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A simple harmonic oscillator independent-particle model is used for sum-rule calculation of electric dipole
transitions in the nuclear photoeffect. First we find the level spacing Ace =42A g Mev for nuclear radius pa-
rameter r0=1.2. Combining this result with the integrated cross section, we find the bremsstrahlung-
weighted cross section ay= J'(o/W)dW=0. 36A4!3 millibarns. The calculated oq is not inconsistent with a
preliminary analysis of experimental measurements for He, Be, C, Al, Cu, Mo, Ag, Ta, Pb, and U. We
also use the simple harmonic oscillator independent-particle model to calculate the increase in the integrated
cross section due to neutron-proton exchange forces. We find that the relative increase is not far from the
Levinger-Bethe value of 0.8x (where x is the fraction of exchange force) for the closed-shell nuclei He', 0",
and Ca", for both Gaussian and Yukawa neutron-proton potentials, and for two values of the radius pa-
rameter r0. 1.2 or 1.5.

I. INTRODUCTION
' 'N a previous paper' (here designated by I), the
~ - author and D. C. Kent used sum-rules to calculate
various moments of the o(W) curve for nuclear ab-
sorption cross section es photon energy. We used nu-
clear wave functions for an independent-particle model
(IPM) in a finite square well, for two nuclei of mass
number 68 and 184, respectively. We found that the
calculations were not inconsistent with present experi-
mental data on Cu and Ta, provided: (i) that in the
calculations we used a rather small nuclear radius,
with radius parameter rs ——1.2; and (ii) that we also
included the effects of exchange forces in increasing the
harmonic mean energy for photon absorption.

In this paper we would like to study further the
applicability of the IPM for the nuclear photoeGect.
To simplify calculations we have changed from the
finite square well IPM used in I to a simple harmonic
oscillator IPM. The parameter co, defined using the
IPM potential —,'3IoPr', is evaluated in terms of the
radius parameter ro in the following section. In Sec. III
we use the simple harmonic oscillator IPM to evaluate

the bremsstrahlung-weighted cross section,

o.s=
J (o/W)dW;

ab is the electric dipole cross section for the nuclear
photoeffect weighted by the dW/W approximation to
the bremsstrahlung spectrum. Thus 0-b is rather easily
compared with measured bremsstrahlung yields for
photonuclear processes. Also the calculated 0-b is not
changed by the presence of neutron-proton exchange
forces. The calculated 0-b is proportional to the square
of the nuclear radius, and we can obtain reasonable
agreement between calculations and experiment if we
use rs 1.2 for——the radius parameter. (The radius is
A=red'X10 "cm.)

In Sec. IV we calculate the increase in the integrated
cross section o-;„~ due to the neutron-proton exchange
force. Levinger and Bethe' (here referred to as LB)
calculated

r

o;„i= odW=0. 01SA (1+0.8x) Mev-barns. (2)
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*This work was supported by the National Science Foundation.
' J. S. Levinger and D. C. Kent, Phys. Rev. 95, 418 (1954),

designated by L

FIG. 1. The graph shows that the average quantum number n
t de6ned by Eq. (5)g for a simple harmonic oscillator independent-
particle model can be approximately represented by the rela-
tionship n=0.87A&. The line shows this equation; the points are
shown for calculations for individual nuclei.

Here x is the fraction of the neutron-proton force that
has an exchange character. The coefficient 0.8 depends
on the nucleon wave functions that are assumed. I.H
used a model of a degenerate Fermi gas; while we shall
use nucleon wave functions for a simple harmonic
oscillator IPM. We find that the simple harmonic
oscillator IPM calculation gives a coefficient with a
value rather close to that found in the LB calculation.
These phenomenological calculations of 0-; t are being
superseded by the more fundamental dispersion-theory
calculations of Gell-AIann, Goldberger, and Thirring. '
However it seems worthwhile to repeat the phenomeno-
logical calculation for a somewhat different nuclear
model, to provide a firmer number to compare with the
dispersion theory result.

s J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950),
designated by LB.

'Gell-Mann, Goldberger, and Thirring, Phys. Rev. 95, 1612
(1954).
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II. SIMPLE HARMONIC OSCILLATOR POTENTIAL

In this section we shall evaluate the classical angular
frequency cv for the simple harmonic oscillator potential
in terms of the nuclear radius. This evaluation has been
done by Wu4 for several light nuclei. Wu uses an oscilla-
tory wave function for the least bound nucleon for r (R,
and a damped wave function for r)R. Matching at
the nuclear radius R determines the parameter co. In
this paper we shall match the radius R in a different
manner, which gives us a rather smaller value of co.

Our method consists in calculating the expectation
value (r') for each nucleon in a simple harmonic os-
cillator potential. This mean square radial distance is
then averaged over all nucleons in the nucleus, giving
(r')~ for the nucleon density distribution, in terms of ~
and A. We equate (r')z to the value ssR' for a sphere of
uniform density out to radius R=roA&)(10-" cm. Thus
we determine cv in terms of A and ro.

