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Radiative Corrections to Electron Scattering*

ROGER G. NEWTON)
Institute for Advanced Study, Princeton, N'eve Jersey

(Received October 29, 1954)

The techniques and results of a previous paper are applied to the calculation of the second Born approxi-
mation of the one-photon radiative corrections to the scattering of electrons by nuclei. Nonrelativistic and
high-energy approximations are calculated explicitly for pure Coulomb scattering. Modifications due to
the Qnite extension of the nucleus are discussed. No definite conclusion is reached concerning the change of
the correction due to this extension, but it is shown that at extremely high energies the relative radiative
correction to the second Born approximation is independent of the nature of the charge distribution. It is
also shown that the 6ctitious zeros of the 6rst Born approximation disappear 6rst in the third Born approxi-
mation. The shape factor occurring there is brieQy discussed.

C. INTRODUCTION

HE nuclear scattering of electrons is of funda-
mental importance because it is, at high energies,

a sensitive tool for probing the charge distribution in
the nucleus. It is, moreover, a tool whose properties
are relatively well known, since the theoretical interpre-
tation of the experiments is unencumbered by the
complications of meson theory. For this reason there
has been much recent interest in the high-energy
scattering of electrons, experimentally' — as well as
theoretically. ' " The fact that at today's experi-
mentally accessible energies (of the order of 100 Mev)
scattering is beginning to become sensitive to the
nuclear charge distribution makes it, of course, impera-
tive to use all the theoretical tools available to describe
the di8erential cross section as precisely as possible
according to the present theory. That means that the
quantum electrodynamic corrections to the scattering
cross section ought to be taken into account whenever
known, unless they are shown to be negligible.

The lowest-order radiative correction to the relativ-
istically modi6ed Rutherford scattering cross section
was erst derived by Schwinger. " It is a first Born
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approximation (hereafter abbreviated as BA) with
respect to the interactions both with the radiation field
and with the Coulomb potential, i.e., it assumes
separately both a«1 and Zcr«1 (where n is the one
structure constant and Z, the nuclear charge number).
The second of these assumptions is no longer valid as
the heavier elements are approached for scattering
targets, and better approximations are required.

The present calculation is one of the next higher order
compared to Schwinger's in the sense that it retains the
next power of Zo, . It is a first Born approximation with
respect to the radiation field and its relevant parameter
n, that is to say that the emission and reabsorption of
never more than one photon is taken into account; a
second BA as far as the scattering potential and its
relevant parameter Ze is concerned, i.e., at most two
virtual interactions with the static potential are contem-
plated. In other words it will yield corrections of the
order Zn to Schwinger's result, or of the order o. to the
result of McKinley and Feshbach. ' For light elements,
Z 1, this correction is, of course, very small (at
energies that are neither extremely small nor extremely
large), while for very heavy elements the expansion in

powers of Zo. becomes quite useless, even if it should
stjtll be correct. It is for elements of intermediate
position, say in the neighborhood of Z 35, that one
may expect such corrections to be appreciable and the
expansion still to be useful (perhaps it is too much to
hope that it converges too?).

Section 2 will be concerned with the calculation of
the elastic cross section, in (2a) of the terms arising
from the mass operator, in (2b) of those from the
vacuum polarization. The notation developed in (2a)
will be carried through from then on. Section 3 deals
with the contribution from the inelastic cross section,
necessary for the removal of infrared divergencies. In
Sec. 4 the infrared and the Coulomb divergencies are
shown to cancel and the integration over the Fourier-
transformed Coulomb 6elds is performed. We then
make the two essential approximations: in Sec. 5, the
nonrelativistic approximation, and in Sec. 6, the
extreme relativistic case. Both are discussed in their
respective sections. There are 6ve appendices: A lists
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RADIATIVE CORRECTIONS TO ELECTRON SCATTERING 1j.63

the traces necessary in the work; B rederives the
second BA, including the form factor in integral form;
C performs the integration over the Fourier transform
variables of the Coulomb field; D treats the integrals
occurring in the form factors of the second and third
BA; and E elaborates on the statement that, where the
first BA vanishes, the first nonzero term occurs in the
third BA. The appropriate form factors for the third
BA is exhibited in that appendix.

The technique used in this calculation is based on
Schwinger's "mass operator" method and has been
developed in as much detail as is needed for the present
in a previous paper. "Rather than repeat the prelimi-
naries here, we refer the reader who is unfamiliar with
the technique to references 20 and I.

The cross section for scattering from the initial
momentum p to the final momentum q is given by I
(3.14) as~

do/df)=2w'(Iql/Ipl) «(m —vp)(pl&lq)
X (m —vq) (ql ~,&'v,

I p) (1.1)
where

When the square is carried out, one obtains: (1) the
lowest-order term, +~'which yields the relativistically
corrected Rutherford formula; (2) the terms with three
powers of pA, which yield the ordinary second BA,
whose value was erst derived by McKinley and Fesh-
bach' and Schwinger, and which will be easy to check
with the present tools (see Appendix 8); (3) the terms
with one yA in addition to either yA or DM~, which,
as was shown in I, yield Schwinger's result; (4) the
following terms which are the ones to be calculated here:

e'$(7A—) (AMs+ yA GphMi+ DM iGp»)
+ (»Gp») (DMi)+ 8 j+e'L(»') (»Gp»)

+ (») (»'Gp»+»Gp»')+ 2 j. (2.3)

a. Mass-Operator Terms

We shall consider the first line of (2.3) in this sub-
section. It was shown in IP' that yAGpd Mt+AMiGpyA
cancels a distinct part of AM~, there called AM2".
Therefore

H= (1+KGp) 'K

Gp is the free-particle Green's function, and

K=63f—eyA

with the renormalized mass operator 63f.

2. ELASTIC CROSS SECTION

(1 2)

(1 3)

(do/df)) s~= —4w'e' ««(m —vp) (pl AMs —~Ms"
I q)

X (m —vp) (q I » I p) —4s'e' ««(m —pp)

X(plAMilq)(m —~a)(ql»Go&A I p) (24)

Matrix elements of the second-order mass operator,
given by I, Eqs. (2.10) to (2.17), are obtained via the
simple equation:

BC= —e» —e»'+0M, (2.1)

The radiative corrections to the elastic cross section
are obtained from (1.1) by setting

I pl =
I ql and p(d)'pi)s v(dks)s

(p I
e"a"S)t's (ki,k„p.n)

e'""
I q)

(2pr)&" (2pr)&

where A is the static scattering potential; A', the
vacuum polarization potential induced by A, and AM
the mass operator as a function of A. Since we are
calculating the first BA in the radiation field, all terms
in the expansion of H in powers of 3C are dropped
except those that are linear in either 635 or yA'. Among
the ones thus retained hM and A' too are expanded in
powers of A. Then all terms containing more than a
total of two occurrences of A are discarded, since this
is a second BA in the external 6eld. In view of the
facts that the cross section, Eq. (1.1), is quadratic in

H, and that the vacuum polarization potential is an
odd function of the inducing field A and hence for our
purposes proportional to it, we may write the remaining
terms schematically as follows:

= (1/8)ms)ts (dk/2s)'BRs(mA(n+-', k),

m)t(n —-', k), p+q —m'Ak), (2.5)

where the substitution ki —ks=m)tk, was made, and

(2.6)

(2 7)

2—= (p —q)/2m=—An,

) —= (I pl/m) sin-', 8,

8 being the scattering angle, y. g=—y' cos8.
The matrix element of yA is immediate:

(ql» lp) = (2w) '»(—2m~), (2 g)

where the A on the right-hand side is the Fourier
transform of the one on the left.

