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Mass Corrections to the Hyper6ne Structure in Hydrogen

W. A. NEwcoMs, * Forrestat Research Cerfter, PrirIcetan, New Jersey
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(Received September 24, 1954)

In a previous paper, a covariant wave equation for bound states was used to calculate corrections to fine
structure. The techniques developed in that paper are extended here to the study of hyperfine structure
(hfs) in the hydrogen atom. An expression is derived for corrections of relative order (nrn/M) to the hfs
splitting of any S-state of hydrogen, arising from the finite mass of the nucleus. The proton is considered
as a point particle with an anomalous magnetic moment of the Pauli type in addition to its Dirac moment.
It is shown that the corrections obtained with an unmodified Pauli moment diverge logarithmically, and
a cut-oft in momentum space is introduced. Numerical results are given for the limit of large cut-off mo-
mentum. It is shown that the leading terms, which involve log(3f/rn) as a factor, can also be obtained from
a modified form of three-dimensional perturbation theory.

1. INTRODUCTION

'HE Fermi formula for the hyperhne structure
splitting of 5-states in hydrogen (hereafter desig-

nated by hfs) is

hfs= (2rrcrtt /3rttM) (tr'o')
I P(0) I', (1)

where n is the 6ne structure constant, p„ is the proton
magnetic moment in nuclear magnetons, m and 3f are
the electron and proton masses respectively, and p(0)
is the Schrodinger wave function evaluated at the
nucleus. We are using a system of units in which

fi =c= 1.Since
I g (0) I

' is proportional to ttttts, where trtre

is the reduced mass trtM/(M+m), the hfs splitting
contains a factor (1 3rrt/M), t—he simple "reduced mass
correction. " This factor, derived by a nonrelativistic
argument, accounts approximately for the recoil of the
proton. Using a relativistic approach, we would expect
further mass corrections of relative order crttt/M. In
1947, Breit and Meyerott' ' applied the approximately
covariant Breit equation to this problem. They found

that the Breit equation gives the reduced mass cor-

rection, but no terms of order ctrrt//M.

Bethe and Salpeter' have derived a completely
covariant procedure for handling such problems, which

was applied by Salpeter' to 6ading corrections of rela-

tive order crttt/M to the fine structure (fs). Karplus,
Klein, and Schwinger'' have also found a method,
based on the Schwinger- Tomonaga formulation of
quantum electrodynamics„ for solving bound-state
problems, and have used it to obtain mass corrections

~ This paper is based in part on a Ph.D. dissertation submitted
to Cornell University in September, 1952.

t Presently on leave of absence from Cornell University at the
Research School of Physical Sciences, the Australian National
University, Canberra, A. C. T.

' G. Breit and R. E. Meyerott, Phys. Rev. 72, 1023 (1947).
s Breit, Brown, and Ariken, Phys. Rev. 76, 1299 (1949).
3 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
'E. E Salpeter, Phy. s. Rev. 87, 328 (1952), hereafter referred

to as S.' R. Karplus and A. Klein, Phys. Rev. 85, 972 (1952).
e Karplus, Klein, and Schwinger, Phys. Rev. 86, 288 (1952).

to the hfs in positronium. 7 This procedure has also been
applied by Arnowitt' to 6nding mass corrections to the
hfs in hydrogen. This paper presents another calculation
of the hydrogen hfs for S-states, by a method analogous
to that used in S. Since hfs is of order (ttt/M) X (fs), the
present calculation consists essentially of carrying the
expansion in absolute powers of (m/M) of S one order
higher, retaining only spin-dependent terms, and in-

cluding the eGect of a Pauli-type magnetic moment.
Wherever possible we shall use the notation of S.

As in S, we 6nd it convenient to separate the instan-
taneous Coulomb interaction from the eGect of the
transverse photons in accordance with the equation'

(2)

where n~ is the component of n perpendicular to k. A

similar separation will be used for the Pauli terms.
The mass corrections are all produced by processes

in which the proton and electron interact twice, either
through the exchange of two transverse photons (double

photon terms) or through one transverse photon and

one instantaneous interaction. Processes involving two
instantaneous interactions contribute to the fs cor-

rections, but, since they are not spin-dependent, they
do not contribute to the hfs.