Our present method of using ro implies that the
values given (e.g. , Hofstadter et al. ' and Fitch and
Rainwater') are based on the mean square radius for
the nucleon density distribution. Actually different
measurements weight the density distribution with
diferent factors, 7 and also measure the nuclear charge
distribution rather than the possibly different nucleon
density distribution.

For a nucleon with quantum number e, the mean
square radial distance

(r') = (lid/M(o) (n+3/2) . (3)

The nuclear mean square radial distance (r')z is found
averaging over all A nucleons:

(r')~= (5/M(o)g„c„(n+3/2)/A = (A/Mco)n, (4)

where c„is the number of nucleons with quantum num-
ber n. (We are neglecting any differences among nu-

cleons due to spin or charge. ) Figure 1 shows that n,
the average value of m, is well represented by

n =+„c„(n+3/2)/A =0.87A'. (5)

(The "breaks" at the magic numbers are quite small. )
Matching the nuclear mean radial distance with -',R',
we solve for fuu.

Iico=1 45(k'/Mrs. ')A &=42A i Mev.

Here the numerical result is based on ro ——1.2. The
proportionality of the nuclear energy scale to ro

—'A &

was found in I for a finite square well, and is char-
acteristic of any IPM.

S. S. Wu, Ph.D. thesis, University of Illinois, 1951 (un-
published).

Note added As proof.—Also see B. C. Carlson and I. Talmi,
Phys. Rev. 96, 436 (1954).

~ Hofstadter, Hahn, Knudsen, and McIntyre, Phys. Rev. 95,
512 (1954).' V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1954).

7 D. L. Hill and K. W. Ford, Phys. Rev. 94, 1617 and 1630
(1954).' J. S. Levinger, Ann. Revs. Nuclear Sci. 4 (1954).

TAsLz I. Nuclear energies calculated from the IPM.

Nucleus
This paper

rp =1.37 rp =1,2
Wub

rp =1.37
Paper Io
rp =1.2

He4
Be9
Ne~
Ca~
CU
Ta

20 Mev
15
12
9.4

10
7.4

36 Mev
29
24
16

13
8.7

& The value of Aeo is given by Eq. (6).
b See reference 4.
o See reference 1, Tables VI and VII, for the harmonic mean energy

(not including exchange effects).

We could obtain a better fit to the low-A points in
Fig. 1 if we used an exponent slightly lower than 3,
giving an exponent of —0.35 in Eq. (6), and a some-
what larger coeKcient. This refinement seems un-
warranted at present, in view of the following ap-
proximations: (a) We have assumed that (r')~ is
proportional to A& for all nuclei, even those as light as
He', (b) we have neglected Coulomb effects on the
proton; we use A =2Z throughout this paper; (c) we
have assumed that the simple harmonic oscillator po-
tential continues to indefinitely large R; (d) we have
neglected spin-orbit coupling, and configuration in-
teractions.

For the alpha-particle and lighter nuclei, we can use
the LB calculation' of the harmonic mean energy O'IJ,
since for these nuclei there are no Pauli principle cor-
relations to change the result. With ro=1.2, the LB
value is 8'~= 72A: Mev= 29 Mev, for He4, in reason-
able agreement with 26 Mev given by Eq. (6). For the
alpha particle 8'II and o-b are determined entirely by
the value of (rs)z. (We plan in subsequent work to
calculate (r')~ from alpha-particle wave functions.
Here we use the dubious extrapolation of the nuclear
radius to very small nuclei, to find approximate analyti-
cal expressions for WIr and os in terms of A.)

Equation (6) gives lower values for light nuclei
than those calculated by Wu. In Table I we compare
the two results, for rs ——1.37. We also compare Eq. (6)
for ken for Cu and Ta with the calculation in I for the
harmonic mean energy for these two nuclei using a hnite
square well, with ra=1.2. Our value of Ace is different
from Wu's, since we have interpreted the nuclear
radius R in terms of a mean square radial distance,
rather than as the limit of the classically allowed region.
Our value of Ace here is somewhat lower than the har-
monic mean energy calculated in I for Cu and Ta,
even though the same (r')~ is used.

Our present value of 5M can be compared unfavorably
both with photonuclear experiments and with measure-
ments of low-lying nuclear energy levels. The former
experiments show that the bulk of levels that can be
reached by dipole transitions from the ground state
have an excitation energy of about 17 Mev for medium
nuclei such as Cu; while Eq. (6) gives only 10 Mev,
even if we use a small nuclear radius. However, (see I)
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exchange forces increase the harmonic mean energy for
photon absorption by about forty percent, greatly im-
proving the agreement between calculations and ex-
periment. (The argument of I is somewhat inconsistent:
it is claimed that the IPM holds to a reasonable ap-
proximation for all nucleons in their ground state; but
that nucleons excited by electric dipole absorption
experience quite a different potential, the diGerence
being caused by neutron-proton exchange forces. Since
the potential has not yet been derived from two body
forces the effect of exchange forces cannot at present
be included in the nuclear potential. We believe that
our method of including the eGect of exchange forces
on the harmonic mean energy has a heuristic value, in
spite of its inconsistency. )j

On the other hand, our value Ace = 10 Mev for medium
nuclei is much larger than the values of several Mev
found for the excitation energy of low-lying nuclear
levels which might well be identified as the next nucleon
level for a simple harmonic oscillator potential. A
detailed analysis of low-lying levels to identify them
with oscillator levels is desirable.