Equation (2.4) can thus be written

(do/dQ) s =[ eyA e» '+ ehMt+ e'A——Ms
—e'yAGppA —e pA GppA —e pAGppA'

+e'»GpAMi+e'EMiGp»]'. (2.2)
(do./dn) ps' = 2's. 'eQ—'m'AsppA p( 2A)m—

X ' (dk)sAp(m), kt)Ap(m)tks)r(k, Pp)t9)ssr, (2.9)I

s' Equation (2.19).

I J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452, 455 (1951)."R.G. Newton, Phys. Rev. 94, 1773 (1954). We shall refer to
this paper as I.

~ "Natural units" will be used, with )t=c=1, and n e'/4m=
Bold-face type indicates three-vectors, while four-vectors are not
specially marked. When the latter's indices are not suppressed,
&he usus, l summation convention is, of course, in force.



ROGER G. NEWTON

and its first line yields

oo ~].
I'ssrt ——Im ds, du exp( isum )J, Js

1 try p(yp m—) (ms m—s') (m y—q)X-—,(2.10)
4 poA (mXk )Ao(m)b, k,)

where the arguments in SR2—DR2" are those indicated
in (2.5) and we have collected all factors of (2s.), so
that at this point we mean

is the "form factor" for an arbitrary nuclear charge
distribution,

nuclear radius
E—= (2.20)

electron's Compton wavelength

S2 is the special form factor for 82 which we shall be
able to write down later (B.7); 8r is the first''radiative
correction;" and 82 is the correction we are presently
concerned with:

~l ~1
~2= (rr/8s')(1 —»ns&) '~ dvrvPp(»)~ dvsvs p(vs)

Also,

A(k)—= (dr)A(r)e '~' (2.11) (sinv&XEk&) (sinvsXEks)
&& I [dk] (r(k,p,p), (2.21)

E vt)Zu, ) E vs)Zus i
ki —=n+-', k, ks —=n —-', k. (2.12)

Use has been made of a gauge in which all components
but Ao vanish.

Before calculating I'ssrt we may now put (2.9) into
somewhat more transparent form. No assumption
concerning the special external field has as yet been
made, except that it be a static, spherically symmetric
electric Geld. Suppose that this field is due to a spheri-
cally symmetric charge distribution of finite extension
R:

)( [dQ]f(k) —=-v —' (dk)ski 'ks 'f(k). (2.22)

Sg—+1,

5s~(n/8s') (1—sin-', t))—' [der]1' (2.21a)

Because of the normalization (2.14), the limits as we
approach a point nucleus, or very low energies (EX—+0),
are

Js(r) = —(Ze/47r)p(r/R)R ', r(R
=0, &I,

where p is normalized so that

1

( v'dvp(v) =1.

(2.13)

(2.14)

We may now return to the contribution to F from
the first line of (2.4), I"ssrt. Equations I (2.14), I (2.16),
and I (2.17) are substituted in (2.10). The s-integration
is then easily carried out. The following type of integral
deserves special mention:

Then
"0

fsinvkR)
As(k) = —Zek —' ' dvv'p(v)( — !, (2.15)

"s & vkR )

Im ds exp ( isums—) .Gs
60

= Im ds exp( ) . ReGs

I) Zcr (1—p') &

N. =
nsc 2P2

(p= v/c)

is the Rutherford cross section;

-2
csc'-'8 (2.17)

where )s= (k('. For such an arbitrary spherically sym-
metric charge distribution the scattering cross section
may be written

(do/dQ)s= (RSrl Sr(1—P' sin't)/2) (1—5r)

+Bs(Ss—bs)]. (2.16)
Here

+Re~ ds exp( ) ImGs . (2.23)
0

Terms like the second one on the right-hand side yield
8(u). But as discussed in I, Sec. IV A, exp( —isum')

is to be replaced by exp[ —isunz'(1+u '(e/nz)')], where
~ is a small photon mass, in order to cut off infrared
divergencies. If this replacement is made consistently,
then 8{u)~8(u+ (e/m)'u ') =0 and such terms do not
contribute. '4 Integrations over the 6 function starting
at zero may frequently be considered spurious because
they are quite discontinuous functions of their lower
limit.

Bs= 'IrZnp slQ-,'8(t —slIls t))

is the second BA to pure Coulomb scattering;

f' sin2XvICy

!St—— i dvvsp(v)(
p

' 2XvE' 2

(2.18)

(2.19)

2'Another way of deriving the same result is the following:
The factor I ' stems from the proper time integration of
exp( ssum'), whic—h originates from the zero order Green's
function. The de6nition of the +-Green s function implies that
nz2 should be replaced by m2 —ie. The real part of the proper time
integration in (2.12) therefore does not result in ra 'e(gc), but in
n 's(m') =O.
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The traces needed in (2.10) are listed in Appendix A.
In terms from BR2' we may conveniently change vari-
ables according to v=vi —vs, w= s(v,+v,)/(1 —v). The
operation (2.5) then results in the following replace-
ments [in the notation of I (2.8)):

(2.40)y=X '+csc'-'tl —1

The 6rst-order mass operator contributions, the
second line of (2.4), are calculated in the same manner
as those of the second-order one. Terms containing
Imop are dropped by the same reasoning as previously.
The result is the following contribution to I'

r/IF exp ( i—sum')~exp ( i—sm'rii), (2.24)

rli =—X'v (1—u)ri+u[1+X'(1 —v)'(1 —ws)

+X'v(1 —v) (1+—„'P)—wv(1 —v)n k), 4(1—u)(2.25) I'=4l d~
—'

(2.26)

(2.27) 1+uv' —2u(u'+ (e/m)') '
+)P(Q k-4y)

(2.28) 1+As(1—'v )
(2.29) 2v'[u —u(u'+ (./m)')-')- i

2.41
[1+7s(1—v'))'

ri= —1——Q k+-'ks

Q= (p+ q)/2m'A, Q= cot-,'r7,

lt exP (—isum') —+exP (—ism'ris),

res =—u[1+4X'v (1—v) ]+(e/m)'u —'

fE exp (—isum') ~-,'[exp (—isum'ri s+)

+exp( —isum'ris )), (2.30)
b. Vacuum Polarization Terms

ris+—=X'v(1 —u)rl+u[1+X'v(1 —v)k, ss)

Z exp (—isum') ~exp (—isum'ri4),

r14
=—X'v (1—u) ri+ u.

