PHYSICAL REVIEW

VOLUME 97, NUMBER 5

MARCH 1, 1955

Two-Body Forces and Nuclear Saturation. III. Details of the Structure of the Nucleus

K. A. BRUECKNER
Indiana University, Bloomington, Indiana™

(Received November 22, 1954)

The characteristics of particle motion in the nuclear medium have been examined in detail. The origin
of the strong dependence of the potential energy on the nucleon momentum is discussed and an equivalent
formulation is exhibited in which a uniform and constant potential is assumed but the nucleon moves with
markedly reduced mass. The determination of the potential is shown to lead to a self-consistency problem
which is to some extent similar to that appearing in the Hartree method of self-consistent fields. Solution
of this problem shows that the self-consistency requirements impose severe restrictions on the solution and
have a strong stabilizing influence in the saturation problem. The volume energy of the nucleus has been
evaluated by using two-body potentials closely equivalent to a combination of central and tensor forces
which agree with the low-energy parameters and predict scattering correctly up to 90 Mev. The result
agrees closely with the observed values of energy and density.

The collective character of the nucleon potential is described and shown to manifest itself markedly in
the excitation energy of single-particle levels where a considerable fraction of the energy is taken up in
small adiabatic shifts of the states of the remaining nucleons.

The origin of the surface and symmetry energy is discussed; an evaluation of these effects gives a result
in good agreement with empirically derived values. The stability of the nucleus against distortion arising
from the polarizing effects of the tensor force is also examined and it is found that the nucleus shows marked

stability against such distortion.

I. INTRODUCTION

N previous papers on the problem of nuclear satu-

ration! (to be referred to as NSI and NS II), an
approximation method was developed and applied to
the determination of certain properties of the volume
and surface energies of nuclear matter in the presence
of central and tensor forces. It is the purpose of this
paper to discuss a variety of additional structural
details which considerably increase the completeness
of this nuclear model. In Sec. II we shall consider
various aspects of the motion of nuclear particles in
nuclear matter and the problem of deriving the po-
tential energy felt by such a particle. In this connection
we shall develop some concepts of the dispersion law
relating energy and wave number in nuclear matter
and of the self-consistency requirements in the formu-
lation of the problem. In Sec. IIT we shall discuss some
of the collective aspects of the nuclear states which are
implicit in the work of Sec. II; in Sec. IV we shall
discuss the problems of the surface and symmetry
energies of the nucleus and the stability of the nucleus
against distortion arising from polarizing action of the
tensor force. Finally in Sec. V we summarize our
results and make some concluding remarks.

In this paper we shall not discuss the basic assump-
tions of the method as developed in NS I; a detailed
discussion of these together with a physical interpre-
tation of various aspects of the model will form the
content of another paper now in preparation.

* Supported in part by a grant from the National Science
Foundation. The work was also done in part while the author
was a visiting Associate Physicist at Brookhaven National
Laboratory.

1 Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217
(1954); K. A. Brueckner, Phys. Rev. 96, 908 (1954).

II. DISPERSION LAW IN NUCLEAR MATTER;
SELF-CONSISTENCY PROBLEMS

A. Origin of Dispersion Effect and of
Self-Consistency Requirement

In NST and NSII it was shown that the potential
energy of a particle moving in a plane wave state in
uniform nuclear matter was in general a function of
its momentum, so that the energy of a particle of
momentum % was related to £ by

E(k)=F/2M+V (k), 1

with V (k) not a constant. This expression is a statement
of a dispersion law relating E and %. In many typical
applications such as those encountered in the develop-
ment of the shell model, it is assumed that the potential
is independent of the particle state. For example in the
case of a square well the presence of the potential
merely serves to define a boundary and a new zero
point of energy without otherwise affecting the particle
motion. It is, however, not in general possible to assume
that the potential is independent of the state. We shall
discuss qualitatively the origin of the dispersion effect
stated in Eq. (1) before proceeding to an examination
of its further implications.

The dependence of the potential energy on % arises
from the origin of this energy in the interaction of the
particle with its neighbors in the nuclear medium. In
the model which we have developed, the potential
energy is a manifestation of the effect of collisions on
the wave function; since this effect drops off rapidly as
the relative energy in collision increases (and the
scattering decreases), one would expect to find a
decrease in the potentidl strength as the momentum of
the particle under consideration rises. The direction of
the effect is of course intimately related to the satu-
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rating character of the two-body interaction considered,
since the amplitude for forward scattering arises from
this interaction characteristically becomes small (or
eventually changes sign) at high energy. Thus we
expect a lessening of the potential strength for a
rapidly moving particle.

Another interesting way of describing these effects
has been suggested to the author by Wheeler.? He
observes that near zero momentum the potential energy
V (k) can be expanded as

V(E)=V (O)+bk+- -, @

where in some cases only these first two terms in the
expansion need be considered. We expect the leading
term V' (0) to be negative, while the quadratic correction
term will in general be positive. Thus we can now
write the dispersion law of Eq. (1) as

E(k)=k/2M+V (0)+ bk
=k/2M*+V(0), ©)

where M* as defined by this equation is related to the
normal mass by

M*=M/ (1+26M) o)

and consequently is less than the normal mass. Thus
we are led to an equivalent description in which the
nuclear potential is constant but the “nucleon” mass
is modified. This effect can be expected to manifest
itself in other ways to which we shall return later.

We have so far not discussed a consequence of this
modification in nuclear matter of the propagation
characteristics of a nucleon which, as we shall see, leads
to a self-consistency requirement on the formulation
of the problem. As developed in NS I, the potential
energy of a nucleon could be expressed in terms of a
summation over nuclear states of the two-body forward
scattering amplitude evaluated in the nuclear medium.
We shall express this requirement formally in the next
section; we remark here only that already an obvious
difficulty arises in that to evaluate the scattering n
the medium it is necessary to know the dispersion law
for propagation before carrying out this evaluation.
Thus the dispersion law determined is a function of the
dispersion law assumed and a self-consistency require-
ment arises. As we shall see, this presents a rather
formidable mathematical problem which we shall
discuss in the following sections.