We shall not try to justify our value of ken, but shall
use it in this paper as an admittedly crude approxima-
tion to an IPM treatment of the nuclear photoeffect.

be signi6cant dynamical correlations, causing a neutron
and proton in a triplet 5 state, for example, to tend to
remain close together, further decreasing the value of
0-b. These dynamical correlations, which are most
marked in a sub-unit model" are neglected in the IPM
treatment of this paper.

In I we calculated o s using Eq. (7). Our present calcu-
lation is done by the same method in the Appendix.
However we shall find it shorter to calculate the same
answer for O.b by a round-about approach: i.e.,

o.s ——o.;„c/W~.

Here we have utilized the LB definition of the har-
monic mean energy O'II. For the simple harmonic
oscillator potential, with pure ordinary forces, 5'~ is
just Aco=42A: Mev since electric dipole absorption
causes transitions only between adjacent levels. (The
special property that the harmonic mean energy equals
the mean energy only for the case of an oscillator po-
tential is discussed in the appendix, and related to the
Heisenberg uncertainty principle. ) Also, for pure ordi-
nary forces, the numerator is (LB)

o-;„f,= 0-d5'= 15A Mev-millibarns.

IIL BREMSSTRAHLUNG-WEIGHTED CROSS SECTION

In this section we shall evaluate the bremsstrahlung-
weighted cross section 0-b using a simple harmonic
oscillator IPM, and we shall compare with experi-
mental data.

LB' evaluate the bremsstrahlung-weighted cross sec-
tion as

(o./W)dW

Here P,s, is the sum of the components of proton dis-
placements along the direction of polarization of the
photon; while g,z; refers to neutrons. The expectation
value is taken for the ground state of the nucleus. LB
assumed that there were no correlations among the
nucleons. In I we included Pauli principle correlations
among pairs of protons, and among pairs of neutrons,
for a square well IPM. In this paper we shall include
the Pauli principle correlations for a simple harmonic
oscillator IPM.

The Pauli principle correlations decrease Ob, since
due to the Pauli principle each proton is surrounded

by an "exchange hole" in which there is a decreased
-likelihood of finding another proton. ' There may also

t Pole added i rI, proof.—A more consistent interpretation is that
two-body exchange forces contribute to a velocity-dependent
nuclear potential for the IPM. This velocity-dependence in-
creases W~.' J. Blatt and V. Weisskopf, Theoretical Nuclear Physics (John
Wiley + Sons, Inc. , New York, 1952), Sec, III. 3,

Substituting in Eq. (8) we have the brernsstrahlung-
weighted cross section

os iSA/42——A 1=0.36A4~' mb. (10)

Our value for 0-b is proportional to ro', since ro deter-
mines the scale for proton displacement s; in Eq. (7),
and the proton displacement. enters squared. (Our
numerical value is based on re= 1.2.) o.s is proportional
to A'~', rather than A'~' as found by LB, since the
Pauli principle correlations are increasingly effective
for large A in decreasing the sum in Eq. (7). Our
present value for gb is somewhat higher than that
given in I for Cu and Ta, corresponding to the com-
parison in Table I that our ken is somewhat lower than
W~ of I. (The numerator o;, is independent of the
model, for pure ordinary forces. ) o.s depends on the
ground state nuclear wave functions, but is not changed
by the existence of neutron-proton exchange- forces.
Thus we can calculate. (7b for pure ordinary forces, and
compare our result with experimental data on actual
nuclei, where there are significant exchange forces.

In comparing Eq. (10) with experiments we shall not
attempt any exhaustive treatment of the experimental
data. Our purpose here is to call attention to the
significance of the bremsstrahlung-weighted cross sec-
tion as a useful source of information concerning nuclear
wave functions; and to make only a preliminary com-
parison between experiment and theory. In I we inte-
grated to an upper limit of 70 Mev in using the experi-

"A. Winslow, Ph.D. thesis, Cornell University, 1952 (un-
published).
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TABLE II. Analysis of the experimental contributions to the bremsstrahlung-weighted cross section o& (in millibarns).