(2 31)

Somewhat lengthy calculation, involving partial
integrations of the kind shown below I (2.9), yields the
following contributions to I' (where the u-integration
is understood everywhere to extend from zero to one):

This subsection is concerned with the contributions
(2 32) from the second line of (2.3):

(do/dn)y= 4r're' Re tr(m —yp)
X (pl»Go» I q) (m —

~V) (qI»'I »
+4rr4e' Re tr(m —yp) (p ~

»'Gg A

+vAGovA'I q) (m —
&q) (ql» I p) (2 42)

1 I

F.= dv(1 —v) ~ —',dwrii '{X4Q k[4(u —2)J,
+2uv (3—2u)' 'uvk'—+-Su(1 u)'vy—]
+~'[16(1—u) (2—u) v~' —(1+u)&'

+4 (1+Su—Sus+4u') +16(1—u) (1—u') y) )

+4 dv(1 —v) —,dwrli '{4u(1—u)py'1

0 —1

The lowest-order vacuum polarization potential is, after
charge normalization is carried out,"

A„'(k) =A„(k)f(k), (2.43)

f(k) =— dvv'(1 —-'v') [m'+-'lP (1—r')]—'. (2.44)
4m& p

Equation (2.8) then shows that the contribution due
to the first line of (2.42) is simply f(—2m') times the
second BA:

f(—2m') = (rr/rr) X'(Fi—-',Fs),
—2u(1+ u —u&v7tsQ k,

where the functions F„are those used by Schwinger":

Fs=4(1+u) dvris
—', (2.35)

pl
F,= 27ts dv„;i[Q.1 (2—uyu(1

Jp —4u(1 —u) y), (2.36)
~1

F~=2~ dvqs-'q-'{4(1 —u')(4y+1 ——,'k')+krs[4u(1 —u)
0

+ (4y —Q k)X'(2 —u —u'(1 —2v)')]) (2.37)

I/2 6~1

Fvt, = dV"s 1+'A'(1 —v')

Fs——X-'(1+7 ')-: log[(1+7 s)1+7]
Fi——(1+X ')Fp —X-', etc.

(2.45)

(2.46)

The second line of (2.42) is easily seen to contribute

f(mXkr) +f(mXks),
~1

F,=4(1—u')) dvrl 'rl '(-,'k' 1—4y), —
0

u(1 —u')
Fg=4 (Q k —4y)ri ',

u'+ (e/m)'
(2.39) sII J. Schwinger, Phys. Rev. S2, 678 (1951);the renormalization

is accomplished as indicated in I (6.10l.

(238) operated on by the k-integral that yields the second
BA. Appendix B is devoted to the simple calculation
of that and we may take the result from there. It
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follows that

(Q k-4y)
I'.=4K'

1

y-, "d- (1——;")——

1+&'kt2(1 —o')/4
(2.47)

(P
(dk)48(k')

i
———

i
.

2~ ~ kp=o ipk ski
(3.1)

As shown in I, Schwinger's evaluation of the integral
(2.48) is modified in the presence of a small photon
mass e to yield

)ko=aE (p
(dk)'b(k')( ——

[
=4m ([p(/m)'sin'-, '6

(pk qk)

X[(Fo+Fi) log(&Em/epo)+Fi+2G+H7, (3.2)

LEq. (5.11) in I contains two typographical errors
which are corrected by (3.2)7, with the functions H
and 6 de6ned in reference 19.

The result of Appendix B for the second Born
approximation therefore yields for the inelastic contri-
bution to I'
I"a——SX'L(Fo+Fi) log(&Em/epo)

+Fi+-,'G+H](Q k—4y)if
—'. (3.3)

4. FIRST INTEGRATION, AND TREATMENT
OF THE DIVERGENCIES

Two kinds of divergencies appear in I'. One is the
infrared divergence which also appears in the 6rst-order
calculation and for the sake of which the slightly
inelastic cross section was introduced. In I', as in the
first-order terms, it appears as a divergence at I=0
and is treated as discussed in I, Sec. IV A. The intro-
duction of a 6nite photon mass, e, enables us to replace
every u ' by u[u'+(e/m)'7 '. The u-integration can
then be carried out without divergence difhculties.

The other divergence is also a familiar one due to the
slow decrease of the Coulomb 6eld at in6nity. Since k
is essentially the Fourier conjugate variable to the
distance r, this divergence appears at small k; more
precisely, at ki or ko equal to zero, since these variables

3. INELASTIC CROSS SECTION

As in the first-order calculation, the radiative cor-
rection to the elastic cross section contains an infrared
divergence which cancels a corresponding one in the
bremsstrahlung cross section. We therefore again have
to add the "slightly inelastic" cross section, i.e., the
low energy limit of the one-quantum bremsstrahlung
cross section. It was shown in I, Sec. V, that this is,
to all orders in the external 6eld, a multiple of the
elastic cross section, the factor being

belong separately to Coulomb fields. The customary
way of dealing with such divergencies is to "screen"
the Coulomb field& i.e., to replace k ' by (k'+ ') '.
This means that the Coulomb potential is replaced by
one of the Yukawa type. The latter is very nearly like
the Coulomb potential near the origin, where most of
the scattering occurs, but it falls off exponentially at
large distances. The physical justification for this
procedure is, of course, the fact that the nuclear
scattering centers are surrounded by electrons and that,
therefore, outside the atom no 6eld exists at all. The
Coulomb field is thus physically screened, and the
screening parameter, p, is related to the size of the
atom. Most of the scattering occurs deep inside the
atom, where a small p has little inQuence; the screening
parameter is therefore retained only in terms which do
not vanish in the limit as p, tends to zero. Since the
mathematical reason for the introduction of p was the
occurrence of divergencies, there will be terms left
which tend to infinity (logarithmically') as p tends to
zero. In these, one would give p, the value physically
determined by the atomic size.

However, it will be shown that all terms in F which
would tend to in6nity as p, tends to zero cancel each
other. There is therefore no reason why the divergent
integrals should be cut off in such a relatively compli-
cated, though physically realistic manner. In the case
of cancellation the only purpose of the screening process
is the proper "fitting" of various divergent integrals.
This 6tting can be accomplished in a much simpler
manner in the present case.

The Coulomb divergencies arise in terms of the
following nature":

t (dk)kt 'ko 'i1 '.

It is easily seen (for example, by a shift of k by 2n)
that this diverges when either i1=ki ——0, or i1=ko ——0,
and nowheie else. If g is therefore prevented from
having zeros coinciding with ki or k2, the integral will
be finite. Now the origin of q

' was (m'+p') ' before
matrix elements were taken, that is, from a zero-order
Green's function. The definition of the outgoing wave
Green's function, which is the proper one to use here,
includes an addition of —ie to the mass. Therefore g
should properly be replaced by p —ie. As long as this e

remains different from zero, p cannot have any real
roots and therefore the above integral will be finite.
The Green's function e is therefore a sufhcient means
of cutting off the Coulomb divergencies without screen-

ing until the terms diverging as e tends to zero are
found to cancel. Then, of course, e will be allowed to
vanish. That e does not have the same physical reality
as a screening parameter is of no consequence, since the
latter would not have remained in the work anyway.

2' The notation io that of (2.12) and (2.26),



RADIATI VE CORRECTIONS TO ELECTRON SCATTERING ii67

The outlined procedure is substantially simpler than
the customary screening.