Let k' and k be the momenta absorbed by the proton

during the erst and second interactions respectively. It
will be shown that the main contributions to the hfs

mass corrections come from values of k between nz and

3f. Since these values are large compared with the Bohr
momentum of the atom, which is of order nm, it will

be possible to neglect the internal momentum of the

atom and to approximate k' by (—k). In this approxi-

mation, the mass correction terms depend on the
atomic wave function only through the factor Ip(0) I'.

Most of these terms may be approximated by ex-

' R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952):' R. Arnowitt, Phys Rev. 9.2, 1002 (1953).' R. P. Feynman, Phys. Rev. 76, 769 (1949),
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pressions of the form

aE=C( m/~)(hfs) I (a) (b)

=C(nm/M) log (M/m) (hfs), (3)

where C is a constant factor of order .unity, and (hfs)
is given by Eq. (1). If we evaluate the integrals more
carefully, we also find terms which do not contain the
large factor log(M/m), but none with a factor logn. All
such terms, whether or not they contain log(M/m), are
said to be of relative order nm/M.

We treat the proton as a point particle with a Dirac
moment of unity and a Pauli moment of (p„—1).Since
the two moments behave in entirely diGerent ways, it
is necessary to treat them separately. The terms in-
volving two Pauli interactions turn out to be logarith-
mically divergent. This divergence would presumably
be removed in a consistent theory for the anomalous
proton moment. In the absence of such a theory, we
shall cut oG the Pauli terms at a finite momentum ko,
corresponding to a crude spreading-out of the Pauli
moment over a radius ko '.

The four-dimensional calculations will be presented
in Secs. 2 to 4. To show the relation of this four-dimen-
sional method to conventional, noncovariant theory and
to check the results, the mass corrections will also be
evaluated by three-dimensional perturbation theory.
This procedure yields only the terms containing
log(M/m). It is carried through. for single-photon
terms in Sec. 5 and four double-photon terms in Sec.
6 lo—12

2. SINGLE-PHOTON TERMS VfITH DIRAC
INTERACTIONS ONLY

The hfs correction arising from the exchange of a
single transverse photon is given by

QEcg& —QEcno+ QEc~x +Ee—
AE~D' and dZga+ represent the first order corrections
arising respectively from diagram (1b) and from the
crossed diagrams (2b) and (2c). The subscript CD
indicates that these terms involve a Coulomb interac-
tion and a Dirac photon. " In Fig. (1b), no Coulomb
interaction is shown. The Coulomb interaction in
5E~~' arises instead from the iteration of the initial
or final wave function according to Eq. (29) of S. As
in S, it is convenient to subtract AE~, the single photon

The results of the three-dimensional calculation for hydrogen
and of a very crude calculation for deuterium have previously
been published by the authors (see reference 11). These results
were incorrect, since the instantaneous part of the Pauli inter-
action was erroneously neglected. A more adequate treatment
for deuterium will be given in a future publication. '2

"E. E. Salpeter and W. A. Newcomb, Phys. Rev. 87, 150
(1952).

's Grei6nger, Newcomb, and Salpeter (to be published).
'~ A Dirac (Pauli) photon is a photon which interacts with the

Dirac (Pauli) moment of the proton.

Fxo. 1. Second order Feynman diagrams: Fermions are denoted
by solid lines, Coulomb interactions by dotted lines, and trans-
verse photons by wavy lines. Electrons are on the left, protons on
the right.

correction arising from a solution of the Breit equation
in which the transverse photon term is evaluated by
means of first order perturbation theory. Since such a
solution of the Breit equation gives the ordinary hfs
with reduced mass correction and nothing else, '' this
subtraction procedure will remove these large eGects,
leaving only the corrections of order crm/M.

