulation provides a basis for explaining the success of weak-coupling models of the nucleus and showing
that they are not in conflict with the assumption that nucleons have very strong mutual interactions. The
explanation lies in the fact that only in certain circumstances can the “particles” in a nuclear model be

interpreted as nucleons.

We investigate the properties which transformation operators must have to change the nuclear wave
function into a model wave function and consider how far these properties are satisfied in practice. Self-
consistent equations are set up for a model having a product wave function in the particle variables, and
it is shown that these equations can be solved in an approximation relevant to the problem of nuclear

saturation.

I. INTRODUCTION

N recent years a number of nuclear models have been
developed which successfully describe many aspects
of nuclear structure. The most striking successes have
been obtained by the Mayer-Jensen! shell model and
by Weisskopf’s? cloudy crystal-ball model, and it is
clear that for low energies there must be a close corre-
spondence between these models and the actual nucleus.
On the other hand, these models are based on an
assumption of weak interaction between the particles
they describe and this assumption appears to be in
direct contradiction with the strong nucleon interac-
tions which are observed in scattering experiments. We
shall show in this paper that this apparent contradiction
is not a real one but is explained essentially by the
fact that the “particles” in these nuclear models are
not nucleons—that is to say they cannot in all circum-
stances be interpreted as nucleons.

Our program is firstly to set up and explain a for-
malism in which the wave functions of various models
can be transformed by “model operators” into the real
nuclear wave function. Next we consider how actual
nuclear models fit into the framework of our theory,
and finally we consider the problem of using these
model operators in practical applications of the theory.
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Since this theory shows that the particles, in the shell
model, for example, are not nucleons, it is necessary to
show that shell-model results can still be explained
with this new interpretation. We do not attempt to
derive the explicit assumptions of the shell model,
although our formalism leads to self-consistent equa-
tions which if solved should lead to the well potential
of the model. Our primary concern is to show how the
following aspects of the shell model are consistent with
our method: the particles in the model obey the ex-
clusion principle as though they are neutrons and
protons, energy levels are predicted with sufficient
accuracy to indicate the order of filling single-particle
states, angular momentum and parity are accurately
predicted as though the model was the real nucleus, and
selection rules are well predicted. This is not by any
means a complete list but should serve to indicate the
problems of interpretation which have to be considered.
Also, we must consider the relation of our theory to
the failures of the model such as the failure to predict
transition rates with any accuracy.

Since our methods are quite general and apply to any
nuclear model, a complete presentation of this theory
would require detailed consideration of very many
aspects of the relation of nuclear models to experiment.
We have in this paper attempted to select sufficient of
these aspects of the theory to indicate the power of the
method, and hope in future papers to examine other
aspects. In particular, we have limited ourselves to
consideration of low-energy nuclear models although we
believe that the methods are also applicable to high-
energy problems. In addition to the shell model, we
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consider the single-particle model and the related
cloudy crystal-ball model. For the latter, we have to
show how it is that the scattering of particles in the
model has the same cross sections as elastic scattering
of neutrons on the real nucleus.

We take as our starting point a representation in
which the nuclear wave function is ¥ (A4) =V (x4, - -,%4)
where %1, - -+, x4 are the coordinates of nucleons. The
corresponding Schrédinger equation will have a Hamil-
tonian H which contains a potential energy V(x1,- - -,%4)
which may include many-body potentials (it seems
probable, however, that these can be neglected as a
first approximation). It is known from nucleon-nucleon
scattering data that there are very strong forces between
two nucleons, and it seems unlikely that these forces
will be much different when the nucleons are found in
a nucleus. For strong nuclear forces the potential V
is a rapidly varying function and the wave function
¥(A) will contain strong correlation effects; in par-
ticular, for short-distance repulsion between nucleons,
W(A) will be small wherever |x;—x;| is small. It is
clear that the wave function ¥(4) will be very com-
plicated and will not approximate (except in a very
restricted sense) to the product wave functions used in
nuclear models such as the independent-particle model
of the shell model.

If the successes of these models are to be explained
within the framework of present day quantum theory,
it must be possible to make a transformation which will
take the wave function ®(4) for the model into the
much more complicated wave function ¥(4) for the
real nucleus. There will be different transformations
corresponding to different nuclear models. We call the
transformation operators “model operators” and much
of this paper is devoted to considering their properties
and uses. In general, observables will be represented in
a model by different operators from those used for the
actual nucleus, and it will be seen that the usefulness
of a particular model depends on the behavior of ob-
servables under transformation by the appropriate
model operator.

Our method is outlined as follows: (1) We consider
the conditions on the transformed Hamiltonian H™
= MtHM which are desirable in a useful model; (2) we
deduce conditions on the model operator M; (3) we
examine whether in general these conditions can be
satisfied by a choice of M; (4) we consider how far
these conditions enable us to regard the model as the
real nucleus; (5) we consider whether these conditions
are satisfied by existing nuclear models; (6) if the con-
ditions are only satisfied approximately, we consider
possible corrections which may allow for the resulting
error; (7) we discuss the physical reasons why actual
nuclear models satisfy the conditions mentioned above;
(8) we develop the mathematical theory resulting from
two particular forms of model operator relevant to the
single-particle model and to the problem of nuclear
saturation. We have not attempted to achieve com-
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pleteness in the above program but have endeavored to
carry it far enough to indicate the power and usefulness
of the method.

The conditions (1) on H™ which are desirable cannot
all be satisfied by any one model. They include the fol-
lowing: (¢) H™ should be such that the transformed
wave function ®(4) is manageably simple, for example,
a product wave function of some kind such as in the
single-particle model or in the shell model. () H™
should be invariant for rotations and reflections of the
coordinate axes and for rotations in isotopic spin space;
when these conditions are satisfied, it is possible to
define a new transformation which leaves the angular
momentum, parity, and charge operators unchanged—
then for these operators the model will appear to be
the real nucleus. (¢) H™ should give the same energy
spectrum as the original Hamiltonian; this requires
W (A4)=M%P(A), where M is a unitary operator. (d) H™
should be the Hamiltonian for a system of particles
which satisfy the exclusion principle in the same way as
neutrons and protons; this condition sets certain sym-
metry requirements on M. (¢) For a single-particle
model of low-energy scattering the transformation
operator must be chosen to commute with the elastic
scattering part of the collision matrix. (f) for a single-
particle model of a nucleus it may be desirable that
®(A)=y¢(4)¥,(4—1), where ¥o(4—1) is the ground
state of the (4—1)th nucleus. This list is far from a
complete one but should be sufficient to indicate the
conditions on H™ and M which we consider.

The basic point we wish to make about point (4) in
our method arises because it is never in practice possible
to satisfy all the above conditions simultaneously. It
follows that no single nuclear model can be considered
as the real nucleus; that is to say, the particles in a
model cannot always be interpreted as nucleons without
leading to incorrect results. Thus, for the shell model a
“particle” in the model does not have the binding
energy of a nucleon. For a single-particle model, we
can choose the transformation so that the particle has
the binding energy of the last nucleon added, but one
can see that such a model cannot in general be expected
to give the correct magnetic moment if the particle is
interpreted as a nucleon in a definite state of angular
momentum.