Let us examine the above outlined situation some-
what more precisely. After the replacement p~ —ie
has been made, and the k-integration carried out, only
the imaginary part of the result, which is of no interest
to us anyway, will diverge. The real part, i.e., the
princi pal part of the integral, has a definite finite value.
The real divergences occur in products such as g 'q3 ',
g 'g4 ', and ql '. Since gs=g4=pl=a when I=0, the
real in6nities will occur in the form of divergencies at
u=0, just as the infrared ones. Thus, the Coulomb geld
pro'duces divergence dQKculties only in the no radi-ation
limit.

The term r requires special preparation. That part
which contains gi ' is convergent. Equation (2.15)
shows that near v= 0, gati is of the form au+bv, and

1 (a+bv q
du(au+bv) '= log)—

0 aEbvj
This, although tending to in6nity as e tends to zero,
will not diverge when integrated over e down to zero.
The part containing ql ', however, diverges logarithmi-
cally at N=O. In order to separate the divergence, » ""

is replaced by (g&
'—rt&' ')+g&'—', where

Equation (4.2) results in the following split up of
I', (2.34):

~'dwt'I —v 1 )r„=e. d.
~

— )(I—u)P,
~o ~ i 2 EgP gi"j

t' dw
I,=e.' [1+V(1—wo)]-i

(4.3)

1—I X '
xi , l~, (44)

~ X'(1—u)g+u+uX'(I —w') q j
I' =4[Fp log(m/o)+X'(1+2K') '(F +-'G)]&g ' (4 5)

p=1+4~ —-', ho+a'(4~ —Q k), (4.6)

~l ~1
I'„=X4 dv (1—v) -'dwuq, —'Q k[2v (3—2u)'

J0 —4—-', vh'+8(1 —u)'vy], (4.7)

F,= 2X' dv (1—v) -'dwuqi '[4 (3—4u+2u')
0 —1

—h' —8 (1—u) X'y —8u(1 —u) y], (4.8)

pl
'

~1
r„=4 ' dv(1 —v) —',dwuqi

—'[4X'y(1 —u)

g '=X'v(1 —u)q+u[1+V(I —w')] (4.1) —2 (1+u)—uA'Q k]. (4.9)

The di6erence will no longer diverge, since»~1 as r contains an infrared divergency and r&, a Coulomb
a~0. The e-integration over the last term is carried out divergency. The latter, which is not apparent on the
immediately: surface, arises from the fact that as u—+0,

I

X'(I—u) I de' ' lim [dh][u+uX'(1 —w') yX'(1 —u) (q —i.)]-'

= ——'{[u+X'u(1—w')+X'(I —u) ] '

[u+g2u(1 w2)]—1}~—1[u(1 w2)g2+u

+ (o/m)2u
—1]—1+$2u—1[1+g2(1 w2)]—i

[dh](q —ip) 9

We are now ready to collect the infrared divergencies
occurring in r:

1—u
xi r, '=4 ~ dv&,

E (1—u)gX'+u[1+X'(1 —w')] q j (4.10)

The zv-integral over the 6rst part is then easily carried
out and the result is that

r,l= —4 [I+ (1——;h'+4~)~-'],
u'+ (c/m)'

(4.11)

(1—u)q
—P—+(I—u) (g,

—P—g,
—')+u '[I+&'(I—w')]—'

r 1—1S

xi
& ~'(I —u)n+u+u~'(I —w')

1 G+2Fi Fp
+g—' — +—log(m/p) . (4.2)

2 1+2K' X'

pl I
I'oi 8 I dye(Q. k 4~)

u'+ (p/m)'

X[(I+/(1 v&))
—i v~(1+/&(1 —v&))

—&] (4 12)

I' i=8&o(Q k —4y)q '(Fp+Fi) log(EEm/pPo), (4.13)

I'„'=4Fo log(m/o)[(1+2K') (I+4y
—-', h')q '+2K']. (4.14)

This replacement is, of course, necessary only in terms The I- and e-integrations are readily carried out and
without a factor of I or e. all terms containing loge are seen to cancel each other.
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We may now let the photon mass e vanish with im-

punity, and the result remains unchanged.
Before the Coulomb divergencies can be cancelled,

the k-integration has to be carried out. According to
Appendix C (B n=0):

f
[dk)q

—'=0, (4.16)

[dk) (A+ B k+Cn k+-,'Dk') —'= 2[48'+ (A —D)')-l

(A —D)'+48')
)&cos 'i 1—2

i (4.15)
(A+D)' —4C')

for AD)(B'+C'). In the case of g, C=O, D=1,
8'=Q', A = —1+a, where a is to tend to zero via ip-
For a) 1+Q'—=8', (4.15) holds directly. As a—+(8' the
cos

—' becomes
pr+i log168'a '

If a=re'& and y is allowed to change from zero to
—pr/2, then

&+i log(168 & p '+) =pr+2p+ilog168 p —&ilog168 6

Therefore, the real part of J'[dk)g ', which is the only
one we are interested in, vanishes. (Notice that the
sign of the imaginary part is fixed to be positive by
the positive sign of p.)

By the same kind of analytic continuation, the other
integrals involving g are obtained from the results of
Appendix C. [Notation: (2.22)):

m. —2 tan '(p/U) =2 tan '(U/p), (4.22)

whose value at U=O is 0. Also

cos ') 1—2- ~=2 sin '
U iei— (U—ip)-*'

8+ (8'—U)'*
=pr+2i log ~—tan '(p/U)

(U—ip) l

= —',n.+tan '(U/p), (4.23)

whose value at U=O is ~/2. Therefore

(1+2K')(1+2')—X'U U
X 2tan '—

(48'+ U' —4U)'

where U=(uX 'U(1 —U) ' and (v=1+X'(1—w') The
U-integration is split up from zero to 0' and from 0'
to ~. In the first part,

( U i—p 8—' ) (U' —4U+48') l'

cos '( 8 —1 )=2 sin '
(U—ip)'

(U' —4U+48') '+2 (8'—U) '
=pr+2i log—

1

[dk)-', k'g '=2pr(1+Q') '* (4.17)
1+2lw, ' Ut

tan '—. (4.24)

1 1
[dk)-

g 1+bkP

cot '2[b(1+Q'))'*, (4.18)
(1+4b) (1+Q') '*

1 k'/4
[dk)—

q 1+bkP
4 1+3b-

cot '2[b(1+Q'))~. (4.19)
(1+Q')' 1+4b

( 8'
cos 'i 1—2

U ip)—
—(value at U= 0), (4.20)

(4.21)8'—=1+Q'= csc'-,'8,

By the use of Appendix C it is found that

f1 p dU 1
[dk)r, =16 ~~ d~

~p &p U (o+X'U

-(1+2yp)(1+2') —ypU
~ U —;, gp

X —cos
(48'+ U' —4U)' E (U—ip)' )

1+2)P

The divergent part of this is

~1 ~g2

32(1+2K')y8 ' dw~ ' U 'dU tan '(U/p)
~o

=32' (1+2ZP) 8
—~P U'—~d U tan —~ (U/p). (4..25)

In the second part of F&, V is conveniently replaced
bye '.

In similar fashion, the divergent parts of F~ and F,
are isolated and found to be

g8

32p8 ' U 'dU tan —'(U/p) (4.27)

The sum of (4.25), (4.26), and (4.27) vanishes. Thus
all the Coulomb divergencies cancel. The divergent
parts (4.25) to (4.27) are subtracted from the terms
from which they arose and the remainders possess a
finite limit as e tends to naught.