1. Nucleus

Heb
Be
C
Al
CU
Mo
Ag
Ta
Pb
U

2. Neutrons
0-22 Mev

43c
0 9d, e

5 d, g

40. dg
80. dg

100. dg
190 e,g, i

24p d, g, 1

42P e,

3. Protons
0-22 Mev

0.5d
2.5'
5.1'

f, h

6. '
small
small
small
small

4. Neutrons
22-62 Meva

1&o.b& 3
2&ob& 2.5
4&ob& 7

10&0-b& 26
20&o.b& 46
20&o.b& 50
30&oe& 74
30&0.b& 80
30&oh& 110

5. Protons
22—62 Mev

~0.1
~6.
~7
~3
small
small
small
small

6. 62-150
Meva

0.5
0.4
2.5
6.
9

1.2.
20.
25.
35.

gbk

1.5 (oh& 3
5.8&oh& 8.4
5.4&o-b& 12

14. &ob& 24
65. &o.b& 94

110. &o.b&140
120. &o-b&160
220. &ob(280
270. &o.b&340
450. &o.b&560

a Jones and Terwilliger, reference 21; b Fuller, reference 26, Benedict and Woodward, reference 27; o Nathans and Halpern, reference 15; d Montalbetti,
Katz, and Goldemberg, reference 13; ' Nathans and Halpern, reference 12; f Halpern et al. , reference 18; g Price and Kerst, reference 11; Byerly and
Stephens, reference 19; ' Wilkinson et al. , and Hanson et al. , reference 16; & Duffield and Huizenga, reference 17. k The last column is the sum of the con-
tributions of the various processes to the bremsstrahlung cross section ob, which is defined in Eq. (1) of the text. The lower limit is found by using the lower
limit of column 4 (neutron multiplicity from compound nucleus estimate) and omitting the contributions of columns 5 and 6. The upper limit is found by
using the upper limit of column 4 (neutron multiplicity equals unity) and including all the other contributions. The value of ob is plotted in Fig. 2, and
compared with theory.

mental data to determine ob LEq. (1)j and o;„s LEq.
(9)j; but we have changed to an upper limit of 150
Mev for consistency with the value used by Gell-Mann,
Goldberger, and Thirring. ' (A real advantage of work-
ing with o.b rather than o-;„t is that the experimental
value is rather insensitive to the cross section at high
energies, where the experiments are less complete, and
where we face the question of what upper limits to use
in the integrals. )

The experimental data on the nuclei Be, C, Al, Cu,
Mo, Ag, Ta, Pb, and U are treated in three energy
ranges: medium (0 to 22 Mev); high (22 to 62 Mev)
and very high (62 to 150 Mev). In the medium-energy
region we can determine the contribution to o-b directly
from the yield curve" " or we can determine the con-
tribution to a.b by numerical integration of the published
excitation curves. ""The yield I' is

tI"= y(W)o(W)dW=io(W ) I o(W)dW/W, (11)

where we have written the bremsstrahlung spectrum
y(W) = io(W)/W; p(W) is a slowly varying function of
8' and may to a first approximation be taken out of
the integral and evaluated at the energy TV correspond-
ing to the peak cross section. In our preliminary work
we have taken 9 (W) as the Schiff thin-target spectrum,
corrected for absorption, and appropriately normalized
to the ionization in roentgens. "

Our values for o-b using the 22-Mev bremsstrahlung
yield given in column 2 of Table II are in good agree-
ment with integrations from the o (W) curve. The 22-

Mev yield method is inapplicable to a case such as C,
where the peak cross section occurs at just about 22

"' G. A. Price and D. W. Kerst, Phys. Rev. 77, 806 (1950).
's R. Nathans and J. Halpern, Phys. Rev. 93, 437 (1954).
"Montalbetti, Katz, and Goldemberg, Phys. Rev. 91, 659

(1953).' R. Nathans, Ph. D. thesis, University of Pennsylvania, 1954
(unpublished), Table IVa. Also see reference 12.

Mev, " and also to the double-peaked cross section"
for Be.

We shall use the data based on particle (neutron and
proton) yields, even though such measurements tend
to give too large an absolute cross section since multiple
reactions are counted more than once. Corrections of
20 percent are made for multiple neutron emission for
Ta,"Pb (assumed the same as Ta); and corrections of
35 percent for fission and emission of two neutrons by
U." Corrections for multiple particle emission are
believed small in this energy region for the other nuclei.

Proton yields in the medium energy region are of
importance for nuclei up to Mo as shown by column 3
of Table II. The contributions to the bremsstrahlung-
weighted cross section are taken from the measurements
of Montalbetti, Katz, and Goldemberg;" Halpern et

al;" and Byerly and Stephens. " (Also see Chastel, "
who finds a larger proton yield for Li gammas on Cu
than would be expected from the work of Halpern or
Stephens with 24-Mev bremsstrahlung. )

The neutron yields above 22 Mev have been measured

by Jones and Terwilliger. " Their vo. (W) curves have
been treated in two diferent ways to obtain upper
and lower limits for the neutron contribution to o.b

from 22 to 62 Mev given in column 4 of Table II. We
find the upper limit by assuming that only one neutron
is emitted (multiplicity v equals one) and calculating
J'(~/W)dW. We obtain a lower limit for the contribu-
tion to o-b by assuming that neutron multiplicity has the
approximate upper limit of W/E, where E, the average
energy per neutron emission, is about ~ the neutron

"R.Nathan and J. Halpern, Phys. Rev. 93, 940 (1953)."E.A. Whalin and A. O. Hanson, Phys. Rev. 89, 324 (1953);
Carver, Edge, and Wilkinson, Phys. Rev. 89, 658 (1953)."R. B.Duflield and J.R. Huizenga, Phys. Rev. 89, 1042 (1953)."E.V. Weinstock and J. Halpern, Phys. Rev. 94, 1651 (1954),
and earlier papers by Halpern et al."P.R. Byerly and W. E. Stephens, Phys. Rev. 83, 54 (1951).

ss R. Chastel, J. phys. et radium 15, 459 (1954)."L.W. Jones and K. M. Terwilliger, Phys. Rev. 91, 699 (1953).



