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32 mb/Q or roughly a quarter of the total yield is due
to post-resonance photons. The reason for the pre-
dominance of resonance reactions with 320-Mev
x-rays is due not only to the large size of the cross
section at those energies, but also to the shape of the
bremsstrahlung spectrum.

Jones and Terwilliger'r have recently determined
neutron yields from copper irradiated by 320-Mev
x-rays. Neutron yields can also be computed from our
data by multiplying the mb/Q for each separate yield
by the corresponding neutron multiplicity and adding
the results. In carrying out this sum, the emission of
composite particles (cc particles, deuterons) was ignored.
The resulting overestimate of the total neutron emission
is, however, not very serious in view of the known
relatively small yield of these heavier particles, the total
neutron production yield comes out to be 180 mb/Q of
which 94 mb/Q or roughly half is due to post resonance
photons. Both these results are quite consistent with
the more direct and precise measurements of Jones and
Terwilliger.

For purposes of comparison, several other types of
yields have been recorded in Table III. Some of these
yields are due to fairly direct measurements but, some
are based on interpolations of data obtained for
elements other than copper. For example, one of the
listed meson production yields is based on the ~+

production yield in carbon, " the A: dependence of this
yield, " on the observed ratio of m to ~+ production"
and on estimates of the x' production rate. '4 A final
estimate based on so many components is at best
rather rough, but it was thought to be useful never-
theless to record a number of different types of yields
in one place. If one believes all of the numbers in the
table there are some disconcerting things about some
of their relative sizes. For example, it is possible to
estimate the yield for the production and recapture
of mesons in a nucleus from the yield of those mesons
that manage to get out, if one is willing to interpret
the observed 3: dependence of the meson-production
cross sections in terms of a very short mean free path
for mesons in nuclear matter. But such an estimate,
together with a reasonable estimate for neutron
multiplicity in meson-recapture events, " leads to an
expected neutron production rate a few times larger
than what is actually observed. In view of all the
uncertainties involved in the determination in some
of the yields quoted, it is hard to know how seriously
to regard these discrepancies.
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The effects of the Pauli principle on the analysis of the scattering of fast neutrons and protons by atomic
nuclei are considered. This modifies the usual multiple scattering treatment of such problems in three ways;
(1) It is necessary to agree on a convention for deciding which are "scattered" and which are "nuclear"
nucleons. (2) The two-body scatterings obtained from the impulse approximation must be properly anti-
symmetrized. (3) Exchange corrections occur because of the non-orthogonality of the plane wave states for
scattered particles and the states for bound particles. The latter corrections seem to be negligible for energies
sufficiently high that the multiple-scattering approach is expected to be useful anyway. The present analysis
is also applicable to other types of multiple-scattering problems.

I. INTRODUCTION

'N two previous publications'' the theory of the
~ ~ scattering of fast particles by atomic nuclei was
formulated as a multiple-scattering process. In the
present work we wish to extend this to the scattering of
fast neutrons and protons by atomic nuclei. ' At first

* Supported by grants from the National Science Foundation
and from the Wisconsin Alumni Research Foundation.

t On leave from Kobe University, Kobe, Japan.
'K. M. Watson, Phys. Rev. 39, 575 (1953). This paper will

henceforth be referred to as I.
s N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).

This paper will henceforth be referred to as II.' G. Takeda and K. Watson, Phys. Rev. 94, 1087 (1954), have
given an application of the conclusions in the present paper.

sight this might appear dificult, since the concept of a
single particle passing through a medium and being
scattered by particles of the medium does not lend
itself conveniently to a description in which all the
particles are treated as indistinguishable, as demanded
by the Pauli principle. 4 Nevertheless, we shall be able
to conclude that under such conditions that the mul-
tiple-scattering formulation is expected to be useful
anyway, the Pauli principle adds no significant com-
plication.

