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Approximate Reduction of the Many-Body Problem for Strongly
Interacting Particles to a Problem of Self-Consistent Fields
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Indiana University, Bloomington, Indiana*

{Received November 22, 1954)

It is shown for systems of strongly interacting particles that in the limit of very many particles a trans-
formation exists leading to an alternative problem which can be solved by a self-consistent field method.
The transformed wave function describes "particles" moving in a collectively determined uniform potential;
the transformation relating the transformed and original wave functions determines the amount of inco-
herence and correlation in the original function. The method appears to be more useful for fermion systems
and is illustrated by applications to some aspects of nuclear structure.

I. INTRODUCTION

A WELL known approximation method for dealing
with particles with weak or long-range interac-

tions is the self-consistent 6eld method of Hartree' and
the related methods of Slater' and Fock.' It has in the
past, however, been difFicult or impossible to apply this
method to systems of particles which interact strongly
through short-range potentials. The origin of the dif-
6culty lies in the strong correlations which must exist
in the wave functions of the many-particle system, and
which are neglected in the Hartree method. The great
power of this method in its region of validity, however,
shows the advantage of being able to construct a trans-
formation which will bring the problem for strongly
interacting systems into a form where the Hartree
method can be applied. We shall now show that such a
transformation does exist if we consider systems of
many particles. The methods we use are based on a
generalization and re-interpretation of a transformation
introduced in another context by Francis and Watson. 4

Before proceeding to the explicit discussion of this
problem, we mention some qualitative features of
approximations to certain well-known physical phe-
nomena which suggest that the transformation which
we seek in fact may at least approximately exist. First,
it is well known from the study of nuclear structure
that it is possible to introduce a formal model which

predicts correctly a variety of details of the nuclear
structure. This "shell model"' is based on the assump-

tion that in some sense the effect of the many nuclear
particles on a specified one may be represented by a
collectively determined uniform potential. In this case
each particle moves in a medium, the properties of
which are determined by the states of the remaining
particles. Consequently, since the state of the particle

*Supported in part by a grant from the National Science
Foundation. The work was also done in part while the authors
were visiting associate physicists at Brookhaven National Labor-
atory.' D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 111 (1928).' J. C. Slater, Phys. Rev. 35, 210 (1930).' V. Fock, Z. Physik 61, 126 (1930).

4 N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).' M. G. Mayer, Phys. Rev. 74, 235 (1948); Haxel, Jensen, and
Suess, Phys. Rev. 75, 1766 (1949).

considered must be simply related to the states of the
others, a problem of self-consistency arises. This re-
quirement is usually only qualitatively stated and not
in fact satisfied in many formulations of the nuclear
problem. Applications of the ideas of this paper have,
however, been previously made in papers' by the authors
and are extended more generally in the following paper. '

Another variety of problems to which some features
of the Hartree method apply is provided by the well
known applications of the "optical" model. ' In these
cases the eftects of localized strong interactions are
replaced by an equivalent uniform potential; in most
problems the effects of this potential on the states of
the scattering system are ignored although if properly
taken into account a problem of self consistency would
arise.

Finally, a well-known application of a transformation
to an equivalent problem in which a uniform potential
acts on the particles is that used for a periodic lattice. '
In this case the modulating effect of the lattice structure
on the wave function can be transformed away (by
introducing a function which is a product of a modu-
lating function and a p1ane wave) and its e8ect replaced
by an equivalent potential. In this case, as in the optical
model, the lattice structure is assumed to be given and
the effects of interactions is in erst approximation ig-
nored. The inclusion of these eGects, however, would

again give rise to a self-consistency problem, the deter-
mination of the lattice structure in a field which is in
turn affected by the lattice structure.

With these qualitative remarks as an introduction,
we proceed to the development of the method. In Sec.
II we shall develop the formal properties of the trans-
formation; in Sec. III we examine in detail the condi-
tions under which the transformation is exact; in Sec.
IU we discuss the characteristics of the transformation

'Brueckner, Levinson, and Mahmond, Phys. Rev. 95, 219
(1954); K. A. Brueckner, Phys. Rev. 96, 908 (1954). These
papers will be referred to henceforth as NS I and NS II, respec-
tively.

7 K. A. Brueckner, following paper )Phys. Rev. 97, 1353 (1955)j.
This paper will be referred to henceforth as NS III.

s M. Lax, Revs. Modern Phys. 23, 287 (1951);L. Foldy, Phys
Rev. 67, 107 (1945).

s F. Bloch, Z. Physik 52, 555 (1928).
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to the coherent problem; in Sec. V we show that the
solution may be formulated as a self-consistent problem;
in Sec. VI we show to what extent this problem has the
characteristics of a variational problem; in Sec. VII
we discuss the physical interpretation of the trans-
formed wave function and its relation to the physical
wave function; 6nally in Sec. VIII we summarize our
results and make some concluding remarks.