126 J. S. LEVINGER

l00

10—

IO IOO

binding energy. "With this assumption the contribution
to o.s has a lower limit of EJ'(o/W. ')dW.

Rather little is known about proton reactions in the
high-energy region. We estimate this contribution to
o-& by using the neutron contribution to o-& in this energy
region and assuming the proton/neutron yield ratio is
about the same in the high-energy region as in the
medium-energy region. The resulting numbers, given
in column 5 of Table II are most uncertain, even
though, particularly for C and Al, high-energy proton
yield contributes a large part of the total brems-
strahlung-weighted cross section. (Nathans and Hal-
pern" have suggested a substantial contribution of the
high-energy proton cross section to (T;„~ for light
elements. )

The contribution of the very high-energy region from
62 to 150 Mev is estimated in column 6 of Table II.
Here we find the absorption cross section at 140 Mev
as done by Jones and Terwilliger. " Assuming that
the cross section is about constant from 62 to 150 Mev,
the integration for the bremsstrahlung-weighted cross
section is then performed. This rather uncertain con-
tribution to o.

b is rather small (10 percent or less). We
have not included in this table the contributions from
inelastic" or elastic" gamma scattering. They are
probably less than 10 percent of the total.

The values for o-b given in the last column of Table II
are given as lower and upper limits. The lower limit

is found by adding the values of columns 2 and 3 to the

lower limit in column 4, and omitting the contributions
of columns 5 and 6. For the upper limit to o-~, we use
the upper limit for the high-energy neutron yield given
in column 4, and add all the other contributions to o-b.

An additional allowance of at least 20 percent (Nathans
and Halpern)" should be made for systematic errors in
the various absolute measurements.

The rather poorly known bremsstrahlung-weighted
cross section for He' is based on work by Halpern et ul."
up to 26 Mev; on Fuller's work" up to 36 Mev; and
on Benedict and Woodward's measurements" at the
higher energies. Halpern's data give 0.2 mb for the
neutron contribution to O.

q up to 26 Mev; while Fuller's
data give a contribution of 0.6 mb for the proton yield
up to 36 Mev. (Fuller's proton cross sections are about
25 percent higher than Halpern's neutron cross sections,
for the same photon energies. ) If we take 0.2 mb as an
average cross section for proton emission in the high-
energy region, we have a proton contribution to a.b of
0.3 mb from 36 to 150 Mev. The total proton contribu-
tion of 0.9 mb is doubled to account for single neutron
emission; and might be increased somewhat further to
take account of multiple disintegration of the alpha
particle. However, Halpern's neutron measurements
suggest a reduction of. 20 percent. We take 1.5 mb
&O.b&3 mb.

Figure 2 compares the experimental bremsstrahlung-
weighted cross sections estimated in Table II with the
calculated value of o.

q given in Eq. (10). We also show
a dashed line from Cu to Ta giving the 6nite square
well IPM calculations of I. The agreement between
experiment and theory is rather better than expected,
considering the preliminary character of both estimates.
More accurate experimental data for o.~ would be of
great help in deciding both the size of the nucleus, and
the extent of dynamical sub-unit correlations. The
present agreement between experiment and theory (if
we use a rather small radius, with radius parameter
rs ——1.2) indicates that sub-unit correlations are not of
great significance for moderate energy photonuclear
reactions. (Note that obweights . the o. (W) curve favor-
ing low W.) That is, the IPM is not unsuccessful in the
moderate-momentum region, for the nuclear ground
state. (If we used re ——1.5, the disagreement between
experiment and theory would suggest sub-unit correla-
tions significantly modifying the IPM.)

IV. EXCHANGE FORCE CONTRIBUTION TO
INTEGRATED CROSS SECTION

The increase by a factor (1+CD) in o.; t due to ex-
change forces was calculated by Levinger and Bethe
(LB)' using nuclear wave functions for a degenerate
perfect Fermi gas, normalized to give the correct

2'Ferguson, Halpern, Nathans, and Yergin, Phys. Rev. 95,
776 (1954).

s' E. G. Fuller, Phys. Rev. 96, 1306 (1954).
"T.S. Benedict and W. M. Woodward, Phys. Rev. 83, 1269

(1951).

22 J. S. Levinger and H. A. Bethe, Phys. Rev. 85, 577 (1952).
"C. S. Del Rio and V. L. Telegdi, Phys. Rev. 90, 439 (1953).
"E.G. Fuller and E. Hayward, Phys. Rev. 95, 1106 (1954).