4 We use the generalized Pauli principle by which neutrons and
protons are two states of the mgcleoe. The wave functions de-
scribing such systems are to be antisymmetrized with respect to
all nucleons.
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To see this, let us 6rst suppose that the incident
particle is distinguishable from the nucleons in the
nucleus and revie~ the physical basis for the multiple-
scattering model. ' The first and most significant step
is the introduction of the impulse approximation, ' by
which the many-body dynamics of the problem is related
to that of the two-body problem. This approxima-
tion permits one to describe the encounter of the in-
cident particle with a nucleon in the nucleus as a scat-
tering between two free particles. The criterion for the
success of this approximation is essentially that the
energy of the incident particle be much larger than the
binding potential of the struck nucleon. Actually, this
condition may be somewhat stronger than is needed,
since it is the change, AV, in the binding potential dur-
ing the scattering process which is important. Thus for
a fairly uniform nuclear potential the impulse approxi-
mation might be valid for rather low-energy scatterings. ~

Indeed, when the ratio

is small (where E is the energy of the incoming par-
ticle), s we can consider the impulse approximation to
be valid. (A more careful discussion is given in refer-
ence 6.) Since AU may be of the order of 10—20 Mev,
we expect to find the impulse approximation useful for
E larger than 50—100 Mev.

The formulation of the complete process in terms of
such two-body scatterings has been given in reference 1.
This involves expressions for such nuclear properties
as the nucleon density in the nucleus, which are assumed
to be known. After the first scattering, we expect the
nucleus to be excited and thus these nuclear properties
to be changed. As described in I, however, if the incident
particle is fast, it should outrun the "storm" which it
has created and is expected to encounter at each subse-
quent scattering a medium which is essentially in its
ground state. For incident nucleon energies above 50—
100 Mev, ' we should expect this condition to obtain
and the impulse approximation also to be valid (until,
of course, the nucleon energy has been sufFiciently de-
graded through successive scatterings).

A further requirement that a scattering between the
incident particle and one in the nucleus be essentially
the same as the scattering between free particles is that
the distance between scatterings (mean free path) be
sufficiently great that the energy of the scattered par-
ticle between collisions is fairly well restricted by
energy conservation. This condition can be specified
by the relation

' R. Serber, Phys. Rev. 72, 1114 (1947).' G. F. Chew and G. C. Wick, Phys. Rev. 85, 656 (1952);
G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952).' See references 6 and Brueckner, Levinson, and Ahmoud,
Phys. Rev. 95, 217 (1954).

The energy E should here be considered to be the energy of
the incident particle in''e rather than outside the nucleus. That
is, we should add to the original energy the depth of the nuclear
potential well. (See reference I for a justi6cation of this statement. )

where AE is the uncertainty in the energy of the scat-
tered particle at the second scattering and d, t is the
time between the two collisions. If the mean free path
is), then

2 E/E=', (n/c) (Ijc'/E) (2)

where E is the energy of the scattered particle. For8)100 Mev, the uncertainty in the energy is small. '
We turn now to the point of major concern to us in

this work —i.e., the consequences of the Pauli prin-
ciple when the bombarding particle is a neutron or a
proton. Perhaps the most obvious point to require
clarification is the decision as to which is the "scattered
particle" and which are the "nuclear particles" after
the first and subsequent scatterings. The distinction
implied here is evidently one of convenience only and
also one which must be chosen appropriately for the
problem at hand. Nevertheless, it appears useful for
many cases to define the "scattered nucleon" as the
one having the greatest kinetic energy. Since we are
considering bombarding energies much larger than
nuclear kinetic energies, this distinction seems mean-
ingful and will be adopted, unless specified otherwise. "
An alternate distinction which will be useful in studying
the prong distribution of nuclear stars induced by high-
energy nucleons will be to define as "scattered nucleons"
all those whose kinetic energy exceeds a certain lower
limit, which is presumably larger than that for the
"bound nucleons. "" In any case, it seems that the
most convenient "labeling" of the fast nucleons will be
in terms of their kinetic energy.

The above consideration involved only the choice of
a useful convention. There are also other consequences
of the Pauli principle which require more elaborate and
detailed development. That there is a limit for which
the multiple-scattering approximation is valid is ap-
parent —to see this we need only consider the example
of a proton being scattered in disuse hydrogen gas.
Here the only significant consequence of the Pauli
principle is the proper antisymmetrization of the two-
body wave function for each proton-proton scattering. "
When the target is a nucleus, it is also necessary to
antisymmetrize the two-body nucleon-nucleon wave

' The rapidity with which the cross section varies with energy
is of some importance here. However, most cross sections in the
energy range of a few hundred Mev do not seem to vary very
rapidly with energy.I This choice is evidently the proper one for studying the elastic
scattering of fast nucleons by means of the optical method.