The Breit equation in momentum space with a trans-
verse photon term is

I
E—&.(p) —&b(y) 34 (y)

= —(es/2m') (d'k/J's') f1 ng'—ngbgy(p+k)) (5)

where P and Hb are the free-particle Dirac Hamil-
tonians for the electron and proton respectively:

B.(y) =n'p+P m

Pb(p) = — ny+P b.m

(6a)

(6b)

where g satisfies

I
E—&.(p) —&b(y) l4 (p)

= —(es/2s') (d'k/k')y(y+k). (8)

It is convenient to express g in terms of positive and
negative energy components, using the Casimir pro-
jection operators as in S:

4++(y) =A+'(y)A+'(y)4 (p),

A~(p) = I:E(y)~&(p) i/2E(p),

(9)

(10)

where E(y) = (m'+ p')~. p++ is larger by a factor of n '
than the largest of the other three components of p.

g/jth @ and p* each expressed as the sum of four
terms, AE& breaks up into sixteen terms, of which only
the terms containing either g++ or P~* or both con-
tribute to the required order of magnitude. The largest

The transverse photon term produces a perturbation
energy of

DEe = (e'/2s') "(d'pdsk/k')p*(p) n&' ng'@(y+k),
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term is

aEe++ = (e'/2~') "(O'Pd'k/k')

X4 i i.'(p)~i'~i'4++(p+k). (11)

The two terms containing either p + or g +* can be
combined to form the following approximate expression,
after expressing p ~ in terms of p++ by means of the

(—+) component of Eq. (8) and dropping higher
orders in n,

( " i '
t

d'Pd'P'd'P"4 '(y) .' .'A- (p')A '(p')4 (y")
AEe += —2(i2. ) ~ k'k" (E+E.'—Eb')

(12)

where k= y' —y, k'= p"—p', E,'= E,(p'), and Eb'

=Eb(p'). Two further terms DEe+ and DEJ3 are
obtained by analogy with Eq. (12).

The next term to be considered is AE~D', the first
oider contribution from diagram (1b). By using Eqs.
(23a) and (38) of S,

hE '= —(e'/2~') d4Pd4P'P*(P )n ~ n b

XP(P„')( '—k'+~&) ', (13)

where P is the four-dimensional wave function discussed
in S, and where &o is the fourth component of k„=P„'—P„.
If we split P and P into positive and negative energy
components, the main term will be the one involving

P++ and f++*. By using Eqs. (10) and (15) of S, f++
may be expressed in terms of the positive energy com-
ponent p++ of a three-dimensional wave function. After
carrying out the integration over ~ and e', the fourth
components of P„and P~', we find that

= (e'/2~')
~

d'Pd'P'4~*(y) ~: ~"4~(y')

X, +
k' —(Eb' —Eb)' 2k(E E, Eb' k)—(Eb ——Eb' ——k)

2k (E E, Eb —k) (E—b —E—b
—k)

(14)

LE—&.(p) —&b(y) 30(y)

= —(e'/2 ') [A (p)A„'(p) —A (p)A. '(p)]

X)~ (d'k/k') y (p+k). (15)

To the order of accuracy required, the (++) com-
ponents of the solutions of Eqs. (8) and (15) agree.

The three terms in brackets in Eq. (14) will hereafter
be designated by the letters a, b, and c. The first term
AE&&'~ is much larger than the eGects we are study-
ing. In fact, it gives rise to the ordinary hfs, as &re may
readily see by evaluating it to lowest order in n. The

y~ is the (++) component of the solution of the
zero-order three-dimensional Bethe-Salpeter equation,

matrix element in Eq. (14) is, for k((m,

4~"(p) ~.' ~~V++(y')

=(4 ~) 'p *(p)$—4P '+2'y ( 'Xk)
+2ip (ebXk)+(e'Xk). (ebXk)]y~++(p'), (16)

where p++++ designates the upper four components of
the sixteen component wave function g~ in the nota-
tion of S.'4

The first two terms of (16) are independent of the
proton spin, and therefore do not co~tribute to the hfs.
The main contribution to AE~D'++ is from the region
where P and P' are both of order nm. In this region, Eq.
(16) is valid, P~~ may be approximated to lowest
order in n by the Schrodinger wave function pb, and
(Eb —Eb)' is negligible compared with k'. The third
term in (16) then gives the orbital hfs, which vanishes
for 5 states. The fourth term gives, after averaging over
angles,

AE= (e'/12~' Mm)) d'Pd'P'P *(p)e~ ebP (p') (17)

which immediately reduces to p„ times the Fermi
expression, Eq. (1), i.e., to that part of the ordinary
spin-spin hfs which is due to the Dirac moment of the
proton.