B. Formal Statement of Self-Consistency
Problem

The formal statement equivalent to the requirement
that we determine the scattering amplitude “in the
nuclear medium” is the following?: let v;» be the inter-

2J. A. Wheeler (private communication).
( 3See N. C. Francis and K. M. Watson, Phys. Rev. 92, 291
1953).
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action between nucleons 1 and 2. We further define
the two quantities #;» and V¢ by the equations:

tra=v1o 019 By Es— Ho(1)— Ho(2)
—Ve)=Ve(@)T s (5)
Vc(%) =y toij, (6)

i#=]

where ¢ is the part of the scattering operator ¢ which
is diagonal (or coherent) with respect to the nuclear
states. We define the singularity in the energy denomi-
nator of Eq. (5) by taking the principal value?; this
corresponds to the stationary character of the problem.
The operator ¢ defined this way is often called the
reaction matrix. The potential V¢(z) is the potential
energy of the ith particle; the modification from the ¢
defined for free-particle scattering arises from the
presence of the potential energy V¢ in the propagation
function.® The complication of the problem arises from
the appearance of V¢ in the defining equation for ¢
which must be solved to obtain V¢; the mathematical
problem presented is the solution of a nonlinear integral
equation for V.

The presence of the modified propagator in this
problem represents the expected and quite reasonable
many-body effect on the interaction of two nucleons in
dense nuclear matter. We note that it does not arise
from a change in the two-body potential v;s; this effect
has been previously discussed in NSI and shown to
be small.

This problem has some of the aspects of the self-
consistent field problems encountered in atomic physics.
In our case we know the wave functions (degenerate
Fermi gas) but the interaction is not known, while in
the Hartree method the interaction is specified but
the wave function is unknown. The self-consistency
requirement of our problem is to specify such an average
potential, solve for the interactions and finally from
the interactions determine the average potential. Thus
the solution of this problem bears a certain resemblance
to the atomic case but is fortunately somewhat easier
to obtain.

In solving the pair of Egs. (5) and (6) the simplest
approximation method is that previously used in NS I
and II. To exhibit this, we assume that the transfor-
mation to the center-of-mass system and relative
coordinates is possible [as it is if V¢ (k1) depends at
most on a constant and a term quadratic in ;] and
write in momentum space, where % is the relative

4B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

5 The exclusion principle also acts to modify the scattering
operators; it can be shown, however, that the most important
class of intermediate states included in the construction of ¢
which would appear to violate the exclusion principle are exactly
cancelled when the expectation value in the many particle state
is evaluated. In addition, most of the contribution to the integral
over intermediate states comes from high excited states which are
unaffected by the exclusion principle.
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momentum,®
to()= (k| (11 = (k| o[+ (2" [ k(] o] )

XLER) =/ M=V ()T K [t|k). (7)

The pole in the denominator appears at the energy-
conserving point,

E(k)=F/M+Vc(k), ®

which allows us to write
to(k)= (k|»|k)+ (27 “3fdk’(k[v[k’)[k2/M—k'2/M

+Vo(k)=Ve(®) I (K [¢|k). (9)

Then, if V¢(k) is independent of % or if the variation
in Ve(k)—Ve(k') is slow relative to the variation in
(k*—k'?)/M, then the terms in V¢ can be dropped and
we have approximately :

to(k)= (k|o|k)+M (2r)~*
>< f dk' (k|| K) (B — B2~ (K |2] k). (10)

In this case, which is now exactly analogous to the free
scattering at momentum %, the effect of the potential
has been merely to replace the (negative) energy E by
k?/M which is the kinetic energy in the nuclear medium.
This approximation was used in NS T and II since it
was assumed that an appreciable correction would not
arise from this approximation to the properties of the
medium; we shall now proceed, however, to develop a
more rigorous method for solving Egs. (5) and (6).

The defining equation for #; of Eq. (5) can be
rewritten

(11)
12)

Thus the construction of Q is sufficient to determine i.
This equation, however, is analogous to the usual
scattering wave equation (except for the modified
boundary condition) ; hence we know that the ¢ can be
expressed in terms of the phase shifts which we obtain
by solving the wave equation

(E"‘ Ho—" VC)Q = ‘1)129.

l12=119Q,
where
Q= 1+ (E_Ho’— VC)_I'l)le.

(13)

Knowing V¢ in momentum space allows us to make
the transformation to coordinate space in a straight
forward manner.

6In this and the rest of the paper we shall assume that the
diagonal part of ¢ is given only by the forward scattering. The
inclusion of the exchange scattering has been discussed in NS I
and shown there to give a trivial change to the formalism.

IT1I 1355
C. Approximation Methods for Solving the
Self-Consistent Problem

We consider first the simple case in which only
constant and quadratic terms in V¢ are used. As we
shall show, this is a quite good approximation over the
range of momenta which enter in the ground state but
breaks down somewhat in evaluating ¢ since a consider-
ably larger range of momenta enters (in virtual states)
in solving the wave equation for ¢. Making this approxi-
mation, we can write the problem:

(E—2V+20V2—Ho)Q=1Q. (14)
Since the energy E is
E(k)=2V+2b0k*+F/M, (15)
this is equivalent to
(B2 V2)Q= M*1Q, (16)

with M* defined by Eq. (4). The effect of the dispersion
of the medium therefore (as was remarked earlier) is to
introduce a mass modification. The solution of Eq. (16)
for the phase shifts now follows standard methods;
the usual scattering amplitude @;(6) is finally related
to t¢(k) by

to(k)= ——%ak(O). 17

It is interesting to note that ¢ is independent of M* in
Born approximation since in such a case a@,(0) is
proportional to M*.

The self-consistency requirement on V¢(k) thus is
reduced to a single-parameter problem, since it is now
sufficient to find a value M* (or b) in the dispersion
law which will predict scattering amplitudes and hence
a V¢(k) which depends on % in the same way (i.e., is
self-consistent). This procedure will be described in
more detail in the following section.

Before proceeding, we make one further remark
about a slightly more general choice of V¢ (k). Let

Ve(k)=Votbk+cht, (18)

which is a somewhat better representation of the %
dependence of the potential for &2 values rather larger
than the Fermi momentum, although the term in &* is
negligible for small values of k. According to Eq. (13)
we now can write the Schrédinger equation:

LE—k2/2M —k?/2M — 2V o—b(k2-+ko?)
_C(kl4+k24)jﬂ<172)=7}12Q(1)2)7 (19)

where k; and k, are to be interpreted as operators on

the coordinates of particles 1 and 2. Transforming to

the center-of-momentum system and relative coordi-
nates by the relations

ki=k+31P, k,=—k+1P, (20)
we are led to the transformed equation:
LE—(1/M+2b) (B+31P?)—2V,

—c(2k4-3E2P4-5P) 10=120. (21)



1356

Next, introducing the relation between energy, P, and
ko (the asymptotic value of k),

E=(1/M+2b) (k?+%+P%)+2V,
+c(2ki+-3E2PHEPY, (22)
we find

L/ M+-2b) (ke*— k2
—2c(H— k3R PP— 3k 2P J0=10. (23)

This is of standard form (with modified mass) except
for the term proportional to ¢. This we approximate in
the following way; as we have remarked, the terms in
¢ are unimportant except for large % values. Thus we
expect only the term in k* to be appreciable for low
values of ko and P. Treating this term as a perturbation,
we make the replacement

RO M* R (1) M+2b) ke —v]Q

~— M*ck*Q. (24)
Next, introducing a new function
o= (1—2cM*%)Q, (25)
Eq. (23) reduces to
M*y
(k?+V2)p=—"—""—"—9, (26)
1—2cM*%

if we again drop some small terms in ck¢?, with M*
=M/(14+2bM) as before [Eq. (4)]. The asymptotic
forms of Q and ¢ are the same, and for nonsingular
potentials the boundary condition at the origin is
unchanged ; thus a solution for the phase shifts using
Eq. (26) is equivalent to a solution of the original
problem.