II. FORMALISM

In this section we shall examine in detail the nature
of a transformation introduced by Francis and Watson4
in their discussions of the many-body problem. We
follow their notation and in much of this section we
shall simply expand and comment on their derivation.
In Appendix A we shall also give this derivation in an
alternative form using the methods of second quan-
tization. The necessary notation used there is less
compact than that which we will use here; the more
explicit representation of the operators, however, may
give additional insight into the method.

The problem which we wish to solve is that of finding
the eigenfunctions of the Hamiltonian

&=IIo+Q &,

where Hp is the sum of the kinetic energy operators and
e is the potential energy of interaction for the 0,th pair.
The sum over n is over all pairs, i.e.,

To exhibit Vg in somewhat more compact form, we
can combine Eqs. (3) and (4) for t„and Vc into one
equation by using first the result which follows from
Eq. (1):

t«= &«+&« &a)8—Hp —Vg —v

and inserting this into the definining equation for Ug.
The result is

F
Vc=Z ec +I v

E IIo —Vc——rt ~ c
(6)

with the subscript C meaning diagonal with respect to
the states fc. This alternative defining equation for Vc
is a nonlinear integral equation; we shall return to its
implications and to a self-consistent method for solving
it later. At present we shall proceed to evaluate the
properties of the transformation operator which leads
us to the potential.

We introduce the functionsf

1
F=1+—Q I F,

(7)
1

F =1+—Q IpFp,
e a&P

where I =t —tq.

We shall now show that we can replace the problem of
solving for the eigenfunctions of II by an alternative
simpler problem.

Following Watson, we introduce the functions t and
Vz defined in the following way:

and

t =s +s te)
E—Hp —Vc

Vc=g. tc.,

(3)

(4)

where t~ is that part of the operator t which is diagonal
with respect to the eigenstates of the operator IIc= Vc
+IIo, i.e., the states defined by the equation

The functions F and F thus depend only on the non-
diagonal matrix elements of t except through the ap-
pearance of Vg in the energy denominators e—=E—H p

—V,. We finally construct a function

g. v.F. (10)

We wish to see to what extent the function q is an
eigenfunction of the original Hamiltonian. In the fol-
lowing we use the powerful symbolic methods of
the operator algebra developed by I.ippmann and
Schwinger, " Chew and Goldberger, " and particularly
by Watson. "

To carry out the desired proof, we consider first the
product

&cskc= (IIo+ Vc)gc=Egc. (4') By using the defining equation for F, this can be written

In Eq. (3) for t, F(E IIo Vc) ' means that —we t—ake
the principal value de6nition of the singularity. This is
equivalent to omitting matrix elements to the ground
state. The operator t is closely related to the scattering
operator giving the scattering from the potential v, the
only difference being the appearance of Ug in the energy
denominator and the definition of the singularity. "The
diagonal part of t is thus related to the forward scat-
tering from the potential v .

io B. Lippmann and J. Schwinger, Phys. Rev, 79, 669 (1950).

1 q 1
1+—P IpFp I=+ o +Q v IF—«( p p ) «p«

1
+2 E o-—IpFp (11)

t Pote added in proof The specification of p.r—incipal value for
the singularity in e 1 will be omitted here and in the following
but must be included in an explicit evaluation."G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952)."K. M. Watson, Phys. Rev. 89, 575 (1955).
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1 1
v I =—v (t —tc—) =t —v —v —tc, .

e e e
(12)

The second term may be broken into two parts, i.e., we
replace I by t —tc I Eq. (8)j.We also make use of the
relation between t and v„stated in Eq (3). We then
find

value explicitly)

(E H—o V—c)F4c eI
——1+—P I.F

p - )
1

=PP Q—I,F Pc,

We also use the identity

Z v-=Zv. l F-—E IPF-P
I

a n 0 pgap )
1

=Q v~F» Qv~—IpFp. —
cx OQP

(13)

which follows from Eqs. (4') and (7). Thus we obts, jn
the final result:

Q v Fgc (E———Hs —Uc)FPc+Q tcpFPc

+ 1—(E—Ho —Vc)P- Q IPFpyc

Thus we can write Eq. (11), using Eq. (12), as
( 1 1

tcp Ip+vp t—cp IFA—' c
p e )P v.+PI t. v. v—. tc.—IF--+2 2 v=IpFp

n a 0 p j «p
By using the defining equation for Vc I Eq. (4)j, this

v F (14) can also be written

1
+ (E—Hs —Vc)P 1P IPF—pgc. (19)P tpF p P(IP+tcp——)Fp

P P

=P IPFP+Q tcp+P tcp(Fp 1), —
P P P

and then Kq. (7) for Fp in the last term, to give

e P

This result is in no sense an approximation; it follows
as an identity from the definitions of Kqs. (3), (4),
(7), and (9).