—32'(2+/ Fp+g Fg)g ~ U—&dU tan —
&(U/q) (4 26)

~o
and
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After the cancellation of both the infrared and the
Coulomb divergencies has been accomplished, nothing
but a number of convergent integrations remains. The
k-integrations are given in Appendix C. Then there are
the integrations over three auxiliary variables left. All
of these can be reduced to at most one-dimensional
integrals by extremely long and tedious procedures and
the result is much too complicated to be amenable to
either discussion or easy numerical evaluation. '~ We
shall therefore immediately proceed to low-energy and
high-energy approximations.

~[dk)r,~—sir,

[dk)r~ —4m,

f
[dk)r.—+—(64/15)m8 '

while F„F~,I', and F„ tend to zero.
The functions I~ and I2 are de6ned as follows:

(5.s)

(5.9)

(5.10)

t'[dk)r S , (5.1)

S. LOW-ENERGY LIMIT

The nonrelativistic limit means, in the present
notation, )—&0. As we want to avoid carrying out
explicitly all the integrations involved in F, the limit
has to be taken under the integral sign and a certain
amount of caution is mandatory. Since, nevertheless,
the procedure is relatively simple, if slightly tedious,
only the results will be furnished. It will be noticed
that F~, F~, and F, contain parts proportional to X ' so
that the remaining terms in these contributions have
to be extracted more carefully. Variables were changed
on the whole as indicated in Appendix C. The arrow
denotes the limit as B +0 (B is d—efined by (C.18) and,
at low energies, equals P') and hence 'A—&0 (after both
infrared and Coulomb divergencies have been cancelled
out as described in Sec. 4).

t
2S—'

dyy '(I' 'sin 'I"l—-', m-)Il-J,
+-,'s.)t dyy

—'I' '*, (5.11)
28—2

p28
I2—=

~ dyI' ~ sin 'Y&
~J p

+-', ir dy(V
—l —0

—'y —'), (5.12)
62g

and I' is given by (C.15). The brackets in (5.1) to
(5.10) indicate parts that cancel out. Since Ii cancels
everywhere, the integrals in (5.11) need not be evalu-
ated. The second integral in (5.12) is immediately
found to be ——',~8 'log[~i(8+1)). The first one is
conveniently done by the substitution y=8 2(s+1)
and subsequent application of the operator

t'[dk)r, -S.,

~
[dk)r~[ —6e; I,—32~ logB+64I,]

—(16/3)ir8 ' log(16B)

+8[4+(35/9)8 ')ir —32(28' —1)I2)

[dk)I',—+[32K 'I2+ 16ir logB —32Ii]
—8+8 ' log(16B)

(5.2)

d0(a/a0) 0,
8

whereupon its value is found to be m8-'log(1+8-').
Hence

I2 'ir8 ' log[48—'(1+8———-')) (5.13)

The sum of (5.1) to (5.10) yields, according to
(2.21a), the low-energy limit of the radiative correction
[in the notation of (2.16)):For P«1,
82 ———(Sn/3ir) tan'28 (1+csci26) {(121/120)

+log[~~&2 sin~~a(1+sin~~8)P 2)). (5.14)

+16(28'—1)I'd+4m (8 ' 4)—
) [dk)rg +47r(1—0 '),

~~[dk]r &
—+[—16ir logB+32I )—(8~/3) (3+0 '), (5.6) Sn(19 m )

(da/dQ)/(R = 1—P' sin2( —'8) 1——
~

—+log
3ir (30 2hZ j

In this low-energy approximation the form factors Si
and 52 are, of course, unity.

(5.5) Equation (5.14) in conjunction with (2.18) and
Schwinger's result" yield the following at low energies
(where (R is the Rutherford cross section):

[dk]I', [32K 'I +32ir logB —64I ]
—sir0 ' logB+ (16/3) (5+60')Iu, (5.&)

"This result occupies fourteen pages in the author's doctoral
thesis at Harvard. It is not recommended for inspection for the
possible purpose of numerical evaluation,

csc-,'8 —1

Sn |'121 sin& (1+sinMs) p
]+log ( . (5.15)

3~ (120 v2P'
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This equation shows that not only is ~Spy, ~))~8i~ in
the nonrelativistic region, but also (PB sB p()&( B i[ by a
factor of log/. It is well known that at low energies the
Born series becomes unreliable, because it is essentially
an expansion in Zn/P rather than Zn alone. By that
reasoning one could, however, under the condition that
Zn«P«1, expect the low-energy limit of the second
BA to be a small correction. Equation (5.14) shows
that that is not so, but that, instead, the necessary
assumption is that

ZnP 'logP '«1 and P«1. (5.16)

Equation (5.15) for slow electrons, with the assump-
tion (5.16) is in conflict with the conclusion of Mittle-
man, "who performed a nonrelativistic calculation of
the radiative correction to all orders of Zn (and first
order in the number of photons) and obtained a
multiple of the uncorrected cross section. The ratio of
the two cross sections in his work contains, however, a
dependence on an unknown parameter needed for an
ultraviolet cutoG. There follows the statement that
this parameter is to be fixed by comparison with the
first BA and it is concluded that the relative radiative
correction for slow electrons is the same to all orders
in Zn; which contradicts (5.15).

The convict is resolved by the realization that the
ultraviolet cutoG parameter needed in the nonrelativ-
istic calculation is a function of Zn and PPP; comparison
with the 6rst BA yields only its zero-approximation in
Zn. The conclusion that the relative radiative correction
to the over-all cross section equals that to the first BA
is therefore incorrect. Furthermore, the fact that (5.14)
contains a logP means that the low velocity limit of
the relative radiative correction (even if Zn/P is kept
constant in that process) does not exist, although that
of the cutoff parameter does; not a very surprising
result in view of the logarithmic dependence of one
upon the other.

0. HIGH-ENERGY LIMIT

In order to simplify things to any appreciable extent,
the extreme relativistic limit has to be combined with
the assumption of not too small a scattering angle, so
that )t»1 (just as in the case of reference 19). The
second sentence of Sec. 5 is even more applicable in the
present case and the extraction of the limit as X~~
under the double integrals is rather lengthy and tedious.
We shall list only the results obtained after the Coulomb

"M. H. Mittleinan, Phys. Rev. 93, 453 (1954).
~ This is equivalent to saying the following about details of

reference 28: The integral in q0 ought really to be extended to
~, and this is done with impunity if the full relativistic theory
is used. In the work of reference 28 the full I (k) is replaced by its
nonrelativistic approximation and a cuto8 replaces the taking of
the nonrelativistic limit after the integration is carried out. The
size of this equivalent cutoff will depend on the order (in Zp. )
where it is performed, since the integrals involved dier from
order to order. Moreover, only if at a given order the low-energy
limit of the cuto8 exists and is not zero can one replace it by that
limit alone.