Another way of expressing the result of Eq. (26) is
that the “effective mass” M** defined by

M*¥*=M*/(1—2cM*?) 27

differs to some extent from the asymptotic value M*.
The direction of this correction depends on the size of
c; as we shall see later the departure from the simple
quadratic law for V¢ (k) given in Eq. (2) corresponds
to a small negative ¢. Thus the “effective mass” used
in solving Eq. (26) is somewhat larger than the asym-
ptotic value or equivalently, the effective potential

v*=19/(1—2cM*%) (28)

is somewhat stronger. The effect is not very large; we
shall, however, make at least qualitative use of this
result in the next section.

These considerations have shown how the self-
consistent problem may be reduced to a two-parameter
problem, the self-consistent determination of the con-
stants b and ¢ in the expansion of the potential

V (k)= Vo+bk>t-ck*. (29)

The problem is however hardly a trivial one in that it
is necessary to obtain a complete solution for all phase
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shifts over a large range of energies for each choice of
the parameters & and ¢. Thus we must assume in
practice a “zeroth order” form for V¢ (k) which we call

Ve© (k)= Vo©4-bok*cok?, (30)

and for this choice construct the scattering amplitudes
and finally a first iterate V¢® which will be a function
of b and ¢, i.e.,

Ve® (k)=Vc® (k,bo,co). 31)
Then, expanding the first iterate,
VW (k,bo,co) = VoV +b1k2-cik?, (32)

we expect the new constants b; and ¢; to be functions of
bo, Co, i.e.,

b1= bl(bO;CO)7 = 61(50,60>- (33)
The self-consistency requirement is finally
bl= bo, C1=Cop. (34)

D. A Self-Consistent Solution

The method of the last section can in principle be
applied to any two-body interaction; it is of course in
the general case (in which tensor forces are included)
extremely tedious since a considerable range of values
of the parameters (particularly of the most important
parameter b) must be studied to map out the dependence
of V¢. We shall, however, in part avoid this difficulty
by using simple potentials approximately equivalent to
the ones considered in NS I and NS II. In these earlier
works, a potential derived from meson theory was used
which had a rather complicated exchange dependence
and which contained a large tensor force. Since, how-
ever, the many-body potential energy derived depended
primarily on the low-energy scattering characteristics
of the potentials, it is possible to replace (at least at
low energies) the original potentials used by any choice
agreeing with the low-energy parameters. An important
restriction on the potentials, however, is that the phase
shifts at high energy show the rapid drop resulting from
the presence of repulsive cores in the potentials. A
further requirement is that the triplet even scattering
approximate to the tensor scattering at high energies,
which is rather smaller than the scattering from a
central potential because of the first-order averaging
to zero of the tensor force scattering.

Potentials which approximately satisfy these condi-
tions and which allow relatively simple evaluation of
the self-consistency problem are square wells of appro-

Tastk I. Equivalent square well parameters. The ranges
are given in units of 1.40X10™8 cm.

Singlet Triplet
Range 1.53 0.93
Core radius 0.40 0.30
Depth (Mev) 40.6 148
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priate range and strength, with a region of central
repulsion. The parameters of these potentials are given
in Table I; the s-wave scattering predicted by them is
given in Fig. 1 in comparison with the s-wave scattering
of NSII. The remaining partial waves have been
omitted for the following reasons. (Since they can be
treated in Born approximation and thus are only weakly
affected by the modifications of the effective mass the
following remarks based on the studies of NS II are
valid.) (1) The investigations of the tensor scattering
show that the effect of the higher waves is very small,
considerable cancellation occurring among the D-waves
of different J and m. (2) The D-wave singlet scattering
is appreciable but is approximately cancelled by the
scattering arising from the odd-state singlet repulsive
potentials. (3) The magnitude of the energy is almost
entirely determined by the interaction at low energy
and thus is very well approximated by the s-wave
scattering alone. These remarks have all been quantita-
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F16. 1. S-wave scattering from square wells with parameters
given in Table I, compared with S-wave scattering calculated for
central and tensor wells of NS I and NS TI. In the latter case for
the tensor force, the 3, eigen phase shift is given.

tively verified by a comparison with the calculation in
NS II of the energy as a function of density predicted
by the equivalent square wells.

Thus we can proceed to an evaluation of the self-
consistency problem using the simple equivalent square
wells. We notice first that the equivalent Schrédinger
equation is

(k02+V2)¢ — M**WS

M*V,
=————9, rc<r<R,

(35)
14 2cM*2V,

where 7. is the radius of repulsion and R is the range
of the well. This equation determines phase shlfts as a

function of
M**=M*/(14-2cM*2V ), (36)

and as a function of energy. The phase shifts predicted
for the singlet and triplet states are shown as a function
of the mass parameter in Fig. 2. The potential energy
per particle is related to these phase shifts (see NS I
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F16. 2. Singlet (s) and triplet (¢) phase shifts from equivalent
square wells calculated as a function of mass parameter. The
values of M**/M are indicated.

and NS IT) by the equations (for s states only):

Velt)m— f Pk} tand, (¥, M*%)
ane aM* ’ AN

~+tand, (&', M**) Jk'dk', (37)
where
P(EE)=2, O<K <i(kp—Fk)
=[ik*— Gk—E)*]/kE,
Lkr—k| <k <i(kr+k). (38)

Let us first consider the simple case for which ¢=0 and
M*=M** [see Eq. (36)]. In this case the self-consis-
tency requirement is rather easy to satisfy since we
have an additional parameter at our disposal, namely
the adiabatic density parameter 5. This parameter
appears through the dependence of k7 on the density
through the relation

kr=1.52u/n. (39)

We thus proceed in the following way: for a given
value of M¢*, we compute

Ve (kyM()*m) =Vot+bd (Mo*,"’l)k2; (40)

and adjust the density parameter 5 so that the value of
M*, predicted by the relation

=M/[1+2b(Ms*m)M ], (41)

agrees with M,*. This requirement gives M* as a
function of the density (see Fig. 3) and thus also the
potential energy V¢ as a function of k£ and the density.
We can then proceed to the mean potential energy per
particle by evaluating the average

kF kr
VAV:%f kZVc(k)dk/f kdk,
0 0

the factor of 3 compensating for the double summation
over all particle coordinates. Finally, the mean energy
per particle as a function of density is given by

En=Tr+ V.