The last term of Eq. (19) is zero everywhere except on

16
the energy shell since (E H s Vc) 'P(E——H, —'—Vc)

—i-
is equal to one everywhere except at E=H&+ Vc where
P(E—Ho —Vc) ' is equal to zero. f. The first two terms

(14), on the right side of Eq. (20) will be discussed in detail
in the next section and shown to vanish as 1/S com-
pared with the energy of the system. The only remain-
ing correction to the energy which prevents FP; from
being everywhere an exact solution in the limit E—&~
is the diagonal matrix element

2 tpFP=E IPFP+2 tcp+Z Z tcp IF-. -
P P P ~QP

Combining this result with Eqs. (9), (10), and
we then 6nd

1
Q v„ip= Q IPFP+P tcp+ Q tcp IF—

n P P ~&P

1-P V,-t„F, P,. (17)»=(4., L1 (E H. V.)P(E H—o V—.)-q— — —
P e

XP IPFpyc& = (tt'c, P IpFpyc),

The first, third, and last terms of this combine by Eq. (
(13) to give zero. We also transform the second term (E H' ~ v )F&c=&

I
tcp Ip+vp tcp&IF''c

by making use of first Eq. (8),

The second and third terms here can be combined by
using Eq. (7): which gives in first nonvanishing order (inserting pair

indices explicitly)

Q tcp+Q Q tcp IF-
P O,NP

1 1
I 4c, I;, I ~ Is~c I. —

'~i~s E p p ) (2o)

The shift in the energy for a fermion system in a highly
degenerate state which results from this correction has
been evaluated in Ã5 I and shown to give a very small=2 tcpF 2 tcp IPFp (18)—-

P e t The authors are indebted to R. J. Eden and N. C. Francis
and to F. E. Low and J. Bardeen who independently pointed out
an error in a previous treatment of these terms.For the first term of Kq. (1/) we use (inserting principal

1 q 1
=PgtcpI 1+ I.F.

I
—Pt„I,F, --

p E e ) p e
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effect. Thus we shall take the provisional view that the
net effect of these high order correlation terms is small
and examine the interpretation of the transformation
and wave function neglecting the effects of these correc-
tions. This assumption corresponds to the treatment
used in the nuclear problems considered in XS I, II,
and III, and allows us to exhibit more easily the struc-
ture and physical content of the method.

We thus can consider Hi as defined by Eq. (21) to be
a perturbing term in the Hamiltonian and determine
its first order effect on the energy by evaluating the
diagonal matrix elements of the perturbing energy.

We first bring the correction terms to more symmetric
form by using the equations relating t, e, tz, and I. We
have an expansion for v„ in terms of t„which follows
from Eq. (3):

1
&» = t» —t»—t»+ t»—t»—t»—

e e e
(22)

Upon using this result, the two terms on the right side
of Eq. (21) become:

1 1 1 1
tc I+tc tc +-I tc —t„t tc—+- -—

e e e e e
(23)

where we keep at present only the leading terms in the
expansion. To evaluate the energy perturbation we also
expand the F function in a power series in the incoherent
scattering operator I, i.e., we expand Eq. (7) for F
and P to give

1 1 1
F= 1+—Q I + [Q Q I„Ip+— —

e ~ e ~&P e
(24)

F-=1+- 2 Ip+-2 Z Ip-Iv+
e ~&P e «P&v e

Using these expansions, we find to third order:

AE3 (Fgc,HiFPc)——

1( 1 1 1
+g Ip l tc» I +tc te +—I» tc»—l-

e e( e e e

( 1 1 1 i1+P l tc;I.+to;tc.+I;te.
l

—Ip 4a l. (23)
pw» 4 e e e ) e )

III. "1/N" CORRECTION TERMS

Dropping the correlation terms, we rewrite Eq. (19)
in the form

( 1
(E H)F~—e=+I top Ip+vp —t-,p IFpgc=HiFPc. (21)

e e )

In this result most of the terms give no contribution;
terms in which the combination e 'tc fc) or (Po,te e '
appears vanish since tz„ is diagonal in energy and the
principal value treatment of the singularity in 1/e is
equivalent to omitting the energy conserving part of
1/e. Further we get contributions from terms involving
pairs of operators I only if these operators act twice
in the same pair of particles, the remaining combina-
tions having no diagonal matrix elements. Using these
two results Eq. (25) for the energy shift reduces to:

(
EES——Ql Pc, I te I— —

e e
(26)

AE3 28 'f, ——- (29)

and is consequently independent of X. This is to be
compared with the total energy E of the system which
is proportional to E. We therefore see that the cor-
rection term t1,E3 is indeed of order 1/X compared with
the total energy.