"This is essentially the point of view adopted by Goldberger
for his semiclassical model of high-energy nuclear reaction&
PM. L. Goldberger, Phys. Rev. 74, 1269 (1948)g.

"This we shall call the "primary exchange" eQ'ect.

(where v is the velocity of the particle). For most
problems of interest,

4ao,

where as js/pc is the mean separation between nu-
cleons in the nucleus. Thus
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function for each two-body scattering. When the energy
is sufficiently high that the impulse approximation is
valid, this should adequately describe the scattering
event. The reason for this is that the condition of
validity of the impulse approximation is essentially
just that the two scattering particles interact only
with each other and not with other nuclear particles
during a scattering event.

There is one final aspect of the Pauli principle which
might appear to make the multiple-scattering formula-
tion dificult at low energies. This is a process of the
sort by which the incoming nucleon "2" strikes the
bound nucleon "1," causing nucleons "1"and "0" to
recoil (carrying ofF the energy of "2") and leaving "2"
in "0"s position in the nucleus. Because of the Pauli
principle which makes it impossible to distinguish be-
tween "0," "1," and "2," this type of process will
interfere with that by which "0" strikes "1"and "0"
and "1"recoil ("2" not being afFected). This, we feel,
will complicate the multiple-scattering analysis. How-
ever, the process described above can happen only
because of the nonvanishing binding energy of the
nucleus. When the kinetic energy of the colliding
nucleon is large compared to that of a bound nucleon,
this correction seems to be negligible (as will be de-
scribed in more detail below). "

We may describe the conclusions of the last para-
graph in another way. Exchange effects due to the
Pauli principle for two (or more) particles are not im-
portant in general unless the wave functions of these
particles overlap appreciably. Referring to the example
above, we may then say that this process is not im-
portant unless a significant part of the spectrum of
kinetic energies for particle "0" extends up to energies
as high as that of the faster of the two nucleons. Instead
of overlap of energies, we may think in terms of the
overlap of wave functions in configuration space. Since
particle "0" is just "any place in the nucleus, "we can
construct a wave packet for "2" which overlaps very
little of "0's" wave function if the energy of "2" is
high.

Our conclusion is thus that for energies suKciently
high that the impulse approximation is valid, the
Pauli principle neither invalidates nor complicates the
multiple-scattering description of high-energy nuclear
reactions. This will be developed more precisely below,
where we use the notation and techniques of references
I and II.

II. FORMAL CONSEQUENCES OF THE
PAULI PRINCIPLE

We shall use the notation of II. The nucleus is con-
sidered to have a complete set of eigenfunctions,

of energy W„.Here v is a set of variables used to denote
the complete set of nuclear states (i =0 refers to the
ground state) and the P's represent a complete set of
nucleon variables for the A nucleons. The g's are sup-
posed to be properly antisymmetrized as required by
the Pauli principle. An incident nucleon in a plane
wave state of momentum p and spin orientation v has
a wave function

The Hamiltonian describing the interaction of these
(2+1) nucleons is

H=E+V, (3)

which describes nucleon "0"as incident on the nucleus
in its lowest state, we suppose the Schrodinger equation
to have a solution (p, ")($p, ,pz):

(p) —+)p (p)

From )P, (P) we may construct an antisymmetrized'
wave function:

where
A

Ap
——I—QP p. (7)

Here, P p is the operator which interchanges tp and $
and I is the identity permutation.

To evaluate the scattering cross section from Eq.
(6), we write )p (') as

(p) )p (p) in+/ (p)sc

where the two terms contain, respectively, the incoming
wave and outgoing scattered waves. The corresponding
wave functions,

(~)=p p)p
(~)

may be similarly decomposed. Letting

ZO) Zlp ' '
p ZA

be the coordinates of the nucleons and

where E is the sum of the kinetic energies of the
nucleons and

A

V=+ V p.
a)P

U () is the interaction energy between the o.th and /th
nucleons.