FIG. 2. Comparison of experimental and theoretical values for
the bremsstrahlung-weighted cross section ah= j'(&r/W)d. W The.
experimental values shown by vertical bars are given in Table II.
The bars show the lower and upper limIts for 0-f„based on different
analyses of the experiments. They do not include errors in meas-
urement of absolute values. The solid line shows af, =0.36A'~'
millibarns, derived from a simple harmonic oscillator independent-
particle model LEq. (10)g. The dotted line is based on calculations
for Cu and Ta (reference 1) for a finite square well independent-
particle model.
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t= (pk) '=0.695N'. (19)

Here k is the maximum wave number for the Fermi
gases of neutrons and protons. The LB calculation for
the Fermi gas model gives

C= 3.95t'L(2t+1) e '"+1—2t)
= (4.58N5+3. 2954) e '~/"'+3 2954—4.58N'. (20)

This equation is also plotted in Fig. 3, and evaluated in
Table III.

In Table III we also present the LB results for square
and Yukawa neutron-proton potentials. (See LB, Table
I.) We have calculated C for a quasi-Yukawa potential
by expressing the contribution to C for each of the
Gaussians. We use a Yukawa potential for an intrinsic
range b of 2.5&(10 ", and a depth parameter of 1.3:

V&=1.57(k'/MX10 ")e '/'"/(r/1. 18). (21)

Here the radial distance r is given in units of 10—"cm.
We fit Vy within 10 percent over a range of r from 0.3
to 4)&10 "cm (a factor of almost 1000 in Vr) with the
sum of 4 Gaussian potentials:

Vr'=(Il'/MX10 ")(012e ""rs.+055e "'/"'
+2 6e—r /0. 55+8 4e r /0. 055) (22)—

TABLE III. Summed oscillator strength (times A/XZ).

Nucleus
Neutron proton Nuclear radius parameter ro

potential ro =1.2 t 0 =1.5
He', SHO0" SHO
Ca40, SHO
Fermi gas (LB)
Fermi gas (LB)
Fermi gas (LB)
He4, SHO
0'6, SHO
Ca~, SHO

Gaussian
Gaussian .
Gaussian
Gaussian
Square
Yukawa
Quasi- Yukawa
Quasi- Yukawa
Quasi- Yukawa

1+1~ 12x
1+0.99x
1+0.94x
1+1.07x
1+1.06x
1+0.76x
1+0.84x
1+0.73x
1+0.70x

1+0.87x
1+0.80x
1+0.77x
1+0,96x
1+0.80x
1+0.69x
1+0.72x
1+0.63x
1+0.61x

In Table III x is the fraction of the neutron-proton force that has an
exchange character. The coefficient of x gives the relative change in the
summed oscillator strength, or in oint, due to complete exchange force.
This coeKcient C is plotted in Fig. 3, and given in Eqs. (16), (17), (18) for
a calculation with simple harmonic oscillator (SHO) independent-particle
model for He4, 016, and Ca4o respectively. The LB calculation (reference 2)
for a Fermi gas model is given in Eq. (20) and Fig. 3 for a Gaussian neutron-
proton potential, and in LB (Eqs. (20) and (21) and Table If for the square
and Yukawa neutron-proton potentials. The calculations for He, 0, and
Ca for a quasi-Yukawa potential are discussed following Eq. (22).

For 0"
C= 3.50v(4+6v+31v') (1+2v) '/

=12 4u. (4+21 3.44+391u') (1+7 154') '" (17)

For Ca4',

C= 1.75v(8+24v+176v +168v'+389v4) (1+2v) "/'
= 8 43N'(8+ 11654'+4080544+ 18 800N'+ 209 000545)

x (1+9.64N ) 5/ . (18)

Using the Fermi gas model [LB, Eq. (19)j for this
Gaussian neutron-proton potential, we find it conveni-
ent to express the coeKcient C in terms of a parameter
f, as well as the parameter u used above.

The 4 terms in V~' correspond to intrinsic ranges b

for the 4 difterent Gaussians of 4.0, 2.1, 1.1, and 0.37
X10 " cm respectively. These 4 Gaussians should be
used with Fig. 3 with weights of 0.26, 0.35, 0.40, and
0.16 respectively. (Note that Fig. 3 is for a Gaussian
potential of depth Vo proportional to b and that we
are using Fig. 3 for different values of b.) We 6nd the
results for He, 0, and Ca for a quasi-Yukawa potential
given in the last three rows of Table III.

As a check on this method of calculating with a
Yukawa potential we have used the curve marked LB
in Fig. 3 for the LB Fermi gas model, together with
Vy' as a sum of 4 Gaussians to 6nd the coefficient C
for a Yukawa potential with the LB model. Our values
of 0.78 (for r0 1.2) and ——0.71 (for r0= 1.5) are in good
agreement with those calculated directly for V& by
LB for the Fermi gas model: 0.76 (for r0 ——1.2) and 0.69
(for r0 ——1.5).