It is important to note that this result depends in
detail on the separation of t into tq and I, since it is
the absence of diagonal elements in I which suppresses
the magnitude of the energy shift. For any other choice
of I„, the second order terms in the perturbing energy
would not vanish and corrections of order E rather
than of order unity would appear.

It is of interest to exhibit explicitly the magnitude of
these "1/X" terms. We have done this in Appendix 8
in the case which is of particular interest to us, i.e., the
nuclear structure problem. Using a simplified model we
have found that the energy shift per particle resulting
from the perturbing terms is approximately 10 Mev/E.
This is quite negligible (for moderate values of 1V)

compared with the unperturbed energy per particles of
about —14 Mev.

This term is easily interpreted; it is the result of a
scattering of the pair of particles out of the ground
state fc, their propagation and coherent scattering, and
the final rescattering of the pair to their original state.

We can immediately draw a conclusion about the
dependence of this term on the total number of par-
ticles S. We note that the operators tg and I each
contain a factor of u ' (v the total volume) from the
normalization of the wave functions. Further, the sum
over intermediate momentum states contains a factor
of m, since Pq~[v/(2~)') J'de. The sum over all pairs
of particles gives a factor E(X 1)/2. The—net result
is that

DE3 ——-', X(1V—1)v 'f, (27)

where f is a function independent of Ã. Since the total
volume itself depends on E as:

(28)

where 6 is the volume per particle, the energy shift is
(for X))1):
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It is easy to show by inspection of the next terms in
the expansion of the perturbing energy that their
matrix elements are also independent of S or depend
on powers of 1/X; they therefore also vanish compared
with the unperturbed energy as X~~. The only re-
maining question concerns the convergence of the ex-
pansion in Lz and J which we have used. It is not easy
to estimate the general term in this series which
contains multiple combinations of incoherent and
coherent scatterings. We have, however, examined the
next term of fourth order, which can be shown to be:111111
EE4——

~
Pc, Q Q g I tc Ip —I„+—I —tcp Ip —I~- —

awowv e e e e e e

1 1 1 1 1
+I Ip tcpI—~+—I -I

p tc~ I—„—-
e e e e e e

1 1 1
+P P I. t,cptce I— f-c ~-. (30)

e e e )
Part of the last term here arises from the second order
perturbation of H~ [see Eq. (21)$; itis ea. sily shown
using the arguments used to evaluate the X dependence
of ZEo to be of order 1/A and hence to be negligible.
We consider the remaining terms in more detail. They
are closely related to the energy perturbation evaluated
in the nuclear case in NS I' except for the presence of
a term tc /e. This we approximate rather roughly as
being of the order 1/1V. The remaining sum over a, P, y
is identical with the expression evaluated in NS I
which was found to give very approximately 0.15 Mev
per particle. Thus we have, in order of magnitude,

AE4= (1/Ã) (0.15 MevX1V) =0.15 Mev. (31)

This is much smaller than the lowest order perturba-
tion, ZE3=10 Mev; we therefore have some indication
of a very rapid convergence of the expansion of Eq.
(23) for the perturbing energy.

IV. INTERPRETATION OF THE TRANSFORMATION
FUNCTION F

Restating the conclusion of the last section; we find
(to the approximation discussed at the end of Sec.
II) that

(32)

where f is an eigenfunction of H belonging to the energy
E and fc is an eigenfunction of Hc belonging to the
same eigenvalue. We can easily derive an equivalent
formal statement of this result. Let us introduce P ',
the inverse of P. Then we have

Since Fgc is the wave function P (in the limit as
X~~), this can be written as

Ef= (FHcF ')f (35)

H =P 'HP (37)

The function P therefore acts as a transformation on
the wave function; the solution of the original problem
for the eigenvalue is equivalent to the solution of the
transformed problem with the transformed Hamiltonian
Hgo