Starting with the initial state,

"We shall henceforth use the term "target exchange" for this
eRect, which may also be described as a "non-orthogonality"
correction.

SP, Sg, - SA"

"We recall that the g's are already antisymmetrized.



SCATTE RI NG OF FAST NEUTRONS AND PROTONS 1339

be their spin wave functions, we have

exp(ipse xp)
lim*s

f

XS,"I&,(g„. ,P.)L(2~)sMT„],

III. DEVELOPMENT OF THE MULTIPLE-
SCATTERING PROBLEM

It is desirable to depart in certain trivial respects
from the notation of I and II in order to treat the
nucleons all on a equivalent basis. Referring to Eqs. (3),
(4), and (5), we define

exp(ipi x )
lim

~a

Xs."Igi(P, 4)L(2~)~MZ'. 3, (1O)

and

V =—Q Up (o.=o, 1, , A),
PQN

a=—E+iri—H. (17)

where M is the nucleon mass and T~ and T, are the
respective direct and exchange scattering amplitudes for
scattering into a final momentum and spin state (pi, vg)

with the nucleus in the state f."Evidently,

(p'/2M)+ Wp ——(pi'/2M)+ Wi.

To calculate the cross section, we require the expecta-
tion value of the current operator (p, is the momentum
of the pth nucleon):

(Here ri is the infinitesimal positive parameter which is
employed in scattering theory to de6ne the contour of
integration about the pole in such quantities as a ').
We also dehne

a(n)=—a+ V .

Evidently V represents the interaction of the 0.th
nucleon with the remainder of the nucleons. Also, a(cr)
is diagonal when operating on the wave function

(19)

J(x)=P Re(5(x—z,) (p,/M) }
p=o

for large
l xl. This is

(12)
Thus La(n)] ' is the "propagation function" for n in a
plane wave state, the other nucleons being in one of
their mutual eigenstates.

When the incident nucleon is n, the wave equation
(5) has the formal Chew-Goldberger solution

(J)„= -(Ay/. &'i-, J(x)Ao|P.i'i-)
1

1
Q(~) =1.+-v. l~) (~=0, 1, ",~).

C
(20)

1 & ( p
— Q l As'. "&- 8(x—E,)—As' i'&- l. (13)3+1 p=o 0 M i

Evaluation of Eq. (13) using Eqs. (10) is straight-
forward. We obtain

(I) f—(1/s ) (pj'/M) (2s)'M' Sl Ts AT,
l

(14)—

for the Mgller wave matrix. By 1 we mean the result
of letting the identity operator act on the state (19)
when the nuclear state is v=o (i.e., the nucleus is in its
ground state). By V, l cr) we mean the result of applying
V to the state (19), again with v=o.

Equation (20) satisfies the Lipprnan-Schwinger in-
tegral equation,

where 8 is the appropriate sum and average over 6nal
and initial spin substates. The differential cross section
1s

1
Q(~) =1.+ -V.n(~).

a(n)
(20')

do
(p~J)=(p~/p)(—2-)'M'~l T. ».I'-

dQ
(15)

For present purposes, it is important to note that
one may calculate the cross section using any one term
of the sum over p in Eq. (13), since the wave functions
have been antisymmetrized. In particular, in the next
section we shall calculate the Qux of emitted "0"par-
ticles, multiplying by (2+1) to obtain the cross section.

"Since the wave function P &')" is not properly symmetrized
with respect to &0, it might be felt that one should include in the
suin over f nuclear states gy(b, ,go, „r@) which violate the
Pauli principle. The reason for omitting these is that they cannot
contribute to the cross section, since transitions into these states
are forbidden, of course.