The nuclear models considered in point (5) have, of
course, always been regarded as approximate, so our
investigation is partly to the same degree of approxi-
mation. However, we are able also to show that some
of these approximations are forced upon a particular
model because one or more of its properties is not
compatible with some of the desirable properties men-
tioned above. Some of these facts are well known, for
example the use of a product wave function in the
shell model precludes collective motion of a certain
type, but the fact that limitations may be due to con-
flicting requirements does not appear to have been rec-
ognized before. We consider in step (6) some of the
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corrections which have to be made because of the
inherent limitations of a model, with particular reference
to magnetic moments and deviations from the Schmidt
lines.

The interpretation we given in step (7) is based
essentially on the operation of the exclusion principle at
low energies. This situation has been considered by
Weisskopf® also with a view to justifying the shell
model. His main point is that at low energies all
nucleon states are occupied, so that because of the
exclusion principle any one nucleon can only change its
state by a transition in which high-energy states are
involved; these transitions can be expected to occur
with small probability, so a nucleon in a low-energy
nuclear state will move with a long mean free path.
One difficulty in interpreting this argument lies in
giving a meaning to a “nucleon state’” when the nucleon
variables occur only in a strongly correlated wave
function. In order to define a nucleon state, it is neces-
sary to have some quantity like a single-nucleon wave
function and this does not seem possible for a nucleon
in a nucleus. We consider the problem from the view-
point of transforming the shell-model wave function
to the actual nucleus. It should be noted that the
exclusion principle holds in the model because it holds
in the actual nucleus. The arguments of Weisskopf can
now be applied in considering the changes in observ-
ables under the transformation. Excited states of the
model now occur as intermediate states, and it appears
that for some operators the large energy differences in
going to these excited states have a major simplifying
effect, and in some cases make the operator commute
with the transformation (approximately). However, it
does not follow that there is always close resemblance
between the actual nuclear wave function and the wave
function for the model; in fact, consideration of the
strong nucleon interactions shows that there cannot
always be such a resemblance.

In the above sense, it seems that the arguments of
Weisskopf provide some justification that a transfor-
mation exists which connects the real nucleus with a
model consisting of particles moving in weak interaction
and satisfying the other conditions of the shell model.

These physical ideas can be put in mathematical
form to give an explicit model operator derived from
two-body forces in a simplified problem connected with
nuclear saturation. For this problem, the model operator
is equivalent in a certain approximation to the trans-
formation operator used by Brueckner, Levinson, and
Mahmound! in their derivation of a nuclear radius in
close agreement with observed values.

3V. F. Weisskopf, Helv. Phys. Acta 23, 187 (1950).

4 Brueckner, Levinson, and Mahmound, Phys. Rev. 95, 217
(1954). See also K. A. Brueckner, Phys. Rev. 96, 508 (1954), who
notes that the “independent particle” of their coherent model
does not refer to “independent nucleon” motion. It has also been
noted by C. A. Levinson that the coherent model wave function
is in a different space from the actual nuclear wave function.
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In Sec. II of this paper, we illustrate our method by
making a formal derivation of the single-particle model
of a nucleus. In Sec. III, we consider the relation of this
model to the elastic scattering of nucleons on a nucleus.
In Sec. IV, we consider the general conditions on model
operators which are related to the wave function of the
model giving correctly eigenvalues of parity, angular
momentum, and isotopic spin. In Sec. V, we deduce
from conditions on model operators that the corre-
sponding models will give selection rules correctly but
will not in general give transition rates. In Sec. VI, we
consider first the setting up of an “ideal” shell model
and then examine how far it corresponds to the actual
shell model. In Sec. VII, we consider in detail the
development of a single-particle model having the same
energy in one state as the actual nucleus; the energy
condition is sufficient to determine the depth of the
well in which the particle moves. In Sec. VIII, we
derive a formula for the energy of a nucleus modified by
extra boundary conditions; this is only approximately
the formula used in reference 4, and our method appears
to be of rather more general validity. Finally, in Sec.
IX, we briefly state our conclusions and indicate further
work which is proceeding.

II. FORMAL DERIVATION OF THE
SINGLE-PARTICLE MODEL

We take as our starting point the many-body
Schrédinger equation for 4 nucleons in a representation
in which the kinetic energy is the sum of 4 single-
nucleon kinetic energies and the potential energy is a
function of the coordinates of the A nucleons:

(E—HA)\I’(OQ" -xA)=O, (1)

4
Hy=3T+Va. (2)

=1

The potential V4 will depend on the mutual separations
(x;—x;) of the nucleons and may include many-body
potentials. It appears from scattering data that the
two-nucleon parts of V are rapidly varying and non-
monotonic functions of (x;—x;), and it is unlikely that
the strong forces are compensated (i.e. smoothed out)
by many-body interactions. It follows that in the repre-
sentation defined by (1) and (2) the wave function
W(A)[ =T (x:---x4)] contains strong correlations so
that it is small when two nucleons are in a region of
strong repulsion. It is, therefore, not possible to approxi-
mate to ¥(4) by product wave functions since these in
general have considerable overlap between the positions
of nucleons.

As an illustration of our method, we will consider a
transformation which satisfies more rigid conditions
than are necessary in practice. We will suppose the
nucleons are distinguishable and assume that there



THEORY OF NUCLEAR MODELS

exists a unitary “model” operator M such that

Y (A)=M3(4)

=fdx1" .. fdxA'(xr v M|xy x40 () x4,
)

P(4)=y¢(x4)To(4—-1). ©)

where

Then
(E—H,™"®(4)=0, H "=M"HM. ©)
In practice, it is often convenient to use non-unitary
transformations. We have chosen M to be unitary here
in order to obtain a model which has the same energy
spectrum as the real nucleus. The wave function
¥o(A—1) in (4) is defined to be the ground-state wave
function of the (4—1)th nucleus with Hamiltonian
Hy,:
(BEar'—Hy 1)¥o(4—1)=0. (6)

From (4), (5),.and (6),
{E_EA_lo_HAm_l_HA_}}\I’O(A — 1)11/(96,1) =0 (7)

Taking a scalar product with ¥o(4—1) on the left,
we get
{E'— T4 —We(xa)=0, ®)

where E'=E—E4_,* and
Wc=(\I/0(A'—'1), {HAm—HA_l— TA/}\I/()(A—].)) (9)

Thus W, is an operator depending only on the Ath
particle’s coordinates (or other variables associated
with this particle). 74" is the kinetic-energy operator
of the Ath particle. Equation (8) is therefore a one-
particle equation having eigenvalues of energy equal to
the difference between the energy of different states of
the Ath nucleus and the ground-state energy of the
(4 —1)th nucleus.

In practice, as a result of the very complicated energy
spectrum of the nucleus, the potential W, in (8) would
be very complicated. It can be simplified if we relax
the condition that M is unitary. Instead we replace M
by an operator M P (to be called the new M), where P
is a projection operator which selects only states corre-
sponding to certain energy eigenvalues of the Ath
nucleus. If this selection is made so that the new W
is simple, we will have derived a model in which a one-
particle equation predicts certain nuclear excited states
of the nucleus. It is clear from the form of the trans-
formation (3) that the particle in this model must not
be identified with a nucleon. Such an identification
would imply that other observables, which have not
yet been considered, transform in a very special way
under the transformation (3).