(42)

43)
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n
6 08 1.0 1.2 1.4

£\

Fi6. 3. Self-consistent values of mass parameter as a function
of density parameter » [defined in Eq. (39)]. The two cases
M*=M** and M*=0.80M** are given.

The self-consistency requirements having already been
satisfied for each value of 7, it is sufficient to determine
the value of 7 for which the energy is a minimum, thus
determining the equilibrium density and binding
energy. This relation between E and 7 is given in Fig. 4,
the minimum occurs at a density of n=1.30 or R=1.82
X10734% and a binding energy of about 4.5 Mev per
particle.

This rather unsatisfactory solution to the problem
is not yet fully consistent since the %* dependence of
the potential is not negligible. The function V¢(k) as
determined for the approximately self-consistent pa-
rameters M*/M=0.70 and 7=0.9 is given in Fig. 5 as
a function of % up to a value of % considerably larger
than the Fermi momentum k7. A good approximation
to this curve is:

Ve(B)= (—119-457.38%/ k2 —T.18k4/ks*) Mev, (44)

so that although the quadratic approximation is valid
for k<kp, the term in k% is not negligible for values of
k/kr appreciably larger than one. The sign of this term
in V¢ is negative; inserting this value in Eq. (36) for
M**, we find

M*>~0.80M**, (45)

taking an average for the singlet and triplet states.

A
Al
1

M

N
8 —

0.80M™*

|_—
L]

5 9 13 L7

F16. 4. Energy as a function of density for self-consistent potentials
with M*=M** and with M*=0.80M**.
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This relation is of course not very well determined since
it is a higher order correction to the dominant quadratic
effect in the dispersion law. In addition its precise value
depends rather sensitively on the high-momentum
behavior of the scattering which is not given very
reliably by these approximation methods. Nevertheless,
it is probably correct to assume that the effective mass
in the high-momentum region is somewhat greater
than the effective mass at low-momentum values.

By using the ratio between M** and M* of Eq. (45),
it is again possible to carry out a self-consistent evalu-
ation of the effective mass M* and consequently of the
potential energy. These results are given in Figs. 3 and
4. For this case the binding energy per particle is now
about 12.8 Mev at a density 7=1.00 or R=1.40
X10-843, At this value of the density the effective
low-momentum mass M* is 0.54M, and a check on the
self-consistency at high momentum values shows that
the ratio M*=0.8M** is still approximately satisfied.

O
|
-40 Mev /
=80
-120
o 4 .8 12 1.6

F1c. 5. Potential energy as a function of % for
M*=0.70M and »=0.90.

Thus we have an approximately self-consistent
solution to the two-parameter problem.

E. Discussion

Some rather striking features of these results are
readily seen. The most evident effect of the self-
consistent inclusion of the dispersion effects is the
reduction in the mean potential energy and a simul-
taneous change in the position of the density minimum
of the total energy curve (see Fig. 6). This modification
arises from the impossibility of finding a self-consistent
solution to the problem when the potential energy is
too large or equivalently, when the “effective mass” is
close to the nucleon mass. Thus a strong stabilizing
influence on the nuclear density arises from the self
consistency requirement on the solution. The effect is
intimately associated with the many-body character of
the problem, arising as it does from the modification of
the propagation characteristics of a nucleon in nuclear
matter. As such it gives an interesting insight into the
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interplay of effects which lead to the equilibrium
configuration of the nucleus.

III. COLLECTIVE ASPECTS OF THE MOTION

As we have shown in the previous section, the motion
of nucleons through nuclear matter is determined by a
potential which varies rapidly with the nucleon mo-
mentum; it is also true in our treatment that the
potential energy arises from two-body interactions. In
this section we would like to discuss the significance of
these results and how they may be related to the
single-particle and collective aspects of the nuclear
structure.

Let us consider first the relation of the energies of the
nucleons to such quantities as mean binding energy and
the binding energy of the last nucleon. The potential
energy of a nucleus of momentum % we call V¢(k) as

\ielf consistent
0
Mev \
-0
/
~20
/&e If consistent
n

0.5 o7 0.9 LI

-40

Fi1G. 6. Comparison of self-consistent energy E for M*=0.80M**
with the result obtained in NS II with no self-consistency re-
quirement imposed. For the latter case M**=M and M* is in
the range 0.2 to 0.4.

before. This energy cannot, however, be unambiguously
assigned to one nucleon, since it is the result of two-body
interactions and thus is shared between the nucleon
under consideration and the rest of the nucleus. Thus,
in an obvious way, the potential energy is already a
manifestation of a collective characteristic. The mean
energy of the system we get by averaging (the kinetic
energy and the potential energy) over the momentum
distribution, i.e.,

EAV=TAV+VAV
- f BAR[R/2M 41V o(k)] / f Bdk,  (46)

as has been observed earlier.
We now proceed to the relation between the binding
energy of a nucleon and the kinetic and potential
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o
~20|-Mev
E(K)
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00 025 Q50 075 700

F1c. 7. Total energy and potential energy as a function of
momentum at equilibrium density.

energies. At first we might expect to obtain this by
simply evaluating E(k); this, however, is obviously
incorrect since we are not taking into account the
“shared” character of the potential energy. A further
complication arises from the possibility that the nuclear
system will readjust its density to bring the energy to
a minimum, which must also be taken into account in
determining the binding energy. In spite of the compli-
cated character of these questions, we can easily obtain
an answer by considering the physical character of the
binding energy, which is the difference between the
energy of a nucleus of 4 nucleons in the ground state
and the energy of a nucleus of (4—1) nucleons in the
ground state plus a removed nucleon. This difference
is simply the mean binding energy as given in Eq. (46).