Q=—Q(0) —Q Q(n)

=A,n(o)

1
=I+—Asvp l 0)

a

1
I+ V——

8
(21)

Since the initial state is not antisymmetrized with re-
spect to the coordinates of the nucleons, neither is the
wave function Q(n). Using Eqs. (6) and (7), we may
readily construct such a solution. This is
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Here

and

AI=hp—Ip . 1p
———Q 1,

v=- U.I0)-Z v. l-). (23)

than that the incident particle be fast, but we have not
found them. ) Returning to Eq. (25), the quantity
VpI is

VS=V, lo) —p v, l )

=Z Vuol0) 2 2 Vsol~),
P&0 P+0 a+0

Equation (21) can be written as

1
/=I+ 1+Vp— V.

a(0) a
(24)

Since [a(0)] ' describes the propagation of nucleon
"0"as a free particle, the quantity

In obtaining the final form of Eq. (21) we have used
Eq. (20) and the fact that Ap commutes with a '.

Equation (21) is the final formal solution to the
scattering problem. It remains to show how to calculate
the cross section from it. By the conclusions of Sec. II,
it is necessary to calculate the outgoing Qux of only one
nucleon, say nucleon "0," and properly normalize it.
This we proceed to do. By using the Chew-Goldberger
relation,

1 1
1+Vo-,

a a(0) a

where Vpln) is the result of letting Vp operate on the
state ln) of Eq. (19) with v=0, etc. The difference is

V—V~=& & [V-pIP) —V-sIP)]. (27)
p&0 0.&0,p

When substituted into Eq. (25), the expression

[V—VpI]
a(0)

describes processes in which the fast particle "P" is
incident on the nucleus and the fast particle "0" is
emitted after a single scattering. From the structure of
Eq. (27), it is seen that these processes are all of the
"target exchange" type which we agreed in the intro-
duction to neglect. (The magnitude of these terms is
estimated in the next section. ) Dropping this term then,
Eq. (25) becomes

1
1+Vp— V

11=I+ Von.
a(0)

(2S)

1 1
fl =I+ -[V—UpI]+ VpQ.

a(0) a(0)
(25)

is essentially the amplitude for emission of the "0"
nucleon. By Eq. (21), we can write a 'V=0—I and
convert Eq. (24) to an integral equation:

Except for the antisymmetrized identity operator I,
this is just the integral equation for scattering if
nucleon "0"were considered to be distimglishable from
the other nucleons.

Let us introduce explicitly the variables $p, $i,
into Eq. (28) for the final state, leaving the initial state
unspecified. Then, because of the antisymmetry of 0
with respect to an exchange of two $'s

Except for the rather complex "source term, "
1

I+ -[v—v/],
a(0)

(26)

. «' . S I0
P.b' 8p'

X(go'fi . «' (AID (29).this is just the integral equation (20') for "0" as the
incident particle. It is easily seen that (26) satisfies
the Schrodinger equation

Vso= (bbl Vsol 0o'4') (sob l Vso—I
«'S, ')

a(0) I+ (V—VpI) =0,
a(0)

and set
Voa= ~On (30)

just as does 10. Our argument will consist of showing
that for high-energy collisions the expression (26) may
essentially be replaced by 10 so that our problem is
reduced to one for which nucleon "0" is treated as
distinguishable. (We suspect that there may be more
general conditions for this approximation to be valid

if we restrict the integration in the matrix product to
(o'& «' "

From the expression (30), we note that the individual
two-body scatterings are treated properly, "as required

"We suppose that we have established an ordering relation for
the &"s so that this inequality has meaning.
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by the Pauli principle. That is,

0=I+ VpQ.
a(0)

(28')

(for most "n"), implying by the symbol. on the right
that "0"has a higher kinetic energy than most of the
other nucleons and is also the particle which we are
observing (distinguished by virtue of its momentum
and direction, etc.). Then

n=—n(0)+n', (31)

Our last step is to construct the submatrix of 0
which refers to "0"as the fast outgoing particle. '~ For
this purpose let us suppose that the set of quantum
numbers, f, contains in some manner a description of
the (average) kinetic energy of the nucleon. Let us also
suppose that our ordering relation" is such that
g )$p if "n" has a higher (average) kinetic energy than
"P."We then de6ne the sebmatrix of 0 which describes
"0" as the fast outgoing particle in which we are
interested to be Q(0). It is then Q(0) which we require
to calculate the Aux of outgoing nucleon "0." We
shall write