One freedom which may help to simplify W is worth
noting here. The kinetic energy operator 74" in (8)
need not have the same mass as a nucleon, hence if
there is a part of W which is proportional to (k4)? it
can be incorporated in the nonrelativistic 74" which is
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given by (k4)?/2m by introducing a modified mass m*
for the particle.®

It will become clear later that other operators will
not take a simple form in a model as restrictive as
indicated by (4). More generally, a transformation may
be of use where a ® is obtained which can be expanded
as a sum of products of the eigenfunctions of Egs. (6)
and (10),

(BEr—=Ta"=W o), (x4)=0. (10)
(I)<A)=Z 123 s\I/r(A—l)‘//s(xA)- (11)

In Eq. (10), W, is assumed to be some potential for a
single particle; it will approximate to the W, in (8) if
(4) is required to be the leading term in the expansion
(11).

Another form of the single-particle equation which
will be of use is obtained when a transformation M is
such that the single-particle potential operator W has
matrix elements:

Wis:"(\I’r(A'—l): W\I/s(A—'l)), (12)
where W is the operator occurring in (9). Then the
single-particle wave function will satisfy coupled
equations:

(Er_ TA,_ Wrr)arr'pr(xA) = Z Z Wrsa's tﬂbt(xA) . (13)
t,s5#%r

If the nondiagonal terms of W are small, this can be
solved with zero-order equations:

(Er— T4'— Wrr)‘»br(xA) =0, (14)

and the coefficients are determined by perturbation
methods.

It will be seen that in the approximation (14) the
state of particle A depends on the state of the (4—1)
particles. The final approximation we wish to mention
here is one in which the Ath particle satisfies equation
(10), while the (4—1)th wave function ¥'(4—1)
satisfies

(E—Hi1)a v,/ (A-1)=2 3% W,/ a,,¥/(4—1), (15)
r#s t
where

Wrs’=(‘p1',{Hm_‘HA—1~TAI_WM}¢S)' (16)

Again, for W,, small when r>s, perturbation methods
can be applied. In lowest approximation, the state of
the (4—1) particles depends on the state of the Ath
particle. It will be seen later that the situation in the
shell model resembles this approximation.

We have now considered formal transformations to
the kind of approximate single-particle models which
may be useful. The single particle may not have the
same mass, and possibly the kinetic-energy operator 7"4’
will not be the operator for a Dirac particle, unless
certain conditions are satisfied by the operator M ; we
will consider later whether these can be satisfied.

5J. A. Wheeler (private communication to K. A. Brueckner).
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If we label the wave functions for the real nucleus
and for the model in a suitable way, the model operator
M will be formally equal to

M=2,¥.(4)®*(4). (7

If we are able to find a suitable operator W, the corre-
sponding transformation will be obtained by solving
the integral equation

M=1+[E—H+in (VO —W)M,  (18)

where V4 is the part of the potential ¥ which depends
on the Ath nucleon. Equation (18) has boundary con-
ditions appropriate to the scattering problem. (A dif-
ferent boundary condition is required for bound-state
transformations.) The bound-state equation will be
considered in Sec. VII where we make a more detailed
investigation of the single-particle model.

It will be seen from (17) that since the wave function
¥(A) contains strong correlations, these correlations
will be implicit in M. It is therefore not possible to use
perturbation methods in solving Eq. (18) for M, and in
general an approximate form of W may lead to a bad
approximation to M. For these reasons, in considering
explicitly the relation between models and the real
nucleus—we will consider not the operator M but will
investigate the expectation values of transformed
operators (O™). It will appear that in useful problems
these operators are given by a rapidly convergent series
although M may converge only very slowly.

The two most important extensions of the one-particle
transformation are obtained by transforming ¥ (4 —1).
When further transformations lead to single-particle
equations, all of the form (10), one eventually obtains
a complete product wave function analogous to the
shell-model wave function. The other important trans-
formation is to Y(x4—1)¥o(4—2), when a model is
obtained for two (or more) particles outside a core con-
sisting of the ground state of the nucleus. The first of
these transformations will be investigated in Secs. V,
VI, and VIII.

III. ELASTIC SCATTERING

We have shown in the previous section that a trans-
formation can be chosen to give some of the nuclear-
energy levels by means of a single-particle model pro-
vided no restrictions are made on the complexity of the
single-particle potential. In this section, we consider
whether it is possible in general to choose a transfor-
mation which gives a single-particle model having the
same elastic scattering matrix elements as a neutron
on a nucleus.

The Schrodinger equation (4) can be writtén

(E—=Ta—Ha)¥(A— 1D (xa) =WT(A—1)¥(x4),
(19)
where
W=Hsm—Hj 1—T4. (20)

We prove first that the elastic scattering matrix given
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by the potential W has an expectation value for the
state Wo(4—1) which is equal to the elastic scattering
matrix given for the one-particle problem by the poten-
tial W, defined in (9).

Equation (19) has a solution corresponding to an
initial plane wave state A for the Ath particle, which
can be written

where Wo(A—DY(x4) =T (4 — 1Ay, (21

Q=14 (B— Ha_1— T 4+in)WQ. (22)
Writing the scattering matrix 7'=WQ, we have
OMa"To(4d—1), To(A— 1)\ 4)

=\ To(Ad—1), W¥o(4d—1)As)

=(\4To(4—1), W¥(4—1)¢(x4))

=4, Wap(x2)). (23)
Now ¢(x4) satisfies

(Ba—=Ta)W(xa)=Wap(x4), (24)

which has a scattering solution for an initial plane
wave state A4,

IS

Y(x4)=QcAy, (25)
where
Q=14 (E4— T a+in)" W .. (26)
Upon writing
Te=(¥o(4—1), T¥o(4-1)), (@7)
it follows from (23) and (25) that
Te=W L. (28)

This completes the proof that the single-particle model
gives the same elastic scattering as the many-particle
model.

We next consider whether in general it is possible to
choose the model operator M so that this single-particle
scattering is the same as the elastic scattering of a
neutron on a nucleus. We note first that M is by no
means completely specified by the requirement that
®(A4) has the form given in (4). It is possible to vary it
by any further transformation which acts only on
¥(x4). This should give enough freedom so that in
principle a model operator M can be chosen so that it
commutes with the elastic-scattering part of the col-
lision matrix. It has already been noted that the
purpose of the transformation M is to introduce corre-
lations so that the model wave function ®(4) goes in
the real wave function ¥(4). Since the real wave func-
tion has no correlations between the Ath nucleon and
the (4—1) nucleons in the scattering limit, it will be
possible to choose M so that it acts like a unit matrix
in this limit. For this choice, M will not affect the
boundary conditions of the problem and the model will
give correctly the observed elastic scattering.
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From the form of the wave function ®(4) in (4), it
is clear that the model only has end states for scattering
which describes elastic scattering. The potential W,
cannot therefore give rise to excited states of the (4 —1)
nucleus. It follows that W, is a complex potential so the
transformation operator M cannot be unitary. However,
the lesser condition can be imposed on M, that it pre-
serves the energy levels of single-particle excited states
of the Ath nucleus. It appears that this condition is
satisfied by the optical model of Watson, so we deduce
that M can be chosen in practice so that W, is equal to
V., the optical model potential.