This simple result actually originates in a rather
complicated interplay of effects which can be somewhat
unphysically separated in the following way : we suppose
that we formally consider the energy of removal of a
nucleon as arising first from removal with the remaining
nuclear configuration held fixed and second the energy
of rearrangement of the remaining nucleus into its
lowest state. The first of these is clearly E(k)=T(k)
+V¢(k); the rearrangement energy then makes up the
difference between this value and the mean binding
energy. The latter is a manifestation of the collective
origin of the energy; in our example (see Fig. 7) the
values of E(kp) is —22 Mev, of E, is —12.8 Mev;
thus the rearrangement energy is 9.2 Mev. The origin
of the rearrangement energy is fairly obvious; it arises
in the adiabatic shift of all of the nuclear energy levels
as one of the particles contributing to the binding is
removed ; it also arises from the reduction of the nuclear
equilibrium volume as the particle is removed.

We can also express this result for the more general
case of nuclear excitation. For simplicity let us consider
a particle outside a core (for example a closed shell
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-+one nucleon). In this case the excitation of the outside
particle to an excited state is also reflected in a change
in the potential energy of each of the core particles, so
that the energy of each level in the closed system shifts
slightly as a consequence of the excitation of the outside
particle. The excitation energy thus must be supplied
not only to excite nonadiabatically the last nucleon but
also to shift adiabatically the states of the core. Because
of the related origin of these two effects in the two-body
nature of the binding, they are of the same order of
magnitude. We therefore see that in no sense are the
“single-particle” excitation energies of the shell model
single-particle in origin; they are rather of collective
character and measure the sum of the changes in energy
which take place in every state of the system upon
excitation of any particle.

It might be remarked that the collective effect
described here is rather different from the collective
modes of excitation discussed by Bohr and Mottelson.”
The effect we describe is present even in excitations
which their theory would describe as of pure single-
particle origin, since we find that a true single-particle
picture has no zeroth order validity.

IV. SURFACE AND SYMMETRY ENERGIES:
STABILITY AGAINST DISTORTION

A. Surface Energy

In this section we shall make a determination of the
nuclear surface energy, i.e., that part of the energy of
the nucleus which is associated with surface effects and
hence has a different dependence on the total number
" of nucleons than does the volume energy. In this
development we shall follow closely the procedure used
in NS IT with modifications, however, which lead to
more reasonable results than those earlier obtained.

In NS IT an approximate result of Hill and Wheeler®
was used to represent the finite volume effect on the
distribution of momentum states in the nucleus and was
shown to lead to a surface energy. The result of Hill
and Wheeler is that the effect of the finite volume is to
modify the density of momentum states from the result
valid for an infinite medium,

N, (k)dk=vdk/ (2m)?, (47)

to a result valid for a spherical nucleus of radius R,

Nr(k)dk=vdk[1—3x/(4kR)]/ (2w)?

=udk(1—ko/E)/ (2)?, (48)

with ko=3r/4R. In this expression v is the volume on
the surface of which the nuclear wave function is
required to vanish. It is convenient to change the
normalization of this density distribution in the follow-
ing way: we notice first that the total number of

7 A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 27, No. 16 (1953).
8D, Hill and J. Wheeler, Phys. Rev. 89, 1102 (1953).
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states with momentum less than k7 is

4 7kt ;
k<kp 3 (2m)?
Defining a modified volume v,; by the relation
vr=0(1—3%ko/kr), (50)
we can write
nr(kr)=va(4/3)Tks*/ (2m)3. (51)

This modified volume thus is an equivalent volume in
which the number of states with momenta less than kr
has the same form as in the case of an infinite medium.
Let us consider the physical implication of this change
in normalization volume. First we observe that the
change in volume is equivalent to a change in radius:

Ryu=R(1—%ko/kr)}

~R— %71‘7\[«',

(52)

or that the effective radius Ry is less than the radius R
of the original normalization volume by an amount
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Fic. 8. Plot of the density of particles in a Fermi gas with the
wave functions required to vanish on a plane boundary at »=0.
The mean radius is indicated, as is also the scale in absolute units,
showing that the nuclear edge in this case has a depth of the
order of 2X107% cm.

very nearly equal to the wavelength Ar of the particles
of maximum momentum. This, however, is a result
previously pointed out by Swiatecki® and shown in
Fig. 8. Physically the requirement that the wave
function vanish on the surface of the volume has the
effect of compressing the nuclear matter into a region
of smaller mean radius, the compression being given
by precisely the change from R to Rj. Thus the
modified volume vy represents more accurately the
physical volume in which the nucleons are on the
average confined. Using this result, we find for the
relations between atomic number A and the Fermi
momentum (with 2 neutrons and 2 protons per state):

A=4vy(4/3)mkr?/ (2m)3, (53)

9 W. J. Swiatecki, Proc. Phys. Soc (London) A64, 226 (1951).
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and the average kinetic energy per particle:
k2
Tp= f (= h/Bk / f (1= ko/)dk

C52M\" 4 kp 2ks)
To first order in ko (or to first order in A—%), there is

thus an increase in the kinetic energy per particle over
that for an infinite medium:

(54)

To(R)=Ta ()= el B2
— ©)=— —X— —
d s o 4 kg

=(5.69/7) A~ Mev.  (55)

We consider next the mean potential energy per
particle. In this case we need evaluate a sum over
states of the form:

1
VAV:Z Z Z tC’(kU); (56)

where {¢ is the transition operator for forward scat-
tering. Previously we have used the relation between
tc(k) and the scattering amplitude ax(6)

4

tc(k)=M

a(0), (57

*

where v is again the normalization volume for the
nuclear states. The same effect, however, should be
included here as we have just discussed, namely, the
effective volume is more accurately represented by the
modified (and reduced) volume vy, the reason being
precisely the same as that already discussed. Going
over in Eq. (56) from the double sum to an integration
and using the modified relation between f¢ and az,

we find
3 ki—k;
fdkldkz[dx(
8m2M* 2
kl—kz ko kO
+(=))(=5) ()
2 ky ke

f dky(1—3ko/Er)?

. (58)

VAV (_R) =

This expression is identical with that used previously in
NS II except for one normalization factor (1—32ko/kr)~".
This change is the result of the change in the normal-
ization volume, which was not taken into account
previously in a fully consistent way.

We again can separate this result into a term inde-
pendent of R (or of ko) and a correction term linear in
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ko. The result is
ko

32w M*

k1—k2 kr"kg 2 3

X|e(==) (=) (-

2 2 ki kr

In evaluating this correction we make use of the
self-consistent results of Sec. IT for M* and the corre-
sponding results for the scattering amplitudes. The

result is a repulsive correction to the potential energy,
of magnitude

Va (R) —Vu ( © ) = kp_:’fdkldkg

(59)

299 2.73

Va(R)— V(o) = (————l——— A=t Mev. (60)
7 ot

Combining these results with the kinetic energy effect

of Eq. (55), we find

E=E_+E,, (61)
where the surface energy is
8.68 2.73
= (———-l————— A~ Mev. (62)
772 774

At the equilibrium density of n=1.00, E,=11.4 Mev
A~% which is approximately equal to the usually
accepted value.® It is interesting to note that the
surface energy is almost exactly equally divided between
effects on the potential and kinetic energies.