A difficulty not so far stated but implicit in these
results arises from the specification of the boundary
values in the transformed problem. We are interested
in a bound system and it would perhaps seem sufhcient
to specify the vanishing of the wave functions on some
boundary, thus approximating in the solution for Bt.-
to the appearance of a surface in the actual solution for
P. This cannot, however, be generally correct since the
function P depends nonlocally on the coordinates of
the particles and so can introduce a difference in the
boundary conditions for f and Pc. It is thus important
to show that the separation t =tc +I has been made
in such a way as to minimize this boundary condition
effect. That this is so is rather obvious in the nuclear
problem in which we consider a highly degenerate
Fermi gas. As a result of the action of the exclusion
principle the incoherent operators l have matrix
elements from the ground state only to excited states
in which the excited particles occupy previously empty
states. The associated large momentum transfers and
large excitation energies can both be expected to
reduce very considerably the eRects of incoherence and
thus to make P approximately an identity operator for
states below the Fermi momentum.

Thus we see that in many ways the separation which
we have made is an optimum one; not only is the trans-
formed problem in Ht.- much more easily soluble than
the original problem but also the effects of P in the
fermion case are perhaps as small as the simpler choices
of J„will allow. We note that these remarks do not
hold for a system of bosons where the exclusion prin-
ciple cannot act to simplify the effects of P.

V. SELF-CONSISTENT APPROXIMATION METHOD

We restate the result of the preceding sections, which
is that we can determine the energy eigenvalues by
solution of the eigenvalue problem,

Thus we are led to identify FHcF ' with the Hamil-
tonian, i.e.,

(36)
or

(33) Egc= (Ho+&c)4c, (38)
Multiplying by P, this becomes

FEgc=EF&c=FHcgc=FHcF 'Fgc. (34)
with Vc defined by Eqs. (3) and (4). Let us examine
the definition more closely; first, we note that the
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definition'3 of t,
t =i&+i& (F. II——Vc) 't, (39)

involves Vq. Further, the definition of Vg involves
evaluation of the diagonal matrix elements of t with
respect to the unknown states fc.Thus these definitions
are obviously not fully specified, and a problem arises
of choosing the states fc and the potential Vc in such
a way that the set of coupled equations for Vc and fc
are satisfied. A suitable self-consistent method is the
following:

(1) Assume a set of states Itc"& which are product
functions of the variables of Ã particles, and a potential
Vg") diagonal with respect to these states.

(2) Use Eq. (3) to calculate t &s& and from this com-

pute tt,- "' using the assumed definition of the states
lt, c(s)

(3) Construct Vc&'& from the computed tc i & and
finally determine the eigenstates pc&'&.

(4) Compare the eigenstates

etc�

"& with pc&'& and the
potential Vt.-&') with Vt.-&').

(5) Adjust the choices of states and Vc and recycle
through steps 1—4.

This procedure is troubled by the same questions of
convergency and stability that occur in the Hartree
method. In the case of a semi-infinite medium, however,
the procedure is greatly simplified since the states Pc
are exactly known, namely, properly symmetrized
product plane wave states. The potential V~ diagonal
with respect to these states is simply diagonal in
momentum space. An approximate solution to the self-

consistency problem has been obtained for the nuclear
structure case in NS III' and is discussed in detail there.

VI. VARIATIONAL ASPECTS OF THE PROBLEM

With the choice of the transformation function F
which we have discussed in Secs. II, III, and IV, we see
that etc, describing as it does plane wave motion, can
be written as a product of plane wave functions. The
potential energy of the system can then be evaluated

by carrying out the sum over the forward scattering
amplitudes. This, however, is in some ways not closely
related to the physical problem since the actual solution

f for a bound system predicts a closed surface which
cannot. be given by the transformed Hamiltonian Hq.
To approximate to the physical state, we thus are
forced to specify boundary conditions for fc which
represent the eRects of the surface. This can be done by
requiring that the transformed wave function satisfy
periodic boundary conditions or vanish on the surfaces
of a normalization volume. For the nuclear case dis-
cussed in detail elsewhere, we have specified that the
wave function vanish on the surface of a sphere.

"See also Appendix A for the modi6cation of this operator for
the case of many fermions. The change discussed there is equiva-
lent to the omission of certain intermediate states in the sum-
mation implied in Eq. (39).

