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which represent the omission of momenta greater than
kp from the Fermi splitting itself. For kp=kp equal to
the n-meson mass, Eqs. (92) and (93) yield a value of
(5.8X10 ') for Ii (I'=0.9X10 ' for ks=M), which is
larger than the value of 3' given in Eq. (104). This
result merely emphasizes the prevalent feeling that a
crude nonrelativistic "spreading" of the nucleon bears
little relation to reality.
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would, also like to thank Dr. M. Baranger, Dr. C.
Greifinger, and Professor F. J. Dyson for helpful dis-
cussions. One of us (EES) is indebted to the Australian
National University, where part of this work was
undertaken.
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HANS FREISTADT
Jietoark College of Engineering, 1Vetoorie, ltieto Jersey

(Received April 20, 1954; revised manuscript received October 4, 1954)

A Hamilton-Jacobi formalism of classical relativistic field theory is developed. Both "time-independent"
and "time-dependent" formulations are given, and the relation between them is discussed. In the former,
the constants of the motion are identified with the "new" field variables, whereas in the latter they are the
values of the fields on a suitable spacelike surface. The explicit introduction of a Hamiltonian density is
avoided. As an illustration of the respective procedures, the classical Dirac and Klein-Gordon free fields are
solved explicitly. A perturbation method is formulated for the case of fields in interaction. The metric
tensor is not treated as a field quantity.

INTRODUCTION

'HE purpose of the present paper is to serve as a
starting point for the extension of Bohm's rein-

terpretation of particle quantum mechanics' to the
theory of quantized fields. It will be shown in a sub-

sequent paper that such an extension is indeed possible,
and can be based on a Hamilton-Jacobi formulation of
classical 6eld theory. It was thought preferable to
develop the necessary Hamilton-Jacobi formalism in a
preliminar'y paper, so as not to break the continuity in
the argument of the subsequent paper, and also because
a Hamilton-Jacobi formalism for field theory may be of
some interest in its own right. The formulation in the
present paper actually goes beyond what is needed for
a causal presentation of the theory of quantized fields.

The usual particle Hamilton-Jacobi formalism is
based on Hamiltonian mechanics. However, the essen-

tial features of Hamilton-Jacobi theory (i.e., the trans-
formation to "appropriate" variables, which are essen-

tially the constants of the motion, ' transformation
theory, and the reduction of the entire problem under
consideration to the solution of a nonlinear 6rst order
partial differential equation) can be based as well on a
Lagrangian formulation. In view of the greater adap-

*Originally reported at the 1954 Minneapolis meeting of the
American Physical Society.

r D. Bohm, Phys. Rev. 85, 166 (1952).
See, e.g. , C. Lanczos, The Vcfigfionat Priecip/es of Mechueics

(University of Toronto Press, Toronto, 1949).
'In some formulations of the theory, the momenta conjugate

to the "appropriate" variables are the constants of the motion.
Such formulations, while perfectly acceptable for particle dy-
namics, lead to difhculties in field theory.

tabiiity of the purely Lagrangian approach to the
requirements of covariance, 4 it is used throughout. A
Hamiltonian density could be introduced explicitly, for
instance by carrying out the differentiation in the right-
hand side of (10). However, no useful purpose would
be served, as it is not desired to develop a Hamiltonian
formalism. '

In particle mechanics, the case of conservative
systems can be treated by "time-independent" Hamil-
ton-Jacobi theory pI(tI, BS/Btj) =8j, whereas for
non-conservative systems, "time-dependent" theory
LII+BS/At=0, which will be written L=dS/dlj is
required. The functions 8 and 5 are not identical, but
for a conservative system, which can be treated by
either method, S can be obtained from S. From the
point of view of generality, one might think that the
time-dependent formalism should suffice. This is so
for particle mechanics, but not for 6eld theory. It
might be impossible to express the Lagrangian L as a
function of the Geld variables and conjugate momenta
alone, but still possible to express suitable constants of
the motion in terms of these variables (these constants
of the motion playing a role analogous to that of JI for
particle mechanics), in which case time-independent
theory is an indispensible tool. That is, in fact, what
happens in the case of the Dirac 6eld. Aside from this
contingency, solutions of field Hamilton-Jacobi equa-
tions are usually quite difficult to obtain, and one or
the other method might prove more convenient.