This result is considerably less than that previously
obtained in NS II; the improvement is a consequence
of the more nearly correct treatment of the effective
nuclear volume. The great sensitivity of the surface
energy to the precise details of the treatment shows
that the results obtained are not completely quantita-
tive; it is clear, however, that this model gives results
which are quite compatible with the empirically derived
surface energy.

B. Symmetry Energy

The symmetry energy of the nucleus arises from a
departure of the nuclear state from the most sym-
metrical one, i.e., that with equal neutron and proton
numbers. Observed displacements of the neutron-to-
proton ratio from unity are the consequence of the
Coulomb interaction which leads to a neutron excess.
We wish to make a quantitative study of these effects.
In this discussion we shall omit the surface effects
since these have a different origin than the symmetry
energy and can be omitted (in first approximations) in
a discussion of the latter.

We shall assume the following nuclear model on
which to base our considerations. We let the maximum
Fermi momentum for the neutrons be .y and for the
protons kp. We also introduce the numbers character-

10 E, Feenberg, Revs. Modern Phys. 19, 239 (1947).
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izing the neutron excess:

—Np=I, Ny+Np=4A, (63)
or

=34 (149,

where e=7/A. We further introduce the Fermi mo-
mentum % defined as before with e=0. As a function
of ¢, the maximum neutron and proton momenta are

Np=34(1—6), (64)

szkF(l'i-é)%, kP:-‘kF(l_G)%, (65)
and the mean kinetic energy is
To= 3/ DI 1+ 97+ (1- 9] (660

The linear term in e vanishes; consideration of the

quadratic term is sufficient for our purposes. Thus we

find
T—Tr=(5/9)Tre, (67)

which is a repulsive term opposing departure of the
neutron-proton ratio from unity.

We treat the potential energy similarly. First we
define an integral

J(G) = (47[')—2{ f dk, dkngN
k

N kN

+f f dkz(lpp"- dkzaNPl ) (68)
kp kN

where the three terms represent contributions from the
neutron-neutron, proton-proton, and neutron-proton
interactions, respectively. Restricting ourselves to con-
sideration of the s-wave interaction alone, we can
express this integral as a function of integrals over the
amplitudes for scattering in the singlet and triplet spin

states, i.e.,
kg)

J()= (4#)“2{ fk ok, fk Ndkzas(kl_
e
()

()

Let us denote the result of carrying out the angular
integrals over k; and k. by

(4m)— f s f nga(kl_

ko
) =a(kyks).  (68)
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Then we can write

kN kN
J(e) =f dklf dkok2ky? @5 (R1,ks)
0 0
kp kp
—}-—f dklf dk2k12k22ds (klyk2)
0 0

kN kp
+f dk1f dk2k12k22[:ds(kl,k2)+3dt(k1;k2)]' (69)
0 0

We now carry out an expansion of the integral J(e)
about the point e=0. The leading term J(0) then
corresponds to zero isotopic excess and therefore gives
rise to the undisturbed potential energy. The linear
term in e is easily shown to vanish, if one makes use of
the relations:

akN/66=%kp(1+E)_%, 6kP/ae= —%kp(l—e)_%

Retaining only the quadratic term in e, we find

(70)

J(e)—f<o>=%eﬂkw[—;—dkakﬁ—at(kp,kF)

kr 9
—I—kF——zf k2dk"’_[d_s(kf"7k)+dt(kp’k)] : (71)
o Okp

The term depending on the difference in the scattering
for singlet and triplet states represents the effect on the
relative populations of the singlet and triplet spin
states of increasing the isotopic excess. The second
term is the result of the effect on the potential energy
of the general shift to higher-momentum states. We
finally can use the result expressed in Eq. (71) to find
the effect on the potential energy, which is

[V(e=V () /V(©0)=LT(9—=T(0)1/7(0),

or

[V(e)~V(O)]/V(O)=%e2kﬁ‘*[%ds(kmkp)—dz(kp,kp)

kr a
ke f db——T[a,(kr,B)+ dt(kp,k)]}
0 akF

kF kr
X{f klzdklf k?dks[ @s(k1,ks2)
0 0

—l—d,(kl,kz)]]_. (12)

The evaluation of this integral is most easily effected
if we choose an explicit dependence of the sum
as(3ki—3ko)+a.(3ki—3ks) on the two vectors ki, ko.
A good representation of these amplitudes for the self
consistent mass M*=0.54M is

astar=2a|ki—ko| 7 +-op e [ ki—ko |2, (73)
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where ¢=0.467, 56=1.258, ¢=—0.885. Inserting this

expansion into the integrals of Eq. (72), we find

V(e)— V(O) 1 4a bkF ckr*\[kr

—_— = E— l:“-‘(is (kp,kp)
V(0) 9 15 9,u Ou? 3

2 2k
—kpa',(kp,kp)——a+~—c—-]. (74)
3 15 u?

At equilibrium density, taking #=1.00 and inserting
the values of the constants, we find
V(e —V(0)=—0.62&V (0)=16.9¢ Mev. (75)

Confirming this with the kinetic effect, we find for the
symmetry energy :

N—2Z\?

) . (76)

+Z

This is to be compared with the empirical value given
by Feenberg® of 18.1¢¢ Mev. Thus the agreement
between the observed and calculated symmetry energy
is rather good. The result we have obtained depends,
however, rather sensitively on the precise character of
the scattering near the Fermi momentum through the
first two terms on the right side of Eq. (74). While
these contribute about § of the total symmetry energy,
their precise values (more exactly their difference) are
not so critical elsewhere. Thus the agreement we have
found is probably as good as we can expect considering
the uncertainties of our methods on details such as this.

E(e)— E(0)=25.1¢& Mev=25.1 Mev(N

C. Stability of the Nucleus against Distortion

In this section, we shall examine the stability of the
nucleus against spin polarization and shape distortion.
In general we can expect that a repulsive symmetry
energy of the type discussed in Sec. IV will arise in
connection with polarization of the spin and thus that
the most stable configuration of the nucleus will be that
of greatest symmetry. This effect can be compensated
to some extent, however, by the action of the tensor
force which, coupling together the spin polarization
and shape distribution of the nucleus, can possibly lead
to a stable nonspherical configuration with spin polar-
ization. In this effect the tensor force is somewhat
analogous to the Coulomb force which polarizes the
isotopic spin of the system.