(Fyc»Fgc) (Pc,F&HFPc)
~(p) =

(F4c,F4c) 8 c,F'F4c)

(4'c,F'tF&cgc) (Pc»chic)=ac=, (41)
(4'c,F'Wc) (4 c 4'c)

again neglecting the high order correlation terms and
the correction terms which vanish for large S. The
function F contains all the correlations in the system;
the etc is an uncorrelated product of plane wave func-
tions. This is very similar to the form introduced

by Bloch' and also to that used by Drell and Huang"
in the nuclear problem; the particular form which
we have chosen, however, allows us to make the
transformation of Eq. (41) so that we are able to
replace the problem of determining lt by the simpler
problem of determining Pc. We observe one very simple
feature of these results, which is that we do not need
an explicit form for F [other than the formal definition
of Eq. (7)j to evalua, te the energy Ec(p), since we have
an explicit form II~ for the transformed Hamiltonian
F 'HF.

VII. RELATION BETWEEN Qa AND Q

It is important to remark that the relation between
the actual wave function it and the "coherent" Pc is not
simple since it involves the operator F which is known

only formally through the defining equations [Eq. (7)].
We can, however, see several obvious features of lt if
we examine the lowest term in the incoherent scattering
operators I in the expansion for F, which is

1
4=FPc=gc+ Zlgc+. . . - (42)

The leading term shows that the actual wave function
contains an admixture of single-particle states, the pre-
dominance of this state depending on the matrix ele-

"S.D. Drell and Kerson Huang, Phys. Rev. 91, 1527 (1953).

Further, since the energy of the system is a minimum
when the physical system takes on its stable density,
we regard the density a parameter to be varied until
the energy is a minimum. In this way we assume that
we approximate closely to the physical situation; one
can also describe this procedure as a variational
problem of standard form in which the trial function is
p=FPc and the density p is a variational parameter.

Let us consider the variational aspects of the problem
more fully: We let its be the true eigenfunction of the
system with eigenvalue K Introducing our approximate
p=Ffc with a variational parameter p (the density)
contained in the specification of fc, we have

&s ~ (v'»e)l (w e) =F(p) (4o)

Making use of the transformation properties of F, this
can be written as
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Nike&

Coherent state

scription of the nucleus, the perturbing effects on the
surface states of two-body interactions being rather
important. We see that the independent-particle model
may give a good representation of certain properties of
the nucleus (such as the ordering of states and mean
energy, for example) but be quite inadequate for other
properties dealing with finer details of the structure.

VIII. SUMMARY OF RESULTS AND CONCLUSIONS

Actual state

FIG. 1. Departure of lowest energy state P for a highly degenerate
fermion gas from the state Pg.

ments of I for excitations of the nucleus. The effect of
the term in the incoherent scattering operator I is to
mix into the wave function excited states in which two
particles at a time have been excited; if we fix our
attention on a state P in which a given pair have been
excited, then we find contributions to this state by
evaluating the matrix elements of I between the desired
state and all unexcited states. In a fermion gas we expect
the effect to be largest on states just below the Fermi
momentum since the matrix elements of I are then
the largest. The energy denominator also varies rapidly
with particle excitation, particularly because of the
modifMd mass eGect~ which very considerably increases
the kinetic energies. This is equivalent to including the
effect of the rapid decrease of the potential (see NS II
and III) felt by a particle as it goes into excited states.
The higher terms in the expansion of Ii also have an
obvious interpretation; they are associated with further
incoherent scatterings which could lead to additional
excitations of the system or to repopulation of the low-

lying empty states.
Typically, we~might expect for a degenerate Fermi

gas an eAect of the sort shown in Fig. i, the actual state
P approximating fairly well to the state fc for momenta
below the Fermi momentum, but showing an admixture
of higher-momentum states. Although the effect of
these on, for 'example, the mean energy of the system
is in our formulation zero, we would expect that under
certain circumstances the appearance of very high
Fourier components in the wave function would

strongly manifest itself. This would be, for example, in
high-energy processes depending critically on the high-
momentum components, where the almost fully popu-
lated low-lying momentum states would have little
effect and consequently a small admixture of high-
momentum states would have great importance.

These results are not at all unexpected in the case of
nuclear structure, since it is well known that the shell

model is only a first approximation to a correct de-

In this paper we have examined the nature of the
method which was introduced by Watson and Francis'
in the study of the optical model and which we have
generalized to apply to strongly correlated many-
particle systems. This method is in essence the replace-
ment of the original problem by an alternative simpler
problem which arises from the original one by the trans-
formation discussed in the preceding sections. This
transformation is, as we have seen, exact as the number
of particles become very large if the correlation terms
discussed earlier are neglected. The transformed "co-
herent" problem is relatively easy to solve except for an
uncertainty in the proper boundary conditions; its
solution has been discussed in NS I, NS II, and XS III.
The treatment of the boundary is difficult in the trans-
formed problem; we have discussed the replacement of
the physical surface by a boundary condition on the
wave functions which lead to a variational problem for
the energy. The "independent particle" wave function
fc, which arises naturally in the transformed problem,
cannot be directly interpreted as the physical wave
function since the latter is obtained from the former by
a transformation which introduces correlations into the
wave function. As a consequence, in the case of a
nucleus the system departs from a Fermi gas in that, for
example, higher-momentum components are present in
the wave function. Reasons are discussed, however,
which show that in considerations of certain general
features of the nucleus, the actual wave function may
be identified with the independent-particle function fa.
We expect, however, that the departures of the struc-
ture from a true independent-particle structure cannot
be neglected for high-energy phenomena.