If we are not interested in resonances in the single-
particle scattering, it will be sufficient to choose M
only to preserve the lowest one-particle energy levels
which do not lie in the continuous spectrum. It appears
that these conditions on M are satisfied by the cloudy
crystal-ball model of Weisskopf.? The approximate
equality of the well depth in this model and the Mayer
well depth indicates that single-particle energy levels
are at least approximately preserved.

IV. PARITY, ANGULAR MOMENTUM, AND
ISOTOPIC SPIN

In the previous two sections, we have considered
conditions on the model operator M which are related
to the correct prediction of energy levels and elastic
scattering. In this section, we investigate the possibility
of choosing M so that the parity, angular momentum,
and isotopic spin operators take a simple form after
they have been transformed.

In the representation used in our basic equation (1),
the Hamiltonian A is invariant under reflections and
rotations of the coordinate axes and under rotations in
isotopic spin space if charge independence of nuclear
forces is assumed. We will consider first the parity and
angular momentum which, because of the invariance
of H, can be used to label the energy eigenstates of (1).
We denote a particular eigenfunction by ¥ (E,P,j,m)
where the eigenvalues of H, P, J?, J, are E, P’, j(j+1),
m.
If the transformation M leads to operators H™,
Pn(J5)m J,m they will have the same eigenvalues E,
P, j(j+1), m, where

Y (E,P’,jm)=M®(E,P,j,m). (29)

We will now investigate the assumption that M
can be chosen so that the Hamiltonian H™ of the
model is invariant under rotations and reflections
of the coordinate axes. From this assumption, it
follows that H™, P, J?, J, form a commuting set so
this set of operators can be used for labeling the wave
functions of the model. Let these wave functions be
&,(E,P',j1,m1), where j1(j1+1) and m, are the eigen-
values of J? and J,. For a given value of energy, these
wave functions can be expanded in terms of the wave
functions ®(E,P’,j,m). If the degeneracy is the same,
and this will in general be required for completeness of

1371

the two sets, we can deduce (2j-+1)=(2j,+1). Hence,
Jj=71 and the operators J? and (J?)™ have the same

eigenvalues.
Now let
j
CI)(E:P,:j)m‘) = Z amm1<I>1(E,P',j,m1). (30)
m1=—7
Then
J2CI) (E7P,7j;m) =Z dmmlqu)l(E,P’,j,ml)
. =j(j+1DO(E,P,j,m), 31)
since
J2¢1(E7P1)j’m1) = ](]+ 1)5131 (E;P,’j)ml)' (32)

Therefore ®(E,P,j,m) is a common eigenfunction of
both J? and (J?)™. This is true for every such wave
function, and since these form a complete set,

=), [M]=0. (33)

It will next be shown that M can be chosen so that
J, commutes with it. Let us assume that for an initial
choice of M, ®,(E,P’, j,m) is not the same as ®(E,P’, j,m).
Define a unitary operator U whose components for
fixed E, P', j are

J
U(E3P,:j)= Z _q>(E’P,’j’m)q)l*(EsP,)jam)' (34)
m=—3

Then U commutes with H, P, J? and

U@l(E,P',j,m)=<I>(E,P’,j,m). (35)
Hence,
U_I(Jz)mU(bl(Erplfjam)= U_I(JZ)%(E)P,aij)
=mq>l(E;P’)j,m)' (36)
But from the definition of ®,(E,P’,j,m), ‘
]zq)l(E,P,:j;m) =m@1(E,P,’j:m)' (37)

Since (36) and (37) hold for every eigenfunction in this
complete set, it follows that

J.=U(J)"U. (38)
Hence, if we redefine M to be M U, for the new operator

[J.,M]=0. (39)
We now have

Y (E,P,jm)=MP(E,P’,jm).

Let Jo=J,41J,; then
J Y (E, P jm)=bi(jm)¥(E,P' j, mkt1), (41)
J+®(E, P jm)=by(jm)®(E,P,j, m*1). (42)

Hence,

(40)

(JeM—MJTL)®(E,P',j,m)=0. (43)

Since this is true for each state in the complete set,
e, M]=[Jo,M 1= [J,,M]=0. (44)
From (39) and (44), we see that, provided that there
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exists an M such that H™ is a scalar with respect to
rotation, it is possible to choose a new M which is itself
a scalar.. The implications of this result will be con-
sidered after we have discussed parity and isotopic spin.

If the parity operator P as well as P™ commutes
with H™ and there is no degeneracy of eigenstates with
respect to parity,

Pr®(E,P', j,m)=P'®(E,P',j,m) (45)

and

PCI)(E:P,J;m)=P’/<I)(E:P,:jym)) (46)
for all eigenfunctions ® in the transformed system.
Hence,

[P P]=0. 47)
Using the fact that P*=1, we get
[(M—,P1[M,P] =0. (48)

Hence, either P always commutes with M or it always
anticommutes with M. There is no loss of generality
therefore in assuming the ® state always has the same
parity as the corresponding ¥ state.

The condition for the model to have the same charge
as the real nucleus is much less stringent than the re-
quirement of isotopic spin invariance. Provided it is
possible to choose the model operator M so that it is
symmetrical between neutrons and also symmetrical
between protons, the total charge will be unaffected by
the transformation. It appears that this can be achieved
in practice for most useful models.

A much more valuable result can be achieved if
complete charge independence of nuclear forces is
assumed (i.e., neglect of Coulomb forces and neglect
of neutron-proton mass difference). This assumption is
approximately valid for light nuclei but not for heavy
nuclei.

We consider a transformation for which H™ is
invariant under rotations in isotopic spin space. Then
(assuming similar invariance of H), the isotopic spin
operators /2 and Is can be considered in a manner
exactly analogous to the angular momentum. It is then
found that M can be chosen to be invariant under
rotations in isotopic spin space:

(M, I ]=[M,I,]=[M,I;]=0, (49)

and also the corresponding wave functions ¥ and &
of the real nucleus and the model have the same values
for isotopic spin.

Up to now, we have considered the transformation
properties of parity, angular momentum, and isotopic
spin when the states & describing the model form a
complete set. Since this is never satisfied by any of the
nuclear models at present in use, it is useful to consider
the situation when the states are not complete. We

assume that the equation
Y(E,P,jm)=M®(E,P,jm) (50)

is satisfied for all ® states but that it defines only a
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selection of the real nuclear states ¥. In this case we can
assume that 3/ is unitary in the subspace based on the
set of states given by the model. Provided that each
state for which (49) is satisfied has the same degeneracy
in the transformed system as in the real nucleus, the
arguments already given about invariance go through
except that Egs. (33), (39), (44), and (49) hold only in
the subspace defined by the model. It follows that de-
partures from the invariance of M will be evident only
as a result of transitions through states not in this sub-
space. If the model has been chosen so that these transi-
tions have small probability, the concept of partial
invariance of M will still be a useful one.