D (0)=0
i p »p

particles are "slowed down" without interaction with
these (in order that energy be conserved). This process
we have agreed to neglect (this will be discussed further
in the next section). "

Combining our conclusions from Eq. (33) with Eq.
(22'), we can write Eq. (32) as

1
Q(0) =1p+ -VpQ(0).

a(0)
(34)

1
n(0) =1,+ —P ~.n(0).,

a(0)

This is an integral equation involving ovary the sub-
matrix Q(0). Thus we can calculate Q(0) without know-

ing the complete matrix O. Except for the occurrence of
the antisymmetrized two-body scattering interaction,
Vo, this is the same equation which we would have to
solve if "0"were distinguishable from other nucleons.

In other words, Eq. (34) states that we may use the
multiple-scattering analysis of references I and II
withoppt modification (other than in the use of anti-
symmetrized two-body amplitudes). This means that
Q(0) is given by the equa, tions of multiple scattering,

where 0' is that submatrix of 0 for which "0"is not the
particle of interest to us. Using the above notation, we
have from Eq. (28'):

with

Q(0)n= ip+ Q (pe(0)p,
a(0) u*,p

(35)

Obviously,

(32)
1

t =V.p+V p t .
a(0)

(36)

II b»p =Ip (22')

Lsee Eq. (22)j, since only one particle is fast in the
initial state.

Using Eq. (31), we have also

Vp~llso&&( = 2 (&&I Vsplb'b')

+ (5p 4' ' ' 5s ' ' '&If'(0)+ZsVs@'I p »p. (33)

The last term refers to processes for which "0"becomes
the particle of interest to us after the last scattering
(represented by Vp). We have already Pp') $s' so this last
kind of term is of the "target exchange" type. That is,
these refer to processes for which "0"and "P"are both
slow until a last scattering which gives them both (or
at least "0") a large recoil energy, while other fast

"We do not of course mean to imply that "0" is necessarily
the only fast—or even the fastest —nucleon emitted. "Target
exchange" involving the exchange of "0"with a nucleon which
has swered a previous scattering is expected to be especially
small, since in this case both nucleons can be rather well localized
in space. Thus the presence of fast nucleons other than "0"will
not be troublesome.

On making the impulse approximation, t is just the
properly antisymmetrized two-body scattering ampli-
tude for nucleons "0" and "n." The development of
the optical nsodel or study of the inelastic scattering
proceeds just as in I and II.

IV. ESTIMATED SIZE OF "TARGET
EXCHANGE" TERMS

. From Eqs. (27) and (33), we see that a "target
exchange" term of typical magnitude can be described
as follows:

Nucleon "2"is initially fast and has a momentum p2.
Nucleons "0" and "1" are initially bound. "0" and
"1"scatter and are ejected, "0"being fast. To conserve
energy (see the introduction, in which it was assumed
that the mean free paths are suKciently long that
energy is at least roughly conserved between scatter-
ings), particle "2"must be very nearly stopped.

Let the wave function for the "stopped" "2" be

gp(zp). Let "0"and "1"be initially in the state gp(z, r),
'8 There are also processes for which "0" is fest, but not the

nucleon of interest to us. Such exchange processes, as discussed
in footnote 17, are expected to be even less important than those
for which "0"is slow.



1342 G. TAKE DA AN D K. M. WATSON

where
I= Zp —Xy,

z=g(zs+zt).
(37)

spectively their center-of-mass and relative coordinates.
Again taking gt(xt) out of the integral and setting it
equal to

gt(z&) tV~) ',
Here zo and z~ are the space coordinates of "0" and
"I.""Also let the 6nal momenta of these nucleons be
po and y&, respectively. Define

yO+ yl)

p=-(yo —pt)

Then the amplitude for this process is roughly

I.=( ) '"j~ (—K' ) "*( )

&& U(r) exp(iy& x&)gs(i, r)d'zd'rd'z&. (38)

V(r) is the interaction potential between nucleons "0"
C&g

Since gs(z, r) is expected to vary rather slowly with
z and r (in comparison with the exponentials), we take
it outside the integral and set

gp (z,r) 1/ Vg,

where V~(=47rR'/3) is the nuclear volume. Let

we find
Id (2x) lb(K —yp) Vr(y ——,'pp) V~ '. (43)