' J. Schwinger, Phys. Rev. 82, 914 (1951); P. G. Bergmann,
Phys. Rev. 89, 4 (1953).' Such as thatof R. H. Good, , Jr., Phys. Rev. 93, 239 (1954).
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Particular attention is paid to the problem of per-
turbation of "free" 6elds by an "interaction, " as it is
in such interactions that quantum eGects are observed.
The perturbation method developed here for handling
such classical interaction problems is simply the trans-
lation of well known methods of celestial mechanics into
a convenient relativistic field formalism.

The formulation given here is somewhat primitive.
It is covariant under the general group of transforma-
tions in space-time, but it obviously does not include
the theory of gravitation or its generalizations, both
because of the assumed form of the Lagrangian density,
and because the components of the metric tensor are
not treated as Geld variables. Likewise, questions of
constraint are not discussed. A more general treatment
is under development.

NOTATION

Space-time is described by four coordinates, P,
which are not required to be Cartesian. In (at least
locally) Rat space-time and pseudo-Cartesian coor-
dinates x», x'=x, , x4=ct, and g»„=diag( —1, —1,
—1, 1).The field variables are denoted by y". If F is a
function of P, and possibly also of y", then BF/BP
refers only to the explicit dependence upon P, whereas
B F=BF/BP+B y" (BF/By"). Likewise, BF/By" refers
only to the explicit dependence upon yA. V'„denotes
the covariant derivative, identical to 8„for scalars, and
for tensors as well in pseudo-Cartesian coordinates.

The dynamical behavior of the fields is obtained, as
usual, from a variational principle, 6$"=0, where
W= (1/c) JoLdco. The Lagrangian density L(y",y~», P)
is a scalar function. yA„means v'„yA. 0 is a volume of
space-time, and des is a scalar element of integration in
space-time: Cku= g(—g) (df)' By~ vani.shes on the
boundary of 0, the essential part of which consists of
two non-intersecting space-lik. e surfaces o-~ and 02. This
leads (provided w"» is contragredient to y", which is
assumed) to the usual Eulerian field equations, L"

BL/By~ V'.—7r""=0, w—here w"»=BI/By" » The inte-.
grated field momenta are p"= J;w"»do. , where do» is
a vector element of integration on the space-like surface
0. The summation convention is used between covariant
and contravariant tensor indices, and also between Geld

indices, the latter always being written as superscripts.

"TIME-INDEPENDENT" METHOD

Conservation laws associated with a Geld are ex-
pressed by the vanishing divergence of a number of
density tensors (current-charge j", stress energy T»",
angular momentum Gi»") for which t" shall be a generic
symbol. If one or more such tensors can be expressed
in terms of yA and mAt' alone, then one may seek. to
solve the 6eld equations by transforming to new

("appropriate, " "ignorable" ) field variables I"~ and
conjugate field momentum densities PA&, in terms of
which the integrated equations of Geld motion are

y'A A g pAa (1)

[Equations (1) are the relativistic field analog of Q;=n, ,
P,=t—P;, which hold for ignorable coordinates in
classical mechanics. ) The conditions under which such
variables F'A exist are not examined here; what is given,
rather, is a method of proceeding in cases in which they
do exist, i.e., in which the Hamilton-Jacobi equation
(6) has a solution. If such variables exist, then Eqs. (1)
can be derived from a new Lagrangian density L, which
need not be identical with L but if the variational
principle 8g =0 is to hold in terms of the new variables
as well as the old, it is sufGcient that

I,—L =cV'.8 .

The action density 8"(y",F's) (a vector) does not
explicitly depend upon the space-time coordinates P.

Integrating (2) from an arbitrary space-like surface
o; to the space-like surface 0. under consideration, one
obtains

W —W= 8(o.)—8(o;),

where 8(o)=J;S do . If one now considers a variation
of (3) from the physical history (i.e., from the history
during which the field equations apply throughout), in
which the 6eld variables are varied on 0. as well as
throughout the history from 0; to r, but not on 0;, the
result

(1/c))"(w"~by~ PE~BI'~)do— .