We will consider next how the results of this section
can be used to justify the equivalence between the
selection rules for a nuclear model and those for the
real nucleus.

V. SELECTION RULES

The total Hamiltonian of the nuclear system and the
radiation field can be written

Htotal=H+Hint+Hrad- (51)

Up to now we have considered only the part H which
is the nuclear force Hamiltonian and primarily respon-
sible for determining nuclear structure. The interaction
H ¢ between the nuclear field and the radiation field
has been assumed small so that to a good approximation
H and Hq can be treated independently. The model
operator M is determined in this approximation by H
only. Our discussion of the previous section has shown
that when the transformed Hamiltonian H™ has certain
invariance properties so does the operator M.

The interaction Hiny will contain certain tensor
operators 4, B, Cipx -+-, which cause radiative
transitions in the nucleus. Since M is a scalar with
respect to rotations, the transformed operators 4™,
B;m™ Cii™ ---, will have the same tensor character
as the untransformed operators. From the tensor
character of one of these operators, it can be deduced
that it will never cause transitions between states
differing by certain values of angular momentum. Let us
suppose that it is deduced that

(@(E"P"j',m'), BlJJ@(E;PJ’m)):O (52)
Since this condition depends only on rotation properties
of B;; and the change in angular momentum specified
by the matrix elements, it follows that when (52) is
satisfied, .

@(E,P',j'sm"), M B ;M@ (E,P,jm))=0. (53)
Hence, using the results of Sec. IV,
¥ (E',P',j'm"), B;j¥(E,P,j,m))=0. (54)

This result shows that when a particular selection rule
is obtained for a model forbidding transitions between
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states of certain angular momenta, the same selection
rule will be satisfied by the actual nucleus.

It will be noticed that in (54) we have assumed that
M is unitary so that the energies E’, E are the same as
in (53). This assumption is not essential to the result
provided that the invariance conditions on H™ are
satisfied and the model gives the correct degeneracy of
corresponding levels.

It is important to note that transition rates will not
in general be given correctly by the model since nonzero
matrix elements will not in general be equal to the
matrix elements of the transformed operators:

(@(E’,P’,j’,m'), BH(I)(E;PJ’”L))
#= (\Il (E,)P,7j,1m,): B”‘I’(E,P,j,m)) (55)

Selection rules associated with changes in parity and
isotopic spin can be shown to be the same for the
model and the real nucleus in an analogous discussion
to the above. It must be emphasized that the validity
of the selection rules for isotopic spin depends on the
assumption of complete charge independence. Thus,
even an ideal model which satisfies all our other condi-
tions cannot be expected to give correct isotopic spin
selection rules except for light nuclei. When charge
independence is not approximately true, it will not be
possible in general to set up a model of the nucleus in
which the transformed isotopic spin variables I™
resemble the untransformed variables I. It may be
possible by considering explicit forms for M to estimate
the difference I,,”—I and hence give a more precise
meaning to isotopic spin of heavy nuclei.

When the states of a nuclear model form only a
subspace of the complete set, the invariance of A holds
only within the subspace. Then the selection rules
predicted by the model will no longer be exact. How-
ever, they can only be violated by a process involving a
transition with an intermediate state not in the sub-
space. If the coupling is small between states given by
the model and other states, we can deduce that the
selection rules will be satisfied approximately.

VI. THE SHELL MODEL

We consider first the setting up of an ‘‘ideal” shell
model with a model operator M which satisfies as many
desired conditions as possible; we will then consider
how far this “ideal” model corresponds to the Mayer-
Jensen shell model, and finally we will discuss the
reasons why certain conditions on M are satisfied in
practice.

The transformation corresponding to (3) is now
required to give a complete product wave function:

V(A)=M3(4), (56)

2(4) =TT ¥:w),

i=1

(57)

where each single-particle wave function satisfies the

1373
same Schrédinger equation:
(Ei—=Ti—Wo)y:(x;) =0, (58)
Hm=MfHM=_fl{ T+ Wq(%:)}. (59)
If M is unitary, the energies E; will satisfy
E-——ﬁ: E, (60)

=1

where E is an eigenvalue of the original Schrédinger
equation,

(E—3 Tim VY0 (4) 0.

(61)
=1
The ® equation, when (60) holds, is
4 4
(E——g:1 Ti—~§1 We(x,;))®(4)=0. (62)

Provided that ¥ (A4) and ®(A4) satisfy suitable boundary
conditions, it follows from (61) and (62) that the
W s(x;) must satisfy
4
(@(4), {V—ZI We(x:) }¥ (4))=0. (63)

In general, this will only be a necessary condition when
®(A) and ¥(4) are bound states and tend to zero at
infinity. Thus, a unitary M requires that the matrix
elements (63) are zero between all states not in the
continuyous spectrum.

When (63) is satisfied, (61) and (62) have the same
energy eigenvalues; then there is a solution to the
equation:

(-3 T,~5" Ws<xi»M=(V—§l We@)M, (64)

=1 =1

given formally by

M=1H(E—5(T) =5 W) (V-3 We()M,

=1 i=1 i=1
(65)
provided that

@(4), (V—=2W)MD(4))=0. (66)

The primes to the left of ¥V and a W in (65) indicate
that when M acts on a particular ®(4) this state is
excluded to the left of these operators. This exclusion
means that (65) automatically satisfies (64) for non-
diagonal matrix elements of M on the left of (64).
Equation (64) is satisfied for diagonal matrix elements
because of the condition (66).

In principle, Egs. (62), (65), and (66) provide a set
of equations for We, ®(4), and M which could be
solved by a self-consistent method beginning with a
trial potential W* in (62). This would present a for-
midable problem unless a self-consistent solution exists
for a simple form of Ws. The success of the Mayer-
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Jensen shell model (although not for binding energies)
suggests that in fact W may be simple to a good ap-
proximation, so the solution of this problem may not
be beyond attainment. In Sec. VIII, we will define a
similar but more restricted problem and show that this
can be solved.

It is clear from (65) that M can be taken to be sym-
metrical between coordinates of protons and coordi-
nates of neutrons, so the particles satisfying Eq. (58)
will satisfy the exclusion principle. Hence, the wave
function for the model will be the antisymmetrical sum
of products of eigensolutions to (58). If charge inde-
pendence is not assumed, there will be different poten-
tials for positive and negative particles in the model.
Hence, the ground state of the model is obtained by
filling up the lowest one-particle energy levels exactly
as though the particles were neutrons and protons.

The well W* will depend on the number of nucleons,
so it should be written Ws(A4). For Ws(441) all the
energies will change by a small amount, and there will
be corresponding changes in the wave function. Hence
the difference in total energy [E(4+1)—E(4)] will be
equal to the energy of the (44-1)th particle Eqy
together with the small changes AE;, i=1, 2, ---, 4.
This can be contrasted with the ideal single-particle
model which had energy E(4-+1)—E(4).

We assume that the transformed Hamiltonian is
invariant under rotation and reflection of the coordinate
axes. Then the model operator M can be chosen so that
the parity and angular momentum of the model can
be calculated as though it were the real nucleus. This
insures that when the single-particle levels are filled up
in some particular way, the resulting parity and angular
momentum of the model will be the same as for the
corresponding states of the real nucleus. For the ground
states of the model, successive filling of levels will lead
to occupation of all angular momentum states at a
given energy so one obtains the closed-shell phenomena.
From the work of Sec. V, the model will predict selection
rules but in general will not give transition rates.