A dominant feature of the method we have described
is that it has at present been shown to give only the
correct lowest energy eigenvalue with good accuracy,
this being the result of our obtaining an explicit (and
simple) representation for the transformed Hamiltonian
Bg. It is possible, however, that other quantum numbers
of the transformed problem (such as parity and angular
momentum) may also be simply related to the quantum
numbers of the physical system, i.e., that it may be able
to exhibit simply the transformed angular momentum
and parity operators. These and similar questions are
to be discussed in detail, together with the properties of
more general transformations than we have considered,
by Eden and Francis. '5

"R.J. Eden and N. C. Francis, this issue LPhys. Rev. 97, 1366
(1955)j.
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where the qi and qi are annihilation and creation
operators with commutation laws (for a system of
fermions):

Ln', n *]+=~'; (A2)

The change for boson systems is of course made by
replacing the anticommutator by the commutator.

We seek a transformation which will transform II
into an operator with only diagonal matrix elements. In
analogy with Sec. II, we introduce the scattering
operator:

tij, kl &ij,kl~~ &ij, mn'/man 'gn 'gm tmn, kl.
mn 8

(A3)

We also as before break this into a diagonal and non-
diagonal part:

~ij, kl ~ij, sjcskcjl+~ijjAj~ij+~ij, kls

and use this to define the diagonal operator:

e =E QT,q;*q; —Vc, —

(A4)

(As)

where E is the energy eigenvalue and

APPENDIX A

Diagonalization of the Hamiltonian in
Second-Quantized Form

We introduce a set of basis states p; and write the
Hamiltonian as a second-quantized operator on the
occupation numbers of these states, i.e., we have (with
T; the kinetic energy in the ith state):

H= Q T,q,*g;+2 Q jj;;,kiri, *qj*gjgk Hp——+V, (A1)
ijkl

this can easily be brought to the form

~ijkp, h 'jjj 'g jjjl/kj
ijkl

Q &'j kl sVk 'gl '(~kj, kl'gPlk+4l, EkgHIl)pkj. (A9)
ijkl

The last term here is of the type that has been shown
to vanish for large numbers and will be dropped. The
remaining term breaks into two parts:

2K(~sj, ijgi gj gPli+4jjigi ,Vj VPlj)~ij

+', P-I;;,karl;*q;*qmkFkj. (A10)
ijkl

To eliminate the second of these, we define a state
function +p such that 8=E—Hp —Vg operating on it
vanishes. Using this and the defining equation for Ii

[Eq. (A7)], we finally find

V~p ——(E—Hp) Pkp,

if we again drop a term which vanishes for a large
number of particles. The state function Fkp thus satis-
fies the original eigenvalue equation for the energy if
the auxuliary equation,

(Hp+Vc)@p=~p, (A12)

is satisfied. This equation for %p replaces the original
eigenvalue problem for K The evaluation of the eigen-
value is now relatively easy if we know the operators
ti;, kl, since for the lowest eigenvalue of E we choose a
+p in which the states are all occupied, i.e., a degenerate
gas.

Returning to the equation for tij, kl, a typical diagonal
term is

VC 2 Z (~sj, ij1s1j lj*ls*+~sjjs1s1j1s*aj,*) (A6) ~ij, ij jjsjsj+&ijm, n'Qm'gn , gn 'Qm ~mn, ij
e

(A13)

1+ p ~ijkl'rji '9j 'gllkFk, ls

ijkl

1
Pkj 1+ P P Iij, mn'gi 'gj 'gnj7mpmn

g ijgkl mn

(A7)

We next proceed to the proof of the desired result.
The development follows rather closely the more
general technique used in Sec. II and consequently we
shall somewhat condense our arguments. First we
consider the sum:

pij, kPfi*gj*jIPlkF = V~.
i,j7cl

(Ag)

By using the definitions of the various operators and
proceeding in a way very similar to that used in Sec. II,