F, const, F„const, (6.7)

I „yi,+r,+r,yr,
—4n (1—8 ') [(log2)t)'+3 (log2)t)

+4(2 log2) —1) log (DE/E) ), (6.8)

I', —16tr(1—8 ') log2)t. (6 9)

The sum of (6.1) to (6.9) and the use of (2.21a)
yields the following correction to the second BA in the
case of pure Coulomb scattering and (pp/m) sruti/2&)1:

8s —(n/pr) {[log[2(Pp/m) sin-,'tlj}'—2[csc-',tl —z
—sec'-', 8(1+sin-,'cl) logs (1+cscz'tl)
+sr (1+cscM) (1+3cos8) (3—costi) log(1+csc-,'8)
—2 log (DE/E) J log[2 (pp/in) sin —87+f(tl) }, (6.10)

where f(8) is not known and is assumed to be relatively
small.

At an energy of 100 Mev and for right angle scat-
tering, the size of the correction is 8~ =0.27 if the energy
resolution is DE/E=0. 01; and Is=0.14 if DE/E=0. 1

(f(8) was neglected). It depends thus rather strongly
on the allowed energy loss. It is remarkable that at
this energy and angle the contribution of the logarithmic
term is about 6 times as large (for AE/E=0. 01, about
3 times for hE/E=0. 1) as that of the (log)' term, and
with the opposite sign. The values for 82 given above
are to be judged in conjunction with those of the
second BA, 82=0.5)&10 'XZ for this energy and
angle, and the value —,

' for the relativistic correction
(1—P sin'-'i9)

~ The author is in possession of these integrals and will gladly
furnish them to anyone who considers it worth his while to
evaluate them.

divergencies (4.25) to (4.27) have been subtracted from
their respective terms. The leading terms at high
energies tend to infinity as (log2)t)'. Therefore both the
factors of (log2X)' and (log2X) were kept. The constant
terms contain a large number of integrals and their
evaluation would involve an amount of work dispro-
portionate to their expected importance. "In that sense,
then, here are the asymptotic values in the pure
Coulomb case:

I', 4ir8 '(log2)t){(8—1)(128-'+68 '—108 ' —5—28)

+2(3—8—108 '+68 ') log[-', (8+1)j+2(8—1)
X [1+2(8+1)(28 '—38 4)j log2}, (6.1)

48pr(8 —8 ') (log2) )'
+16z (8 ' —1) (log2X) [(8+1)(38 '—2) log(8+1)
+4(8+1) log2 —2(28' —1) (8—1) ' log8
—(7/2) (8+1)—(5/2)8 —'+ (3/2)8-'+38 —

Pg, (6.2)

I'. —32pr(8 —8 ') log2)~, (6.3)
I" —16z (8—8 ')(log2)t) —32 8 'log81og2)t, (6.4)

I'~ —32z (8—8 ') [(log2)~)'+2 log —',8 log2)t), (6.5)

8 (log2X)[2 log2 —(1—8 ') log(8+1)j, (6.6)
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As the energy increases, the value of the correction
decreases and becomes negative for very large energies.
The relative importance of the energy resolution
decreases with increasing impact energy. Furthermore,
at extremely high energies, 6s/8i becomes 'arbitrarily
large. Hence the Born series of one-photon radiative
corrections becomes increasingly Ne~t, liable at very
high energies. It is, of course, a moot question whether
the eth term in the series contains [log(ps/m)]" as a
leading term. Since parts" of the first term in the series
(the Schwinger correction) also contain [log(ps/m)]'",
which however happen to cancel out, the increase in
the power of the logarithm may be accidental. To the
author, this seems unlikely. If the mth term in the
series does have an asymptotic value proportional to
[log(pp/m)] then not only are the first terms quite
insufFicient as an approximation at very high energies,
but the series can be expected to diverge beyond a
certain value of the energy" (as weil as below a certain
small energy).

The entire discussion in the last paragraph of the
behavior at high energies is, of course, restricted to
pure Coulomb scattering, and therefore somewhat
academic. In reality, the nucleus is not a point and no
matter how small a non-point-charge distribution is, it
leads to the form factors indicated in (2.16), (2.19)
and (2.21). The nature of these modifications is such
that in each term of the Born series of one-photon
radiative corrections as the energy increases, the form
factor tends to zero relative to that of the previous
term and at least linearly" with (m/ps). Any possible
factor [log(ps/m) ]"is therefore more than compensated
and the series will, if it ever converges, tend to its 6rst
term at extremely high energies.

A general modification of the result (6.10) for an
arbitrary extended source has not been accomplished.
The following can, however, be stated. The terms
proportional to (log2X)s in (6.2), (6.4), and (6.5) cancel
and the entire contribution to 8s in (log2X)' comes from
(6.8), where it stems from I' and Ps only. Both I'
and Ps have precisely the same k-dependence as does
Bs, (B.5). Their shape dependence is therefore the
same as that of the second BA, i.e., Ss, (B.7). At
extremely high energies Eq. (2.6) therefore reads

(do/dQ) s = QSi[Si cos's8 (1—8i)+BsSs(1—8s')], (6.11)

where now

8,'= —(n/s) flog[2(ps/m) sin-,'8]}s. (6.12)

Equations (6.11) and (6.12) hold for arbitrary charge
distributions when log[2 (ps/m) sin-,'8]))1.

"The function G(X), in the notation of reference 19.' Unless it is such that it converges for arbitrarily large Zo..
Hardly anyone would be likely to argue for that.

33 Possibly more than linearly due to the increasing number of
factors of the kind sin(Alt) and their rapid oscillation.

An important question, of course, is whether at the
energies experimentally used today, the radiative cor-
rection will be substantially altered by the form factor.
The value of the relevant parameter E, defined by
(2.20), is approximately 4&&10 'XA' (where A is the
number of nucleons in the scattering nucleus); at 100
Mev and right angle scattering this leads to a value of
IQ, = rsAi (=1.5 for Al, =2 for Cu, =3 for Au). Since
there is no evidence that the charge distribution in the
nucleus is extremely peaked at the center, the factor
sin(sXEkr)/(9, Ek,) will in effect be appreciably smaller
than unity for k&)4A '. It is hard to estimate the
effect of this upon the value of the shape integrals,
especially to compare the effects on S& and S2, or those
in 8&. Presumably, when the first BA leads to a real
zero of the cross section (a situation where comparison
with a phase-shift analysis shows that the first BA is
very misleading" ") the form factors of the second BA
and its radiative correction do not vanish; and hence
(2.16) shows that the second BA (with correction) will
predominate over the first (with correction). However,
(2.16) also shows that both still have one factor Si in
common and hence all of (do/dQ)s still vanishes when
the first BA does. It is not until parts of the third BA
(and its radiative correction) that the shape factor Si
will disappear altogether. (See Appendix E for an
elaboration of this matter. ) The present calculation
can therefore not contribute to the "filling in" of the
6ctitious dips of the first Born approximation. "

APPENDIX A. TRACES

The following equation, which is used for the evalu-
ation of the traces in (2.10), is easily derived:

s tr(m vC)va(m —vp) (1,v„,V„v„)—
= 2m(ap) mA ap+apXQs,

m(a„)i„),„a) b„—„ap), —(A.1)

[where ps ——
qs, and the notation (2.6) and (2.27) was

used, with an obvious extention to the zero-component;
a is an arbitrary four-vector]. The substitutions indi-
cated in (2.5), the notations (2.12), (2.26), and the
convention

kk=—ki ks ——1——,'k' (A.2)

then yield from (A.1) the following traces. The arrow

~ Appendix D will give a brief discussion of the nature of the
integrals involved in S2 and Se.
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stands for