We next consider how far the Mayer-Jensen shell
model corresponds to the ideal model considered above.
It leads to a product wave function like (57) with single-
particle equations like (58). The potential I¥¢ is simple
but has a spin-orbit coupling term; our general con-
siderations do not offer any evidence why W# should
have a particular form although in principle W# can be
derived from the self-consistent equations. The total
energies in the shell model do not satisfy (60), although
the different eigenvalues E; are ordered so that shells
fill up in the correct way. Not all energy levels (e.g.,
rotational energy levels) are described by the shell
model. We deduce that the model operator is not
unitary but that for the “noncollective” energy levels
M only scales down the energies without affecting the
order of levels. The transformed Hamiltonian is inva-
riant under rotations and reflections in the coordinate
axes and gives correct degeneracy, so the parity and
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angular momentum commute with 3 in the subspace
defined by the model. Hence, the model predicts parity
and angular momentum quantum numbers correctly to
the approximation implied by this subspace; similarly
selection rules will be valid to the same approximation.

It will be seen that the shell model corresponds to the
approximation discussed in Sec. II given by Eqgs. (10),
(15), and (16). The well in which (4+1) particles in
the model move depends on the presence of the Ath
particle, and more accurately even on the state of this
particle. The filling of single-particle states in the
model is insensitive to this interdependence, so for this,
W#(A4) can have its A dependence neglected. Other ob-
servables depend more sensitively on the well—for
example, the magnetic moment. If it is known that the
(A—1)th nucleus has zero magnetic moment, we do
not know that (4 —1) particles in the Ath nucleus also
have zero magnetic moment. Hence the Ath particle in
the shell model cannot be regarded as moving in a nu-
cleus with an inert care of (4—1) particles. One can
either attempt to represent the effect of this case in
some collective way as for example in the theory of
Bohr and Mottelson,® or one can transform to the
single-particle model of Eq. (8) where the care is the
(A—1)th nucleus. In the latter case, however it cannot
be deduced that the potential W, is invariant under
rotations since W, differs from W* in the shell model.

It appears that in practice the transformation M to
the single-particle picture with potential W, does not
commute with angular momentum except for certain
light nuclei. This conclusion follows from the fact that
the magnetic moment of nuclei does not lie on the
Schmidt lines in general. Mathematically it means that
the single-particle eigenfunction ¥,(x4) does not corre-
spond to an angular momentum quantum number. It
can, of course, be expanded:

Ue(x4) =2 beotbs’ (%), (67)

where ¢,’(x,) are eigenstates for example of the shell-
model Hamiltonian.

From our work up to this point it appears that there
are two main errors involved in representing the shell
model as the real nucleus when evaluating magnetic
moments (or quadrupole moments). The first error
arises if these operators do not commute with the model
operator leading to the shell model. The second error
arises from treating the shell-model potential as inde-
pendent of the number (or state) of the individual
particles.

Our final discussion of the shell model in this section
is concerned with the reasons for the existence of a
transformation M from a strongly interacting nucleus
to a weakly interacting model. It has already been noted
in the introduction that there is not much meaning
to the term ‘‘state of a nucleon in a nucleus.” Due to
the strong interaction of nucleons ¥ cannot be expressed

6 A. Bohr and B. Mottelson, Kgl. Danske Videnskab, Selskab,
Mat.-fys. Medd. 27, No. 16 (1953).
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as a product, and only for product states has the
concept of single-nucleon states any clear meaning. It
does not therefore appear valid to use qualitative argu-
ments based on the state of a nucleon and the exclusion
principle.? Even if such arguments were valid and led
for example to an expectation that nucleons had long
mean-free paths,? it would be incorrect to assume that
this implied weak interaction between nucleons. The
form of Eq (1) is such that the energy will diverge if ¥
has the form implied by a weak interaction model. It
seems impossible to interpret the shell-model wave
function as an approximation to the real wave function.

It has been one of the principle objects of this paper
to show that such an interpretation is unnecessary.
In Sec. VIII, we will construct a correlated wave
function ¥ from a model wave function ®. The model
consists of particles satisfying the exclusion principle
and occuping the lowest of a set of energy levels. In
calculating operators in the model, it appears that they
are simple largely because of the effect of the exclusion
principle and the occupation of all neighboring states.
This suggests that the validity of the shell model arises
from the action of the exclusion principle in the model.
This is of course related to the action of the exclusion
principle in the real wave function ¥ but not in any
simply described way.

VII. FURTHER CONSIDERATION OF THE
SINGLE-PARTICLE MODEL

In this section we investigate a simplified single-
particle model of the nucleus. The model will describe
a single particle moving in a square well of depth Vo,
and we choose the model operator M so that the energy
of the particle is the binding energy of the Ath nucleon
as defined in IT, Eq. (8). We will see that this condition
is sufficient to determine the well depth V.

The total nuclear wave function ¥(4) satisfies the
Schrédinger equation:

(E—HA)¥(4)=0. (68)
We assume that H4 has the simplified form,
4
Hi=3 Tit2 Vi (69)

i=1 <7

which corresponds to only two-body forces between
nucleons. Define V and V; by

A-1

i=1
Then (68) can be written
(Bo—Ha1—Ta—Vo)¥o(4)= (V—V)¥o(4), (71)

where the suffix O serves to indicate we are considering
a particular eigenstate. We require a model operator M,
such that

Vo(A4)=MDo(A)=M¥o(A—Do(xs), (72)
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where
(Bo—H 41— T a— V)P (4)=0. (73)

Provided that ®(4) and ¥(4) satisfy boundary condi-
tions for a bound state of the A nucleons, the condition
for (71) and (73) to have the same eigenvalue is

@0(4), (V—=V)¥,(4))=0. (74)

We take

1
Mo=1+4-"(V=Vo)M,, (75)
a

where a= (Ey—H 41— T4—V,) and the prime to the
left of (V—7V,) indicates that all matrix elements in-
volving ®,(4) on the left are to be omitted. It is
easily verified that (74) and (75) ensure that if ®o(4)
satisfies Eq. (73), then ¥,(A4) satisfies (71) when it is
defined by (72). From (72), (74), and (75) we deduce
that since V, denotes a well of constant depth,

Vo= (®o(4), VM ®o(4)). (76)
From (75),
M0= 1+[E0—HA_1—‘ TA‘-‘ V0+'V()""V]_l ,(V'—‘ V())
(17)
= 1+|:E0—HA_1— TA—OV()O—"V]_‘I /V, (78)

provided that we only consider M, acting on the state
®o(A4). In (78), °V° is defined to be the matrix which
has elements between ®,(4) states equal to Vo, and
has all other matrix elements zero. Since in (78) it
acts on 'V, it has no effect in the equation; hence,