(BS /B Y~BF'~+BS /By "By")do. (4)

is obtained. Since the variations 8yA and 8VA on 0. are
arbitrary (it is assumed that the relation between y
and F'" does not prevent such arbitrary variations), it
follows that

~"»=cB8»/By~, P"»= cBS»/B V—"
Substitution of the first of Eqs. (5) into the conserva-
tion law (or laws) yields the time-independent Hamil-
ton- Jacobi equation,

V' t (y",cBS»/Bys) =0. (6)

The constants of separation cxA which arise in the
solution are identi6ed with the new field variables F",
yielding 8(y",cr~), and, by (1) and (5), the integrated
Geld equations in terms of the old Geld variables, ~

cw BS /Ba"= —1.

nA have the dimensions of energy per unit volume, and

' For instance, the Lagrangian density (in pseudo-Cartesis, n

co-ordinates) L=ZgPY + ', Y»(x 4P )j leadi-ng to-
= -', (x"—4p+») is an example of a suitable new Lagrangian density.
In general, such new Lagrangian densities, where they exist, will

be of the form L=ZA FA+terms in YA&', the explicit space-time
dependence of I is purely formal, as FA~=O. pAt" is a set of
constant vectors.

r In pseudo-Cartesian coordinates, cSS»/Sn = ~(4P "—x").
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can be identified, once the solution 8& has been found,
from the erst of Eqs. (5).

S(y",ns, a) = (1/c) (LCD,

the integration being performed from the configuration
on o-& to that on a., following the physical history. It is
assumed that 5 can be expressed as a surface integral,

S(yA ~B ~) — 3 Sa(yA. ~B P)d~

from which it follows that L=cV' 5 . By a simple
extension of the derivation of (5), one again obtains

s "~=cBS~/By" (9)

If the Lagrangian density can be expressed as a
function of the field variables and conjugate momentum
densities alone, the time-dependent Hamilton-Jacobi
equation is

L(y",cBS&/Bys, P) =cV' S (10)

If this equation can be solved for S&(y",ns, p) (the us
again appearing as constants of separation) the inte-
grated field equations are

"TIME-DEPENDENT" METHOD

It may be preferable not to view Hamilton-Jacobi
theory as the theory of canonical transformations from
a given system of field variables to the system appro-
priate to the problem under consideration, but from
the configuration y~ =a~on some appropriate space-like
surface 0& to the resulting configuration y~ on 0-, the
space-like surface under consideration. In that case, the
generator of the' transformation, the time-dependent
action density S"(y",ns, P), must depend upon the
space-time coordinates characterizing o-. This procedure
is usually required if L depends explicitly upon the P,
in which case there may not be any suitable constants
of the motion to set up (6), (i,e., the physical system
under consideration is not closed), or if L consists of
two "separate" fields in interaction.

The fundamental variational principle 88'= O implies
the existence of a functional of configurations

of a configuration on a space-like determines the con-
figuration on all other space-like surfaces. Therefore y~
and a" are not independent, and (9) and (11) cannot
hold simultaneously. One approach would be to keep
(11), abandoning (9). In that case, the left hand side
of (10) cannot be written down. However, in the case
of the Dirac field, the most interesting first order case,
L=O, as can be seen from the fact that L contains the
Dirac equation as a factor, or by eliminating B„$ with
the aid of the Dirac equation. In that case, a time-
dependent Hamilton-Jacobi equation is obtained by
setting the right hand side of (10) equal to zero.

cV' S —Qg u"=cV' 8, (12)

which follows from (2), (10), and footnote 6, provided
it is integrable. ' The constants ca~ thus introduced into
5& may be identifie with the n~. Consistency of the
two methods is further confirmed by differentiating
(12) with respect to n~ and comparing

cV BS /Bn~ —1=cV B8 /Bn"

with P) and (11); the P~& may likewise be identified
with the P"&

The time-dependent action density 5& for a system
which can be treated by the time-independent method
is not constant, but its change is trivial. The system is
evolving, but without changing its "state, "-i.e., the
set of appropriate field variables cx" related to the
constants of the motion.

PERTURBATION METHOD

Suppose that the Lagrangian density consists of two
parts, called, respectively, the free part and the per-
turbation (one hopes that the latter is sufficiently weak
to induce only small changes):

L=Lo+Lr.