—
4 trpo(m —pp) (m y—q)/porn'Ao(mhkl)Ao(mllk2)

FF—&—4m''kk,

F(m+yp)F~2m94Q k,

yFFy—&—ash'kk,

yF(m yp)F—y~ m94(—4ykk+(Q k)'),

7F (m pp)2F—y~2m94(2g 4y —(Q k—)2),

o-Fo-F—+—Sm'A'kk,

aP(m+yp)oF~16m27 4PQ k+y).q+16m2X4(y+ 1)

yFkaF~ 2im9—4kkQ k,

aFkFy~2im94kkQ. k,

yPk(m yP)aF~— 4im94k—kk22,

oF (m yp)kFy~—4im27 4kkk12,

yJaF +2m2X4Q —kk22

aFy J~2m2$4Q kk 2

yJ(m —yP)aF~4m9, 4klpk22

oF (m yP)yJ~4m—94klpk22,

JFy—+i 9m4Q. kk12,

&PJ~pm9, ~Q. kk22,

J(m yP)Fy~ —2im94qk1—2

yF (m yp) J + —2im94g—k22—

yJ(m —yp)2k'~ —2im9pkk(kk+4r) k12,

yFk(m pp)2y J~2im—9,pkk(kk+4y)k22

yJ(m yp)kFy—~im4Xpkk(Q k 4y)k.12—

yFk(m pp)y J~ i—m4X pkk(Q k—4y) k22, —
yJ(m yP)y J—-~m4XP(Q k 4~).klp—k22

yJ(m yp)2yJ——&

2m'leap—

(kk+4y) klpk22

where convention (2.11) is used again for the Fourier
transforms. The trace is easily found to be

—,
' tr . =2mppl%2(Q k —ky), (8 3)

B2——-'2ZnP sin26 t'[dkj(4y —Q k)/V. (8.5)

Finally, Eqs. (2.26), (4.16), (4.17), and (C.10) allow
us to carry out the integral, and we obtain

B2=prZnp sin20(1 —sinpvI), (8.6)

in agreement with McKinley and Feshbach. '
We may now also write down the form factor of the

second Born approximation:

I +1

52=22l Sec 28(1+SlI128')) dvlvl P( l)vdv2v2P(v2)
0 0

(sinvIXEklq (sinvplIEkpy 4y —Q.k

vIXEkl ) E v2&Ek2 )

APPENDIX C. k-INTEGRATIONS

The principal integral occurring in the k-integration
of F is of the following type:

in the notation of (2.27), and (2.40). Equations (2.14),
(2.15), and (2.17), and the notations (2.20) and (2.22)
then yield [with the same notation as in (2.16)]:

I tl
B25'2—2ZQj8 SII128 dvlv1 p(vl) dv2v2 jo(v2)

p 4p

(sinvIMkl~ (sinvp~kpy +—Q k
X Ldkll I I I (8 4)

vIEXkl ) E v2E7lk2 )
For pure Coulomb scattering, E=0 and thus by (2.14):

APPENDIX B. SECOND BORN APPROXIMATION

Equations (1.1) and (2.2) yield for the ordinary
second BA

(da/dQ)2 ——4 4Retr(m —yP)(p~yAGp+A~q)

X (m —~q) (ql ~A I 1I). (8.1)

~ = 2~- (dk)'k k 8-'=—"[dkÃ-',

kl ——n+-,'k, k2 ——n ——,'k,

@=—A+8 k+Cn. k+-'Dk'

(C.1)

Equations (2.8), the equivalent of (2.5) for the simple
present case, and the substitutions indicated between
(2.5) and (2.6), yield for this [with the notation of
(2.7), (2.12), and (2.26)j

where n is a unit vector and 8 n=0. The split of the
part of the denominator @ linear in k is, of course, no
restriction and can always be made. It is particularly
convenient here since Q n=0, in the notation (2.6)
and (2.27).

A sufficient condition for convergence of 8 is

(do./dQ) 2
——

t-(dk)'
XAp( —2m' AD) B2+C' (C 2)

XA o(mhkl)A o(mXk2)-4'tr(m —pp)

X (qkX —4qopp/m) (m —pq)pp (8.2)

which we assume to be satisfied. Whenever (C.2) is
not satisfied, 0 will be evaluated by analytic continu-
ation from the case where it is.

The evaluation of 8 proceeds by means of the
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familiar identity 8=C=D= 0, a result easily obtained directly:

( &)-'= !d !4(1—~)Il (1+~) ,

' Ldk]=22. (C.10)

~ = 2L (A —D)'+4B'3 '
(A D)'+—4B'

Xcos—' i —2
(A+D)' —4C'

(C.4)

Since for 8=C=D=O, 8 must have the sign of A and
the result never vanishes so long as (C.2) stays satisfied,
it follows that the sign of 8 must remain that of 3 if
the convergence domain is never left.

Other integrals may be obtained from (C.4) by
means of diGerentiation as, for example,

Ldk)-,'O'O —'=, dA (8/8D) a.

It is thus found that

+L-'f (1—)+-'~(1+ )(1—P) I-'. (C.3)

Then the k-integration is carried out and the auxiliary
integrations can be accomplished, first over P and then
over n. The result is

In case @=q, as in most other cases in the paper it
proves convenient to make the change of variables

U=u(1 —I) 'v '. (C.11)

Every integral then falls into two distinct parts,
separated by Up, which is determined simply as the
value of U for which the argument of the antitrigono-
metric function involved become unity. For U&Up
the formulas (C.4) to (C.9) are directly applicable,
since (C.2) is fulfilled. For U(Uo one must exercise
some care in analytically continuing the value of the
integral. When the value at U=O is needed, it is
important to realize the universal presence of —ie in
the Green's function (m'+p' —io) ' from which all
denominators g; originate. With this in mind, one
easily obtains the following equations:

1

ds (dk)gi

—; I Ldkj(1+-,k')8- =L(D+C) +B3-:
(e 90 dy

=4K '
I

— Y &sin '
~, yI.+2. .(L+2l+)(I.+2l )

(D+C)'+B' y
Xcos 'i 1—2 ~+ (C~—C) (C 5)

D(AyDy2C))
where

+2m' ' F *', (C.12=)
~ yo yI +2'v

Similarly,

) Ldkj@ '= —4le/4lA,

$dk$( 4k')@ '= Be/—BD,—

LdkhB k@—'= 2BBu/BB—'

(C.6)

(C.7)

(C 8)

L=X
—'+ (1—~)'(1—w'),

l+= n(1 —u) (1+w),
I'= 0'y' —2y+ 1,

(C.13)

(C.14)

(C.15)

and y= 2U 'L ', while 0 is defined by (4.21). Similarly,
because of the symmetry in the m-integration,

~1 ~l
Edkjk '~ '= dN, "Pdk3ni '(1+-.'k')

Another, somewhat more complicated integral is
evaluated in the same manner as 6:

' tdkj(2g+kio) 'kio@ '

y
"o w+yl+

1
2

=4F ' sin—'L2FP—'*R—l(g+2)—l$, g)0,
F'=

t A —gC —D(1+g)$'+B'(2+g)',
I' =A+D+2C,

R =A+D 2C+2Dg+2L2g(AD B—' C'))'——

(C.9)

We now apply the general results to the most
important cases needed in the body of the work.