We proceed in a manner similar to the previous
section. We let %2y be the maximum momentum of
states with spin parallel to an axis (to be taken the axis
of distortion) n, and k_ the maximum for states with
antiparallel spin. We further let

N,—N_=S, N,+N_=4 (77)

or
=34(1+s), 34(1-9), (78)

where s is a parameter analogous to the isotopic spin

N_=
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polarization parameter e of the last section. To allow
for physical distortion of the nucleus, we introduce a
distortion parameter p by the relation:

R=R[14pP;(cosh)]. (79)

This distortion of shape is the simplest possible for the
nucleus, a distortion proportional to P;(cosf) corre-
sponding merely to a displacement of the surface. The
density of momentum states is, following the method
of Hill and Wheeler,?

N (k)dk= vk {
(2m)?

(cosﬂ)]—lj, (80)

where 0 is now the angle between k and the axis of
distortion n. The determination of the kinetic energy
gives to second order in p:

)
w2 )]
05
)

with ko defined as before in Eq. (48). Writing
ko= (1+5)kr, k=(1—5)iks, (82)

and expanding the kinetic energy about p and s equal
to zero, we find

AR,

1ke 5 1 ko
T= Tp[l—l-— —+—s?+——p ]

(83
4kr 9  20Fp )

In this result the second term is a surface correction,
the third arises from spin polarization, and the fourth
from shape distortion.

We consider next the potential energy. We define an
integral related to the potential energy by the equation:

k(sp)=(4m)~ 22

spins

dkldkz{ 1——[1+pP2(1):|

‘kz), (84)

where ¢ is the scattering amplitude. For the case of
tensor scattering which differs for the three substates of
spin 1, it is convenient to introduce projection operators
for the states in which the spin is parallel, perpendicular,
or antiparallel to the relative momentum vector

X { I—Z—:D-i—pf’z@)]_l}d(kl
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k=1%(k;—k,). Thus we write for the triplet states:

ai(k)=3%1:(R) (1+35S12) +3t0(1 —3512)
=3(2b+10)+ 5 (t1—10) Sz, (85)
where
S12=30'1‘k0'2'k/k2—0'1'0'2, (86)

and ¢; (or fp) is the amplitude for scattering with spin
parallel or antiparallel (or perpendicular) to k. The
matrix elements of S for the three triplet substates
are (relative to a direction of quantization at an angle
0 with the relative momentum vector &) :

(1]S12]1)=(—1]S12| —1)=3 cos®9—1,

(OIS12'O)=—2(3 cos20—1). (87)

By using these results and separating the integration
over momenta and summation over spins into inte-
grations over the regions of spin up (+) and spin
down (—), Eq. (84) can be written

k , =% 4r)—2 dk1 dkzN k)N (ks
Go=3am| [, awav v
X [2t1+2to+ (b1— to) P2(cosh) ]
+f aw V()N ()
X [2t1+t0+ (t1—“ to)Pz (COSG)]

+ | dky | dkoN (BN () 2tHt+9S

k— k4

—2(ti—to)Po(cosf) ;. (88)

In calculating this integral we shall keep only the first
nonvanishing terms in p and s?; in so doing we omit
terms in p? which are of the same magnitude as those
kept in the kinetic energy and which are also repulsive.
As we shall see, only a rough determination of the p?
terms is sufficient to show that the system is stable
against distortion so that we shall for simplicity make
use of only the quadratic kinetic effect (and thus
underestimate the set quadratic term in p). In expand-
ing the integral k(s,p), we find that as in the case of
the symmetry energy the terms linear in s vanish. The
result of this development is

k(s,p)=k(0,0)+s°G+s?pH (89)
where
£(0,0)= (41r)_2f dk f dkz(l——) (1——)
X (2t1+t0+3S), (90)
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62k(0 O) kgt
[ 2t1(kp,kF)+t0(kF;kF)
0s? 27

kr
— 03 (ko) +3k s f k2dk—[2t1(kp,k)

—|—£o(kp,k)—|—3S(kF,k)]l[, (o1)

3s29p 9

3%(0,0) 8 9142,
ok P f P2 (cosh)

4m)?

)] o

with in the last integral the vectors k; and k; equal to
kr in magnitude. The term £(0,0) is simply related to

XPz(cosﬁl)[tl(

" the potential energy without distortion, the repulsive

“spin symmetry” energy arises from G, and the magni-
tude of H determines the amount of distortion. In the
absence of tensor force, fi=1{o and no distortion will
occur.

Before evaluating these integrals let us examine the
general features of the change in kinetic and potential
energy with distortion. After combining Egs. (83) and
(89) to give the total energy, the result is (dropping the
tko/kr term in the kinetic energy):

ko
E= T0[1+“52+— —p ]
0 kr

o] o9

+Vo[1+s2
£(0,0)

£(0,0)

Minimizing the energy with respect to p, we find

5
E=T¢t+ V0+SZ[ =To+Vyo ]
9 £(0,0)

s*(VoH /£(0,0))°
1ke £ GVe 5 |
i (o)
Skr \k(0,0) 9
The symmetry correction terms to the kinetic and
potential energies are both repulsive and of the same
order of magnitude; also T and V), are nearly equal in

magnitude. Thus let us write very roughly (for nuclei
with 4~200 that tke/kr=1/25):

E— Eo~ | Vols{l‘s2I - £(0,0) ]

(04)

For the energy of the nucleus to be lower for large
distortions, -it is necessary for the term proportional
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to s* to dominate (with s% less than one). The ratio
H/k(0,0) is generally much less than unity since it
involves a ratio of essentially a surface term to a volume
term; this can be compensated for, however, by a
sufficiently large ratio of Vo/T. This cannot occur in
our problem because of the strong stabilization of the
nuclear density near a normal density for which the
kinetic and potential energies are of the same magni-
tude. Thus we can expect rather generally for saturating
forces that the presence of an admixture of tensor force
will not lead to polarization and distortion. Consistent
with these remarks, we content ourselves with approxi-
mate evaluation of these integrals since only a quali-
tative result is needed.