LB found that the coeKcient C was not sensitive to
the shape of the neutron-proton potential, or to the
radius parameter ro. We have now found that C is also
not sensitive to the particular nuclear wave functions
used: the Fermi gas model, or simple harmonic oscillator
IPM for the closed-shell nuclei He, 0, or C. The ex-
treme range in the coefficient C for the 18 examples
given in Table III is from 0.61 to 1.12. The LB rough
average of 0.8 seems about as good an average as any.
(It agrees quite well with the calculated values ranging
from 0.70 to 0.84 for a Yukawa potential, with ro= 1.2,
which we believe is the most appropriate set of pa-
rameters. ) In any case, even a 20 percent change in C
changes the integrated cross section 0-; ~=0.0152
(1+CD) by only 7 percent. (Here we have taken the
value x=0.5 for the approximate fraction of exchange
force. )

We have here used the simple harmonic oscillator
IPM for closed-shell nuclei filling the lowest, erst, and
second shells. It is very probable that heavier nuclei
treated on this model would show quite good agreement
with the results found here for Ca". (The curves for
0 and Ca in Fig. 3 agree quite closely. ) Nuclei inter-
mediate between closed shells might give a somewhat
lower value of C, as the interference sects of the P;;
term in Eq. (12) would become relatively more im-
portant. Preliminary calculations on the B" nucleus
with simple harmonic oscillator IPM and Gaussian
neutron-proton potential give a value of C about 25
percent lower than that for the closed-shell nuclei He
and O. This calculation made in Cartesian coordinates,
is not completely reliable, as arbitrary assumptions
were made as to the 6lling of the neutron and proton
shells in this coordinate system.

For large I, all the curves in Fig. 3 LEqs. (16), (17),
(18), and (20)j are proportional to 54 '. This result
corresponds to the treatment without interference LLB,
Eq. (14)$ for the square-well neutron-proton potential.
The I ' dependence for fixed intrinsic range b corre-
sponds to an ro

—' dependence. That is, the average
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value of rP U(r;;) in Eq. (12) is proportional to the
mean nucleon density. For small I, the IPM curves are
proportional to I'. For fixed b, small I corresponds to
small ro, or a small nucleus. The finite nuclear size
then limits the average value of r,PU(r, ,) to propor-
tionality with ro .

, i.e., proportionality to I'. In the LB
Fermi gas model, the coefBcient is proportional to n
for small N. Here LB used an infinite nucleus, the inter-
ference effect of the I';; term greatly decreasing the
value of the coeKcient for small I, though the de-
crease due to the interference term is not as great as
that considered here due to the finite nuclear size.

This discussion for large e and small I is not directly
applicable to the actual case of I about 0.6. However
the discussion indicates the similarity of the LB Fermi
gas treatment and IPM treatment at least in the ex-
treme cases of large I and small N.

Preliminary numerical results by Gell-Mann, Gold-
berger, and Thirring' (GGT) for the integrated total
photonuclear cross section give an increase of about
forty percent over the standard sum-rule result of
0.015A Mev-barns. Their numerical result agrees sur-
prisingly well with the LB result (and that of this
paper) of 0.8x, using x about —', . We might speculate
brieRy that these quite diGerent calculations give similar
results because the approximations used are more
closely related than appears on the surface. The funda-
mental approximation of the GGT calculation is the
assumption that the forward-scattering amplitude for
extremely high-frequency electromagnetic waves is the
same for A nucleons bound in a nucleus as for the A
free nucleons. (Given this one assumption, the GGT
calculation then proceeds using dispersion theory rela-
tions between the forward-scattering amplitude and the
total photonuclear cross section. The numerical results
are based on the difference of pion photoproduction
cross sections for free and bound nucleons. ) The GGT
assumption of the high-frequency forward-scattering
amplitude appears to be closely related to the assump-
tion that the nucleus is essentially a nonrelativistic
system. (For example, in atomic physics if we can
calculate the forward-scattering amplitude using the
atomic form factor, as is appropriate for a nonrela-
tivistic system for frequencies far from those giving any
appreciable absorption, we find that the atomic for-
ward scattering is just that of Z free electrons. ) The
assumption that a nucleus is essentially a nonrela-
tivistic system is, in turn, needed to justify the several
approximations of the LB treatment (or that of this
paper): (a) the use of a phenomenological treatment of
the meson exchange currents, as in Siegert's theorem;"
(b) the calculation of electric dipole processes only;
and (c) the neglect of retardation in calculation of the
matrix element. (Several theorists have suggested that
the last two approximations tend to cancel. )

Thus it seems possible that the agreement of the
GGT result with that of LB and this paper is caused

by both calculations resting on the same basic assump-
tion of neglect of relativistic effects in a nucleus. On
the other hand, it is quite possible that any numerical
agreement between the GGT and LB calculations is
fortuitous, and may disappear completely when more
accurate numerical calculations are made.

V. DISCUSSION

In I we concentrated on the calculation of the har-
monic mean energy 8'~ for two nuclei. In this paper
Eq. (6) gives W~ ——422 & Mev for a simple harmonic
oscillator IPM with r0=1.2, and pure ordinary forces.
A Serber force gives about 40 percent increase in o.;„&,
and therefore in 8'~, giving the value 8'~= 60A & Mev.

This value of the harmonic mean energy, corrected
for exchange effects, is somewhat low when compared
with experiment, though it is not in serious disagree-
ment with experimental results.