M0=1+EE0—HA.~1—TA—’V]~1 V=M (79)
when acting on ®,(A4) to the right, where
M= 1+|:E0—HA_1'— TA:I—I "VM. (80)
Hence,
Vo= (20(4), VMB:(4)). (81)
We prove next that
) 1
MtI)o(A)=F(1+—tc)lI>o(A), (82)
e

where F, ¢, and #, will be defined in the following dis-
cussion:

6=E0'—HA_1—' TA—If,,. (83)
Define '## to be a solution of the equation
1
te="Vi+'V 't (84)
e

where the prime indicates the ground state ®,(4) is
excluded. Then ¢, is defined as a diagonal matrix with
respect to ¥/ (4 —1) having matrix elements

L= (W (A—1), "oT (A — 1)),

=1

(85)

Ci=(¥'(A—1), "t (4—1)). (86)
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C is defined to be diagonal in the nuclear states of the
(4—1) particles. Since ¥'(4—1) is antisymmetrical,
C; is independent of the subscript ¢ and depends only
on the energy of the state ¥'(4—1). Hence,

Ci=C=(XCy)/A=t/A. (87)
Define

’Ii= 'tf‘—C. (88)

From its definition, 7; has no diagonal elements with
respect to the state ¥/(4—1). F in (82) is defined by

1 4
F=14- Y 'LF, (89)

e =1

1 1
F¢=1+" Z ’Iij=F*—-' ,IF

e 47 €

(90)

We now prove (82) by showing that the right hand
side of (82) is a solution of Eq. (80) for M. Substituting
from (82) in the right hand side of (80), we get

1 1
1—}-; ’VF( 1—|——tc) , 91)
e

where b=Ey—H 41— T 4. Upon using (89), (70), and
then (88), Eq. (91) becomes

;

1
'V—I—bZ V—zaF+ > 'V-IF,

b i, i [
— Z ’VrCFiJ (1—!——tc). (92)
b i e e
Using (84) to remove the 'V ;(1/¢) 't term, we get
1 1 1 1
1+[~ >t Fi—— ’VrCF,](H—*tc). (93)
b i b i e e
If we use (88), this gives

1 1 1 1
1—{-[ Z’II‘—~*Z’V1-~CFL~+—ZCF¢](1—|— tc).
b e b i e

(99)
Now from (87), (89), and (90),
! C 1(1 1) F—f—l ! 95)
- CPi= 1= ) 1P+~ —t..
b ; b A bA

From the definitions of e, (83) and 8, (91), we have

1 1 3\1
- (1~-zc)—.
b b /e
Upon using (89), (95), and (96), Eq. (94) becomes

1 1 1 1
1+[(1—gic) (F— 1)+—t0_1; Z /VFCFi

(96)

— *I¢F+— — ](H——tc) (97)
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If we use (87), this becomes

1 1 1
1+F( 1+—lc) - (1——ta) (1—|——tc)
e b e
ir1 -1 1 1 1
+———[—t0—— SVt Fi——t F ](1—{-—;‘0) . (98)
ALb b e b e

By (96), this becomes

(1+ zc)+ [ ( > V~th-|— tF)
x(1+—:-¢c)]. (99)

Apart from the term involving A7, this completes the
proof of Eq. (82). Terms involving A~! of similar type
to those in (99) have been considered by Watson” and
are expected to be small.® We shall neglect these terms
here but will discuss similar terms in greater detail in
the next section.

We require Vo, which is glven by (76), (79), and (82)
as

Vo=[q>0(A), VF( 1+;1tc)<1>o(A)]. (100)

We consider next the quantity VF. Using (70) and
(89), we obtain

1
VF= V—I—ZV IF-I— > V~IF;

(101)
i,4,i%f e
1 1 1
= V+Z Ve 'teFi+ Z V,—Iij—Z V:-CF;.
i e LiviEi e i e
(102)
We define a quantity ¢# by the relation,
1
tA=V+V-~"t (103)

[

Upon using (87), (90), and (103), Eq. (102) becomes

1 1
VF=Z tiﬂFi—Z Z Vit.F,. (104:)
D 1 e

We now obtain an equation for ¢# which involves only
scattering amplitudes. Define #; to satisfy

1
L=Vt Vit (105)
€

7K. M. Watson, Phys. Rev. 89, 575 (1953).

8 The neglect of these terms will not be valid at certain energies
corresponding to resonances in single-particle scattering. For these
energies the transformation leads to a series which at best would
be slowly convergent and may diverge. If these terms are ne-
glected, an ‘‘average” potential analagous to that of Weisskopf
(reference 2) is obtained.
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Then
1 —1
Vi= ti[l-l-——ti] , (106)
e
1 ~1
V= ’ti[l—l--—ti] . (107)
e
Also from (84),
1 —1
'ti"‘= lV{I:l—" ’V{l . (108)
e

Substituting (106) and (108) into (103) and then using

(107), we obtain
1 —1
tf= ti[1+— Oti] )
e

O =t;,—"t;.

(109)

where
(110)

Neglecting the 4~ term in (104), the expression (100)
for V, becomes, from (104) and (109),

Vo3 <1>0(A),ti[1—l-§ °t,~]F,~[1+—:—ta]tI>0(A)). (111)

=1

The detailed consideration of this expression can be
carried out by the methods given by Francis and
Watson.? It is sufficient to illustrate the method to
make the approximation F;=1. The term (1/¢) %; can
be neglected. Then to lowest order, we get

Vo=f:(‘1>0(/1); t®0(4)).

=1

(112)

If the expression (111) is considered in more detail, it
is found that V), is modified in a way which corresponds
to dispersion in the nuclear medium.

VIII. APPLICATION TO NUCLEAR SATURATION

In this section we consider the evaluation of the
energy of the nuclear wave function ¥ when it is sub-
jected to additional boundary conditions, in the form
of a potential well. The basis of the method has been
described in Sec. VI where it was shown that a model
could be chosen having the same energy as a particular
state of the real nucleus. '

We consider a model having wave function ®, which
is a complete product of 4 single-particle wave func-
tions and satisfies a Schrodinger equation

(Eo—T—Vo)®o=0. (113)

The corresponding equation for the modified nuclear
wave function ¥, is

(Eo—T—Vo)¥o=(V—V)¥,. (114)
We assume that ®, describes a system of particles

9N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
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moving in a square-well potential with depth V,
(measured from zero energy), infinite walls, and radius
7. This imposes a corresponding boundary condition on
¥y which makes it differ from the actual nuclear wave
function.

The well depth V, is determined by the condition
that Egs. (113) and (114) have the same energy eigen-
value. It is assumed that E, is the ground-state energy.