In %(0,0) and G we neglect the tensor force splitting
of the spin substates since this affects the result only
weakly. The integrals then may be evaluated following
the methods used in evaluating the symmetry energy.
In the integral for H we make the approximation of
replacing the difference #;—#, by its angular average
leaving the integration over the product of the Legendre
functions alone. We also get an approximate value for
the tensor force splitting by examining the results of
NS II which show that ({1—fo)kr is approximately
equal to 0.30. Again the precise value of this quantity
is not needed since we need only a very rough measure
of the energy. The results of these approximations are

V(s,0)—V(0,0)=11.5 Mev s2+0.25 Mev s%. (96)

Combining this with the kinetic energy and mini-
mizing with respect to the distortion parameter p,
we find

E—E¢=21.5 Mev 52(1—0.0029s?). (97)

Thus, for possible values of s* (less than unity), the
incréement in the tensor force energy due to the distor-
tion (the negative term in the bracket) is entirely
negligible relative to the dominant repulsive energy
associated with the spin polarization (the term in s?).
We therefore see that there is no tendency for the
nucleus to depart from its spherical shape or to polarize
its spin, the stability against such effects being marked.

V. SUMMARY OF RESULTS

In the preceding sections we have discussed some of
the consequences of a treatment of the saturation and
structure problems which is more general than the
considerations of earlier papers (NS I and NSII). In
considering the dispersive characteristics of the nuclear
medium we have been led to a problem of self-consis-
tency which we have formulated and approximately
solved in Sec. II. The problems encountered there are
mathematically difficult to solve and also depend on
some features of the theory which are less certain than
the central aspects of the formulation. In particular,
the dispersive characteristics of the medium for very
fast particles appear to be rather important; conse-
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TaBLE II. Summary of results for volume, surface, and sym-
metry energy. For comparison the results of Feenberg® are also
given. The energies are all in units of Mev. o

Radius Evolume Esurface Esymmetry
Calculated 1.40X 10718 12.8 114 25.2
Feenberg 1.46X10713 14.0 13.1 18.1

s See reference 10,

quently a detailed knowledge of very high-energy
scattering is necessary. Thus we can no longer claim
that we have fully solved the problem originally formu-
lated, although it is probable that the main features
have been handled on the whole correctly. The quanti-
tative results of this paper are, considering the approxi-
mations made, in very satisfactory and perhaps sur-
prising agreement with the empirical values for density,
binding- energy, surface energy, and symmetry energy
(see Table II). Since the theory has no free parameters
this success is to some extent persuasive of the correct-
ness of the main concepts involved.

The picture of the nucleus which we have developed
is one in which the nucleons move to a good approxi-
mation in the independent-particle states determined
by a uniform potential. The properties of the highly’
dispersive nuclear medium are deduced from the two-
body interactions and are a rapidly varying function of
the density of the nuclear matter. The equilibrium
density at the energy minimum occurs as the result of
a rather complex balance between the kinetic and
potential energy.

The properties of the nucleus are collective to a
remarkable extent as a result of the codetermination
by the nucleons of the potential in which they move.
A striking consequence of this is shown in the collective
character of the excitation energies of “single-particle”
excited states, this energy being shared almost equally
by the excited particle and by the remainder of the
nucleus. The unique features of the nuclear structure
are also expressed clearly in an equivalent formulation
of the problem in which the potential is assumed
constant but the nucleon mass reduced by a factor of
approximately two. Thus the “nucleons” can be con-
sidered to move in a conventional uniform and constant
potential but with a very different “effective mass.”

The results of this work can of course immediately
be extended to the shell model. A reasonable procedure
in this case would be to assume that the potential
energy appropriate to a shell-model state is for some
mean value of the momentum in the state. The results
of this paper could then be immediately applied to the
case of spherical quantization. A simpler procedure
would be to introduce the equivalent problem in which
the nuclear mass is reduced and the appropriate con-
stant potential used. In our case, for example, the mass
reduction is by a factor 0.54 and the equivalent po-
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tential has a depth of 67 Mev. One of the most obvious
consequences of this change is that the spacing of
shell-model energy states would be considerably in-
creased. Other consequences of this change and their
relevance to experiment will be discussed in a separate

paper.
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The framework for a unified theory of nuclear structure is described in which the wave functions for
different nuclear models are obtained by transformations on the actual nuclear wave function. This for-
mulation provides a basis for explaining the success of weak-coupling models of the nucleus and showing
that they are not in conflict with the assumption that nucleons have very strong mutual interactions. The
explanation lies in the fact that only in certain circumstances can the “particles” in a nuclear model be

interpreted as nucleons.

We investigate the properties which transformation operators must have to change the nuclear wave
function into a model wave function and consider how far these properties are satisfied in practice. Self-
consistent equations are set up for a model having a product wave function in the particle variables, and
it is shown that these equations can be solved in an approximation relevant to the problem of nuclear

saturation.

I. INTRODUCTION

N recent years a number of nuclear models have been
developed which successfully describe many aspects
of nuclear structure. The most striking successes have
been obtained by the Mayer-Jensen! shell model and
by Weisskopf’s? cloudy crystal-ball model, and it is
clear that for low energies there must be a close corre-
spondence between these models and the actual nucleus.
On the other hand, these models are based on an
assumption of weak interaction between the particles
they describe and this assumption appears to be in
direct contradiction with the strong nucleon interac-
tions which are observed in scattering experiments. We
shall show in this paper that this apparent contradiction
is not a real one but is explained essentially by the
fact that the “particles” in these nuclear models are
not nucleons—that is to say they cannot in all circum-
stances be interpreted as nucleons.

Our program is firstly to set up and explain a for-
malism in which the wave functions of various models
can be transformed by “model operators” into the real
nuclear wave function. Next we consider how actual
nuclear models fit into the framework of our theory,
and finally we consider the problem of using these
model operators in practical applications of the theory.
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Since this theory shows that the particles, in the shell
model, for example, are not nucleons, it is necessary to
show that shell-model results can still be explained
with this new interpretation. We do not attempt to
derive the explicit assumptions of the shell model,
although our formalism leads to self-consistent equa-
tions which if solved should lead to the well potential
of the model. Our primary concern is to show how the
following aspects of the shell model are consistent with
our method: the particles in the model obey the ex-
clusion principle as though they are neutrons and
protons, energy levels are predicted with sufficient
accuracy to indicate the order of filling single-particle
states, angular momentum and parity are accurately
predicted as though the model was the real nucleus, and
selection rules are well predicted. This is not by any
means a complete list but should serve to indicate the
problems of interpretation which have to be considered.
Also, we must consider the relation of our theory to
the failures of the model such as the failure to predict
transition rates with any accuracy.

Since our methods are quite general and apply to any
nuclear model, a complete presentation of this theory
would require detailed consideration of very many
aspects of the relation of nuclear models to experiment.
We have in this paper attempted to select sufficient of
these aspects of the theory to indicate the power of the
method, and hope in future papers to examine other
aspects. In particular, we have limited ourselves to
consideration of low-energy nuclear models although we
believe that the methods are also applicable to high-
energy problems. In addition to the shell model, we