Finally, using the definition of I;;,k& given in Eq. (A4),
we construct the operators F and Fkl by using the
equations:

When we operate on the initial state Np, the second
term vanishes unless the particles ns and e which are
created occupy previously empty states. In this case,
the matrix element of p p„p„*p * is simply unity. The
energy denominator th'en contains the difference
between the energy E of the initial state and the energy
of the excited state with the two particles m and e
excited. Writing the energies in terms of Hp and V~,
this diGerence may be written

AE= T,+T; T T„+Vc(i)— —
+Vc(j)—Vc(jjj)—Vc(~), (A14)

where
Vc(&) =Z(&is, is ~is, si)&

ski

again dropping terms which vanish for large numbers.
Thus the energy denominator depends explicitly only
on the coordinates of the initial and excited pairs of
particles, although it depends implicitly on the states
of the rest of the particles through the sum over thy
filled states of the rest of the system,
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original state. We shall try to obtain only a qualitative
result since, as we have shown, the effect on the energy
is very small. Consequently we shall replace the exact
expression by a simpler one in which we treat the pair
as a single particle with mass equal to the reduced mass
of the pair. We also consider the relative momentum as
the momentum of a physical particle and require that
it be above the Fermi momentum in the excited states.
With these approximations we can write for a typical" article" i.e. air:

We also note the iterated form of F:

F= 1+—Q I,; klq, *q,*2jlrik

e ij,kl

1
+ P I jj, kl 'gi gj 'gl'jlk P g Inane, rs

e ij,kL mnQk l rs

Xq~*g *2j82j,+ . (A16)

X —(k'( I
~
k), (&2)

k' —k"1 1

E '-jj e e where we have approximated the eGect of Vg in the
denominator 1/e by a mass modification as discussed
in NS III. For simplicity we choose for (k'~ j~k) the
Born approximation scattering from a Yukawa well
with Serber exchange mixture, i.e., we let

In the second quantization notation, this is

(+OPl,*gj*2tl2jk2jk*itl*2jPlkgk *211~*2jn2Im+0)
ijkl k'l'mn

p (, p )
This has no diagonal elements in the state 0'p until the
fourth term of order 12 is taken into account. This result
has been already used in NS I. k' —k"

We also consider in this notation a typical 1/X term
discussed in Sec. III and also in Appendix 3: M*

X&jj,kl (4l, ki —41, lk) ~klv, ~~.
e e

In evaluating the matrix element of the annihilation
and creation operators, the restriction on the sum over
operators associated with the nondiagonal operators l
shows that the only diagonal terms can come from pair-
ing the annihilation and creation operators (qlgk2jk *ltl *)
to give a diagonal contribution, i.e., the particles created
by pk *p& * must be annihilated by the pair p&pk. Thus
the summation over 0' and /' is restricted to the diag-
onal terms; a similar restriction occurs in the summation
over i, j, m, m. A typical resulting term is

e
—Pr

I'(r) = I'o 2 (1+&.),
pf

and consequently

2m. Vp
(k'

~

j
( k) = [(jk2+ (k—k')') —'y (jk2+ (k+ k')2) —1]

(B4)

where n is the normalization volume for the wave func-
tions. Using this and going over from the summation
over k' to an integral by the relation

we find

1 1
rl I'; r tirIi';}, ,

ijk~ 4

dk',
(22r)2 &

together with a variety of exchange terms. This term (22rI ol
has the structure of the terms discussed in Sec. III and
evaluated in Appendix 8; thus the arguments showing
the vanishing of these terms for large Ã go through as
before.

dk'[(jk2+ (k—k')') —'

+ (~2+ (k+kI)2)—1]2[~—2+ (~2+4k~2) —1)

X (k' —k")-2. (S6)
APPENDIX B

Approximate Evaluation of AE3
To exhibit the A dependence of this result, we make
the rather crude approximation of replacing k by its
average value for a Fermi gas, i.e., kk„= (oo)*kk and
multiply by the number of pairs A'/2 (for A))1). Also,
writing ll= (4/3)2rroOA, we find

We wish to evaluate the first nonvanishing perturba-
tion in the energy:

1 1
Pc,l. ~c;S.yc l.

- E e e ) 1f lI 'o(4
f(k')

2E jk) 43 ) (a7)

We consider as an explicit case the nuclear system. As
discussed in Sec. III this term represents the incoherent with f(kk) independent of A. This integral has been
scattering of a pair of particles to excited states, their evaluated and gives a value for DES of about 10 Mev
coherent scattering, and final rescattering to the and thus of 10 Mev/A per particle.