Equation (C.4) yields as a special case, A = 1,

)&sin '
(L+2l+) (l+y+ v (1—v))

(C.16)

The corresponding integrals involving ql
—' are ob-

tained from the above by applying the operator
—) 4(1+v 'U ')(8/B ')X' to (C.12) and (C.16). For
m=1 these results immediately yield the integrals in
which ql is replaced by q3.

Further integrals of q3 needed are the following,
where the e of the Green's function has been kept and
can be allowed to vanish only after Coulomb diver-



gencies are cancelled:

f PPGkj 1
du I [dk]

(D.3)

The $ integral is readily carried out and one obtains

ROGER G. NEWTON

and g becomes

kv =sP+»' —1—Q([2 (sP+»P) —1]'.

40'a I~p dU

1+4}i'a"p 1+Ue

U(1+4}i'a)
tan ' I=J[—dkl~ 'f(ki) f(kp) [(1+-'k'), 1]

2 Ua+1
+tan '

2a& (8—U—U'a) &

—2tan '—
&**+(8—U—U'a) '*

sin '[8 'U(1+2Ua)

r" dsi t'+*'dsp
=4m Re

~p sr ~li—*il sp

f(2si)f(2»)[2(sp+»'), 1]sgn(sp+»p —1)
X[("+»'—1)'+Q'((.P—»')'+1 —2(.P+»P))]1

(D 4)

where t t
dude

I —'li8=—X'O'= P'(1—P')—'. (C.18)

The transformation u=sp+»', &=sp—»' changes this

+2 (U'a+ U 8)ia'] l, —(C.17)—

A similar, but more complicated result, is obtained
when the left hand side of (C.17) contains (1+~rk') as
a factor. We shall not bother filling space with it here.

The following results are needed frequently in the
course of the approximation:

[dk][&—i.+U]-'

2yV 'sin 'I'&, U&0'
(C.19)

2yV ' tan '(U/e), U&0'

where y= 2U ' and I' is defined by (C.15).

t [dk](1+-'k') [rl ie+ U]—
80 'sin '0U ", U&02

(C.20)
40-'(-'pr+ tan-'(U/e)), U&8'.

APPENDIX D. FORM FACTOR INTEGRAL

This appendix will briefly deal with a transformation
of the integral in 52.

In the integral in (B.7) we introduce the new variables

2si ——ki, 2» ——k2, $=k Ok
—'Q-'. (D.1)

Then

p" ds p'+" ds
I [dk]f(k, ,k,)q-'=4~-'Re I

~P Sy ~ )1-z1) S2

(CO 2(sP+spP) —1
X

(2(.Pgs, ') —1)(1—P)—(.P—»')'

Xf(2sr)2»)r} ', (D.2)

[2u, 1]sgn(u —1)f((2u+2rI) ')f((2u —2e) 1)
X (D g)

[(u—1)'—Q'(2u —1—e')]-*'

where the integral extends above the parabola
u=-,'(1+eP), with the exception of the ellipse (u —0')'
+(0'—1)r'=0'(0' —1), which osculates the former at
m=1, v=~1. The entire part above the ellipse can be
transferred into that below by the substitution I
=u'(2u' —1) ', rt =e'(2u' —1)—'. This yields

f' INIv
[(1—u)' —(0'—1)(2u —1—e')]-&I —'V

2u ( u+e -&q

, 1 fl 2 If]
2u —1 . E 2u —1 ) 0 2u —1 )

—[u,1]f((2u+2e) &)f((2u —2e) &), (D.6)

where the integral extends over the crescent between
u=-'(1+v') and u=0' —(0'—1) (0'—v')'* whose vortices
are at u=1, ~= &1, and which cuts the I-axis at I= ~
and u=0' —0(0'—1) '*. The function f(x) in (D.6) refers
to Jp'dec'p (e) (sini }%Ex)/(AE'x) ."

The transformations indicated above may serve to
facilitate the evaluation, numerically or otherwise, of
52 and the form factor of the third BA.

APPENDIX E. THIRD BORN APPROXIMATION AT
THE ZEROS OF THE FIRST

The zeros of the first Born approximation to the
scattering of high-energy electrons by nuclei of finite
size are due to the vanishing of the matrix element

"For X=O, f= 1, and (D.6) veri6es (4.16) and (4.17).
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(y~ U~tl) of the potential between initial and final
momenta. Every term of the second Born approxi-
mation, as well as its radiative correction, still contains
such a matrix element as a factor. The erst term
without it occurs in the third Born approximation, so
that at the position of these zeros of the first Born
approximation the leading term in the scattering cross
section is"

where the erst Born approximation vanishes. Here (R

is the Rutherford cross section,

pl ~1
+1=ss deltal P(sl) dsstis P{ t2)

l (dk)'('sinKktety (sinKkses) mxn k
x

kl k2 ~ Kklsl ~ ~ Kks&2

(d /dn)=2~4e4tr(m ~P)(y~y&Gsv~[q)
X (res —pg) (q ~

yAGsyA
~
p). (E.1) (dk)'f'(k) (mxn k), (E 3)

A consequence of this simple observation is that in
the region where the Born series may be expected to
be useful, i.e., for Z not too large, the cross section
ought to vary as Z' at the position of the minima (in
contrast to Z' variation elsewhere). In other words,
the relative depth of the minima ought to vary as Z '.
Since the Born approximation for the lighter elements
such as Al and, say, even Cu is computationally very
much simpler and also admits of easier insight into the
relation between charge distribution and scattering
cross section than the otherwise much more accurate
method of phase shifts, " it may be worth while to use
it appropriately corrected at the zeros by (E.1)."

The matrix elements and trace in (E.1) are straight-
forward to evaluate. The result is the following at high
energies $(ps/m) sin8/2))1]:

do/dQ= (R(&~Zn) )sin rtlpp+ ps j (E.2)
3' See I, Sec. III.
"At higher energies than the ones experimentally used at the

present such zeros will, of course, appear for any assumed charge
distribution, not only for the uniform one, as in reference 14.

Ss- t (dk)'f(k)(4ctn-, '0—m k), (E 4)3$

rl is defined by (2.26), ki and k& by (2.12),

Q =mctn-', 0,
n. m=o n'=m'= i7

K—= (rps/Ac) sin —',0,

(E.~)

(E.6)

(E./)
and r is the nuclear radius; p is the nuclear charge
distribution normalized by (2.14). The integrals Pr and
F~ would have to be carried out numerically. The
k-integrations can be reduced to two dimensions by
the introduction of

~
ki ~, ~

ks
~ &

and ~k~ 'm k as new
variables. The latter integral can then be carried out.
It may be advisable to use u= ~ (kP+ ks'), w = s (kP —k&')

as new variables and proceed as in Appendix D.
'8 The form factor of the second Born approximation can be

expressed in terms of 5'2. 82 ——-', s ' sec'-,'8(1+sin-,'8)SqF&, where
SP is the form factor of the 6rst Born approximation (all normal-
ized to tend to unity at low energies).