I,/I~0. 03/A, (45)

where 2 is the mass number of the nucleus. It is clear
that Eq. (45) predicts a very small contribution re-
sulting from "target exchange" processes. (The other
type of "target exchange" occurring in Eq. (27) has a
comparable magnitude. ) The factor of A ' in Eq. (45)
is removed when we sum over the (A —1) nucleons,
"2," "3," - ~ "A,"as incident particles. The correction
for "target exchange" is, however, small at E= j.00
Mev, as predicted by Eq. (45), and decreases rapidly
with increasing energy. "

Aside from the 6-functions and the factor of U~, the
ratio of Eqs. (41) and (43) is

I,/Is (4~/3)Ug 'ps '——fpsRj ',

where R is the nuclear radius. This evidently decreases
rapidly with increasing energy for the incoming par-
ticle. For a 100-Mev incoming nucleon, this ratio is

Vr(p) = (2z) ' d're '&'U(r), (39) V. ELASTIC SCATTERING OF FAST NUCLEONS
AND THE OPTICAL POTENTIAL

and

gT(p2) = (2K) ' exp(ip2' x2)g2 (x2)d zs

L(2z)'Vz$ '*jt exp(ips zs)d'zs
Vz

=(4-/3)L(2-)'V. j-:kp.3-' (4o)

Here we have made the reasonable assumption that
gs(zs) extends over a region having the size of the
nuclear volume. "We then have

I, (2')'5(K)Vr(p)(47r/3)[V~'*ps7 s. (41)

We must compare this with the direct process by
which "0" strikes "1"and recoils. If "I" is initially
bound in the state gt(zt) and if the initial momentum
of "0" is yo, we have for the amplitude of the direct
process

Id (2s) "' " exp( iK—z)e 't"U(r)

Xgt(zt) exp(iys xs)d'zdsr. (42)

Here K is the total recoil momentum of "0" and "1"
and p is their relative momentum; z and r are re-

"For simplicity we neglect the other nucleons and all spin
variables.""2"is certainly not expected to be localized in a region much
less than the size of the nuclear volume at the termination of the
scattering event.

In Sec. III we have shown that the problem of the
scattering of a high-energy nucleon by a target nucleon
reduces essentially to solving Eq. (34), in which the
incident nucleon can be "distinguished" from the
others. This equation can be applied both to the elastic
and the inelastic scatterings. When it is applied to the
latter problem we have a transport equation which
describes how the incident energy will be transferred
to nucleons in the target nucleus by successive colli-
sions between pairs of nucleons. On the other hand, the
first problem can be reduced to the scattering of a
nucleon in the optical potential where the form of the
optical potential can be connected with more funda-
mental quantities in the two-body problem. '

Here, as an example of the application of our method,
we shall construct the optical potential for the elastic
scattering of a nucleon according to II.

If one assumes the invariance of the scattering ampli- .

tude for a collision between two particles under space
rotation, reflection, and time reversal, its most general
form has been given by Wolfenstein and Ashkin. "
When two particles are both nucleons, the scattering
amplitude is antisymmetric for an interchange of their
coordinates before the scattering and for an interchange
of those after the scattering. Furthermore, the scatter-
ing amplitude is assumed to have the charge invariance

"Our estimate depends really on the assumption that the
momentum of the incident particle is higher than the bulk of the
momentum spectra of bound nucleons.

~ L. Wolfenstein and J. Ashkin, Phys. Rev. SS, 947 (1952).
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property, except for a small correction due to Coulomb
forces.