Vo= (@0, V¥0o) = (&0, VM (By), (115)

where
Wo= M Py, (116)
Mo=1+4(Eo—T—Vo) " (V—=Vo) M, (117

where the prime to the left of (V' — V) denotes omission
of the ground state. It follows from (115) and (117)
that if ®, satisfies (113), then ¥, given by (116)
satisfies (114). From (115) and (117), we deduce that

Vo= (o, V[ 1+ (a— V)1 'V ]®o) (118)
= ($o, VM), (119)

where
a=E\—T— TV, (120)
M=14(a—"V)V'V=14a¢1'VM. (121)

Since ¢ always appears with 'V on the right, the term
V¢ in ¢ always gives zero, so we redefine

a=E—T. (122)
Define
1
"= Vit Vi ' (123)
e
where
e=Eo—T—"t/=a— "1, (124)
t'=>"C;{, (125)
'Ciff = "1 (126)

The quantity 'C;; is a diagonal matrix element between
excited states. Let

Tip= "ty = 'Cif; (127)
this is the off-diagonal part of 'z;;*. Let
1
F=14- Z /IijaFij, (128)
e i<i
1
Fjj-_-' 14— Z 'Tim®F Imy (129)
e i=l,j=m
1
=F—- ’I,;j“Fij. (130)
e
We note that
> Fiyy=34(A4—-1)F—-F+1. (131)

<7

We now prove that M in (119) can be replaced by F
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with neglect of small terms. Consider (1/a) 'VF,

1 1 1 1
~"VF=-"V+4- Z ’V,‘j— ’Iij"‘ Fy

a a a e
1 1
+- Z ,Vij' "T'1m® Fim (132)
a i#l,i#Em e
1 1 1
== "t Fy—= 2 Vi 'V Fij (133)
e a e
1 1
== T;* Fij+- 2 'Cif Fy
a a
1 1
—= > Vi 'Cif Fi;  (134)
e e

1 1 1
==2 'I;j* Fiyj—="t! - 2 '1:* Fi
e a e

1 1 1
+- Z ,Cij, Fi—— Z ,Vif /Cijl FiJ' (135)
a a e
1 1
=(F—1)— (~ 2 Cif =L Fi
a e

1 1 1
+- Z ’Vi]— IC{j’ Fij) +-"8. (136)
a e a

The last term in (136) gives zero when it acts on the
the ground state ®,; the middle term is a correction
term which will give a small contribution to the energy.
Hence,

Foy= M. (137)
We next consider
Vo= (D0, VFD), (138)
where . .
VF=V+Y Vi "tii# Fij= 2 Vi "Ttn® Fim
i<y e i<f, %1, 5%m e
1
_Z Vi;_ ,Cij’ Fij. (139)
i<y e
Let .
tif =Vt Vi "t (140)
e
Then, neglecting the last term in (141), we get
Vo= (%o, 2 t:i FijPo). (141)

1:# can be obtained in terms of other scattering ampli-
tudes by using (125), (140) and defining

1
tiy=Vit+Viti (142)
€
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From (123),

1 -1
tie= ,Vij(l_'" V“) : (143)
(4
Hence, by using (140) and (143),
1
tijﬂ( 1—— IV,‘j) = V“ (144)
€

Solving (142) for V;;, and hence obtaining 'V ;;, we get
after some simplification

1 —1
bif = tij(l‘l“ "iﬁ) )
e

0t¢j= l,’j— ’tij.

Hence, from (138) and (145),

(145)

where

(146)

1 —1
Vo=2_ (‘I’o, fﬁ[l—f'— otijo] Fifl’o) . (147)
' e

<7

To lowest order this gives

A

Vo=2_(®o,t:/P0),

<7

(148)

where ®, is the antisymmetrized wave function for the
ground state of the model.

The potential V, given by (148) is identical with
that used by Brueckner, Levinson, and Mahmoud in
their discussion of nuclear saturation.!® It should be
noted, however, that our assumptions about the relation
between the model and the nuclear wave functions
differ in some important respects from the assumptions
of these authors. Probably the most important dif-
ference lies in our use of the consistency condition
(63) and (115) to determine the potential well of the
model and hence the energy of the system. This method
not only gives a more rigorous derivation of the energy
in the present approximation, but it can also be applied
to the more general problem of obtaining a shell-model
potential.

If we label the states of the model by the single
particle momenta %, the wave function ® can be written:

lk1)1 lk1)2 'kl)A
P=(41) 'kf)l L (149)
|Ea)s [£4)a

The chief drawback to the above method lies in the
fact that the potential ¥ has been split up in an unsym-
metrical way so that the intermediate states which
arise in calculation will not be antisymmetrized. This
means that in considering the magnitude of the cor-

10 Further details of the nuclear saturation problem have been

considered by K. A. Brueckner, Phys. Rev. 96, 508 (1954), and
forthcoming papers.
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rection terms in the series for ¥V, one cannot restrict
intermediate states to those above the Fermi gas. It
seems probable therefore that the series will not con-
verge as rapidly as it would if use could be made of
antisymmetric intermediate states. If one uses a
formulation with antisymmetrized intermediate states,
new difficulties occur, however. As an illustration of
these, we consider a formulation in which V is split
into symmetric parts, each of which can only cause
transitions to antisymmetric states provided that the
initial state is antisymmetric. Let

V=D, (150)
where A=4(4—1)/2. Define
1
t=v+1-"t, (151)
e
e=FEy—T—1,, (152)
Le=N'C'=N\"¢, (153)
I="t—"C, (154)
1
F=1+4-\IF. (155)
e
Neglecting terms of order A=, we get
Foy= M3, (156)
Vo= (Do \FDy) (157)
1
=)\(<I>0,tci>o)+)\2(<1>0,t—F<I>0)+~ s (158)
e

Although the intermediate states can now all be treated
as antisymmetrical and the discussion of convergence
is thereby simplified, it can be seen that there is now a
difficulty at another point. This new difficulty lies in
the solution to Eq. (151) for the new matrix ¢ It can
be argued! that the two equations (151) and (105)
have nearly the same solution if one is only interested
in the coherent scattering part of ¢, provided that the

11 These questions are considered in an accompanying paper by
Brueckner and Levinson, Phys. Rev. 97, 1344 (1955), who are also

developing a more detailed treatment of the use of antisym-
metrization in the problem of nuclear saturation.
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interaction potential v is highly singular. The second
term in (158) is not negligible (it is about one-quarter
of the leading term at most) but does not appear in the
work of Brueckner and Levinson,! due to their use of
different equations for ¢ and F. The other correction
terms which we have neglected appear to be small;
they are to be discussed in detail in a forthcoming paper
by Brueckner and Levinson.!!

IX. CONCLUSION

The considerations of the present paper indicate
that it is profitable to examine the theory of nuclear
structure from a new viewpoint in which nuclear
models are no longer to be interpreted as giving ap-
proximations to the actual nuclear wave function. The
actual nuclear wave function can be obtained by acting
on the wave function of the model with a suitable model
operator. It appears that the success of actual nuclear
models such as the shell model is due to a special choice
of model operator which commutes with certain ob-
servables. It has been shown that a model operator can
be used explicitly to define nuclear energy in a problem
connected with nuclear saturation.

We have examined some of the simpler properties of
model operators and investigated conditions which they
must satisfy to ensure the “reality” of models with
respect to certain observables such as angular momen-
tum and parity. It is hoped in further work to consider
in greater detail the special properties of model operators
which are related to observables which are not accu-
rately predicted by existing models. Preliminary work
indicates that this study may give a clearer indication
of the kind of correction terms which are needed in
evaluating the magnetic moment for example.

The derivation of a formula for the energy of an
“equivalent Fermi gas,” although complicated, indi-
cates that a derivation of the Mayer potential for the
shell model may be possible by the method of this
paper. Further work is proceeding on these aspects of
the problem.
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