Since we have shown in Fig. 2 that our calculated
bremsstrahlung-weighted cross section o-b is in reason-
able agreement with our preliminary interpretation of
photonuclear experiments, the disagreement between
the calculated and experimental harmonic mean en-
ergies implies a disagreement between the calculated
and experimental values of o-;„&, the experimental values
being somewhat higher. Recent summaries, ""give
rather good agreement for medium and heavy nuclei
between calculated and experimental o;„~ (using x= sr

for a Serber force). We believe that if the integrations
were done up to an energy of 150 Mev (in accord with
the GGT calculation) that the experimental cross sec-
tions would be somewhat higher than the calculated
value for the whole range of nuclei. (See, for example,
the Jones-Terwilliger value of o; t for Ta.) Since the
high-'energy cross sections are still poorly known, we
cannot do more than speculate on this question.
Neutron-proton correlations, as for example in the
quasi-deuteron model which may be a valid approxima-
tion for high-energy photons' would tend to decrease rb
and to increase o-;„t. Both effects would increase W~.

We believe we have shown that a crude independent-
particle model for the nuclear ground state gives results
for the bremsstrahlung-weighted cross section o-b, for
the integrated cross section, and for the harmonic mean
energy that are not inconsistent with present experi-
mental data. More experimental data are needed, par-
ticularly in the energy region from 25 to about 100 Mev.
Also an analysis of the experimental data to give the
quantities o-b and 8"~ as well as o.; ~ would be of use in
comparing experiments with sum-rule calculations. The
independent-particle model calculation should be re-
fined, and deviations from the IPM (as in the quasi-
deuteron model) should be studied.

~ M. Q. Barton and J. H. Smith, Phys. Rev. 95, 573 (1954);
and Myers, Odian, Stein, and Wattenberg, Phys. Rev. 95, 576
(1954).
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ol
(2/M) (hp)' &k'/2M (Lh)'

(Ap)'(As)' &P/4.
(A7)

This is a rather indirect method of deriving the Heisen-
berg uncertainty principle. Further, the equality be-
tween W and Wrr holds only for a delta-function shape
of the o (W) curve; while the equality in the Heisenberg
uncertainty principle holds only for a simple harmonic
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APPENDIX

Harmonic Mean Energy

Here we derive certain well-known results in a dif-
ferent manner. First we wish to shown the relation be-
tween the Heisenberg uncertainty principle and the
delta-function shape of the o(W) curve for simple
harmonic oscillator wave functions. For simplicity we
shall work with only one particle in a simple harmonic
oscillator potential.

Using the notation and some equations from LB,'
we have

P fo„——1,

Z.(E. Eo)fo-=—(2/M) (p')oo (A2)

g „fp„/(E„Ep) = (2M—/Ii') (s') pp. (A3)

Here fp„ is the oscillator strength, s is the component
of the displacement, and p of the momentum, along
the polarization direction. Since p=z=zero for the
ground (0) state, we write

(~p)'= (p') pp, (~s)'= (s') pp (A4)

Using these equations, we find the mean energy 8'
and the harmonic mean energy 5'll.

W=Z. (E-—Ep)fp-/2-fp = (2/M) (~p)' (A5)

W =Q„f,„/Lp„fo„/(E„—Ep) j=fP/2M(hs)'. (A6)

For any shape of the photon absorption curve we must
have W& WIr. Using this inequality together with Eqs.
(A5) and (A6), we find:

oscillator potential. Thus we have related these two
properties of simple harmonic oscillator wave functions.

For many particles in a simple harmonic oscillator
IPM, we want to show that 8'Ir=kco. Using the nota-
tion of I,' we write the harmonic mean energy:

I

W~= (h'/2M)A/(D+B), (AS)

where the diagonal term is

D= (g,zP)oo= (&/Mpi)g„(n+ —)c„, (A9)

and the og-diagonal term 8 due to the Pauli principle
correlations between protons is given by

B= —Q kg l(ski)'. (A10)

D+B= (2h/Moo)g (n+1) (N —n+1)

= (5/3M&v) (N'+6N'+11N+6).
(A12)

Here X is the total quantum number for the highest
occupied level.

We wish to compare this summation with the mass
number A in the numerator of Eq. (A8), expressed as

A =2 Q„(n+1)(n+2)
= -'(No+ 6N'+ 11N+6) .

We find from Eqs. (A8), (A12), and (A13) that the
harmonic mean energy is indeed Lr, as we knew it must
be for a simple oscillator.

A completely analogous calculation has shown that
the mean energy W also equals koan.

In these equations e is the quantum-number for motion
in the s direction; 1,"„is the number of protons that have
quantum number e; and s~~ is the dipole matrix element
between occupied states k and l. Using the value (ski)'
= (5/2Moo) (the larger quantum number) where nI, = n&

&1, we find that for all but the highest occupied level
the contribution to 8 exactly cancels the contribution
to D. For this highest level we have

D+B= (n+1)h/2M&v per nucleon. (A11)

We must multiply this result by the number of nu-
cleons in the highest level with a given value of e, and
sum. (For simplicity we have taken the case where the
highest occupied level is completely full. )