Under these additional conditions the scattering
amplitude in the center-of-mass system for a collision
in which a nucleon "1"with a momentum q and a
nucleon "2" with a momentum (—q) scatter into
states with momenta q' and (—q'), respectively, is
given by the following expression:

scattering of the nucleon "0" from a state of relative
momentum p to a state y' is given by

(p'I "lp)=) d"t (z) expl:s(p' —p) z]

9As s+3As i+3Ag, a+Ad, g

(q', —«'lt»lq, —q)

3+'sg' 'cs 3+By ps 1 0'1 0's

As, s +As, &

16

3&s+&i 2L~o (pXp')1
(4g)

L(~~+~s) (qXq')j ((~i Q)(~ Q)
83 +~l —3O'y ' O'2

gg Q' )
((og P)(e, P)

+Dsl 3O'y ' O'2

z )
&1'&2 3+&1'+2 l. &1'+2

Ay, s +Ai, i

L(~i+vs) (qXq')] t'(ei Q)(~s Q)
~1 +&il 3O'1 O'2

gg Q' )
t (ei P)(s, P)—so'g ~s I , (46)

P2
where

Q=q' —q,

P= (q'xq) xQ. (47)

A, 8, C, and D are complex functions of
l q l

and coso
where 8 is the scattered angle in the center-of-mass
system. Terms containing a factor (3+~& ~s)/4 or a
factor (1—~~.~s)/4 correspond to the scattering in the
state with the isotopic spin T=1 or 7=0, respectively.
A3 ~ and A» ~ are the singlet state scattering amplitudes
and the remaining terms are those for the triplet state.
In principle, A, 8, C, and D are obtainable from experi-
mental results for p-p and p-e scattering. "

We have already shown that the scattering of fast
nucleons by atomic nuclei can be treated according to
the method of references I and II, with slight modifica-
tions due to the Pauli principle. The "optical potential"
v, for Q(0) (the part of the wave function with the
nucleon "0" as the fast nucleon) can be obtained by
averaging' ~sts over the wavefunctiongp($y ' ' ' fg)
of the nucleon. to is the scattering amplitude given by
Eq. (46) when it is transformed to the laboratory
system.

If we take, for simplicity, .a self-conjugate (X=Z)
nucleus with the total angular momentum J=O, the
matrix element of the optical potential v, for an elastic

23 The D term in Eq. (9) of reference 22 vanishes because of the
Pauli principle for two nucleons. Our A, 8, C, and D are linear
combinations of their A, 8, C, E, and Ii.

Terms of to, linear in ~ and o average to zero because
Z=X and J=O. p(z) is the density of nucleons in the
nucleus. The term containing oo shows the presence of
spin-orbit coupling in the optical potential. '4

There are, of course, corrections to the optical po-
tential because of successive inelastic scatterings which
bring the nucleus into the initial state after the last
inelastic scattering. "The magnitude of this correction
depends on the strength of correlations among nucleons
in the nucleus. For high-energy nuclear scattering this
can be shown to be small. We should like to emphasize
that a solution of the scattering equation for the po-
tential thus obtained is in general quite different from
and has a wider validity than solutions obtained in the
ordinary Born approximation. "

If we limit our attention to the forward scattering,
we obtain Eq. (3) of the reference 3 from Eq. (48)
under the assumption that A3, 3, A3, ~, etc., can be
considered to be constant in this small region of the
scattering angle. When the scattering angle becomes
large, the corresponding matrix element of v, becomes
rapidly small because the density p(z) has only a small
amount of high-momentum components comparable
with lp —pl. This indicates that the scattering is
mostly inelastic for large angles.

In conclusion, the impulse and multiple-scattering
approximations hold for scatterings of fast nucleons by
nuclei even if we take into account the Pauli principle.
Through these approximations, amplitudes for scatter-
ing fast nucleons by nuclei can be expressed in terms of
those for p-p and p-n scattering together with the
knowledge of nucleon density and correlation functions.

We should finally emphasize that our conclusions
apply to a much wider class of multiple-scattering prob-
lems than just those involving atomic nuclei. A simple
example is, for instance, provided by the double (or
triple) scattering of a beam of protons by successive
hydrogen targets.

'4 If a nucleus has J diferent from 0, there are other types of
terms which will Rip the spin of the incoming particle by changing
the spin direction of the nucleus at the same time. This part of
the optical potential might be quite sensitive to the value of J.
The magnitude of this correction relative to the remainder of the
potential is of the order of J/A.

"See the reference II, Eq. {75)."S.Tamor, Phys. Rev. 93, 227 (1954l.