RELATION BETWEEN "TIME-INDEPENDENT"
AND "TIME-DEPENDENT" METHODS

If a problem has been solved by the time-inde-
pendent method, the time-dependent action density
S&(y,n, P) may be found from the time-independent
function 8"(y",us) by the relation

~BSHE/B& A —P A p

where, by a procedure analogous to that leading to (5),
the P"& are identified as minus the (constant) values of
the conjugate momentum densities on 0.&.

It was assumed throughout that in S&(y",ns, p), y"
and ns are independent. The derivation of Eqs. (9) and
(11) depends upon that assumption. Actually, this is
true only in the case of second order field equations. In
the case of first order field equations, the specification

(a) The system under consideration is not closed, and

LJ represents the eGect of the "outside";
(b) The system divides naturally into two or more

component parts, with interaction between them.

' In pseudo-Cartesian co-ordinates, the solution is

S"=Zg (a"/4c) xi'+8i'.

(11) This happens in two important cases which may be
considered together:
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The time-dependent action density of the free part,
$0&, may be found by either of the preceding methods.
It satisGes cV So ——Lo, which, if subtracted from (10),
leaves

EXAMPLE OF TIME-DEPENDENT METHOD:
THE FREE KLEIN-GORDON FIELD

~Ko= k(—c&/«) (O'V «V—*f)

&r(y",cBS~/By~ P) =cV'~M~
The Geld variables are the complex scalars f and f~.

(15) f„mea ns 8„$. The conjugate momenta are

(where AS&=S&—Soi') as the Hamilton-Jacobi equation
of the perturbation problem. It may be possible to solve
a problem by first obtaining So&, substituting the result
into (15), and then solve for hS& (and thus for S&). The
integrated field equations are then given by (11).

In addition to possible simplification of the solution,
the perturbation method gives a better insight into the
physical phenomenon: the perturbation induces a
change in the "state" of the system.

', —(ch—/«)y*», ~*~= ',—(c-k/«)P~

The Lagrangian density can be expressed in terms of
the field variables and momentum densities alone,
leading to the time-dependent Hamilton-Jacobi equation
(10),

—(2«c/h) (BS /8$) (BS /8$*)+ (ck«/2)P*f= cB S .

Carrying out the differentiation on the right hand
side' and changing Geld variables by f=Pi+if2,
/*=Pi i/~, one —is left withEXAMPLE OF TIME INDEPENDENT METHOD:

THE FREE DIRAC FIELD
l(c«/&)L(BS /84i)(BS-/8 i) (BS /BA)(BS-/BA)]

in pseudo-Cartesian coordinates. +2CA«(lp +lp )=CBS /BX ~

Lg) = hcp, d;
—(A "8.„+«)p

The field variables, f and f,q;, are spinors. f,q; denotes
the adjoint of f, f.d; =ftp', where ft is the Hermitian
conjugate of f. p& is a vector, the components of which
satisfy Lpz, p&]+=2gz&. The conjugate momentum den-
sities are ~&= ihqk, —q;y& and ~,q;&=0. It is not possible
to express the conventional stress-energy density tensor
T„" as a function of the fmld variables and conjugate
momentum densities alone; but it is possible so to
express the current charge density vector j&

w+ yielding the Hamilton-Jacobi equation (6),

a special solution of which is

8~= (Fi«'/4i) k~ ln. (P/N).

Here, ca= L4c, k k =~', and N is a constant spinor. The
integrated Geld equations are (by footnote 7)

p=m expLik (4p —x )].

in which the insets

S"(0' ~A *")=S "(0' )+S"(8)+S*"(*")
can be used to separate the variables:

g(c«/h)(BS; /8$, )(BS; /8$, )+2ckeP, =n;, (i=1, 2),

CBS~ /8$ =n~, ni+ng=n~.

A special solution of these equations is

S, = ', (i~ {P;P-/n(h )c—«yP]&

+[2n;/(kc«)] sin '$f;(2n;) &(fic«)&]),

S.~ =n.x~/(4c),

where e"=k&/« is an arbitrary direction cosine, and the
integrated Geld equations are, by (11),

p;= (2n;) &(hc«) &sinLk.-(4p,'—x )].
It is a pleasure to thank P. G. Bergmann for stimu-

lating discussions.

~ This corresponds to the introduction of a Hamiltonian density