To get the mass correction, we subtract AEJ3++ from
AE~D~ . The result is

(e'/2 ') d'Pd'P'y++*(p)e '~ '&++(y')

X (Ebj Eb)2k 2[k2 (Eb—j Eb)2$
—i (18)

The main contributions to this integral come from
the regions P nm, P' 3l, and P-iV, P' nm The.
contributions are equal to each other and of order
u(m/3II) (hfs). We therefore evaluate this term only to
lowest order in n. If P nm, P++*(p) may be replaced
by &0*(p), the conjugate of the Schrodinger wave
function. However, since P' will then be large, p++(p')
must not be approximated by pb. To get an approxima-
tion to $~(y') which is good to lowest order in n for

"Throughout this paper, as discussed in the Appendix of S,
+ or —signs as subscripts to vrave functions refer to eigenstates
of the Casimir projection operators for the relevant momentum;
+ or —signs as superscripts refer to the eigenstates of the Dirac
operator P.
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any value of p', we may use the iterated wave function
gI, defined by Eq. (29) of S.

By using @&, we shall eventually be able to express
any contribution AE & to the hfs mass correction in the
form

where k and k' are defined as in Eq. (12) and a, P stand
for arbitrary subscripts and superscripts. In all such
expressions we shall replace p++ and p++* by &0 and &0*.

With this notation, we find

~: ~~'A+'(y') A+'(y') (Eb' —Eb) '
0++a, cp

(E—E.' —Eb') [k' —(Eb' —Eb)']
(20)

(c)

The terms b and c in (14) are equal, as may be seen

by interchanging y and y', and taking the complex
conjugate. Term c has no contributions of the required
order from values of P large compared to o.orb. To get
an approximation to lowest order in n, we must there-
fore iterate p++(p'), but not P~*(p). The result is

Fzo. 2. Fourth order Feynman diagrams: p, p', etc. denote the
momentum four-vector of a particle minus (ub/nr, ) times the
four-vector of the whole atom, where m and m, are the masses of
the particle and the atom respectively. In all crossed diagrams,
the momenta are as in Fig. 2(a).

p IH-+b+ cp 0++c—2p 0-I+c

kn~' n, 'A.~ (p')h. +'(p')

(E E,' Eb k) (E—b' Eb—k)— — —
equal contributions to AEcD, we may write

cnx —(i/s)(e /2~ ) d pd p d p

Xk'-'(~' —k'+is)-'p*(p )

XQ n, b [ri,E—EI,(p"') —nI+ 0"+ifIP'] '

X [rlbE Hb(p') —n—I—0+ifIPb] 'a;Q(P„"), (25)

where y, y', p", k, and k' are the same as in the un-
crossed terms, and where p„"'=p„"—k„. P represents
a summation over the two directions perpendicular to
k. r) and rib (denoted by p, and tub in 5) are given by

The iteration procedure used to derive Eqs. (20) and

(21) has the effect of bringing in a Coulomb interaction
which is not crossed with the photon. The same thing
will happen with all the other components of AEcD'.

The contributions to the required order of these
other components consist of terms containing Ip++* and
one of the functions IP +, IP+, and IP, and of the
complex conjugates of such terms. The four-dimensional
wave functions are then expressed in terms of p~
using the uniterated expression for Ip+l. and the iterated
form for the negative energy components, in accordance
with Eqs. (10), (15), (15a), and (15b) of S. After car-

rying out the integration over the fourth components
of the momenta, we find

(22)
k~: ~.'A- (y')N'(y')

+CD
(E.'+E.+k) (E E. Eb' k)—— —

ri.= m(M+m. ),

qb
——M/(M+m).

(26a)

(26b)

k~~' ~.'~+ (y')f -'(y')
(23)&CD~

(Eb'+Eb+k) (E E,' Eb k)———
To resolve AEcD into positive and negative energy

components, we introduce the operator

X [k(Eb'+Eh+i) —'(E+E '—Eb—k)
—'

—2k'(E+E.'+Eb') —'((E+E.' —Eb)' —k'}]. (24)

We now turn to the crossed terms. Using Eq. (56)
of S, and observing that diagrams (2b) and (2c) give

into the integrand of (25). This eliminates the Dirac
matrices in the denominator. Since the integrand is
appreciable only when p and p" are both of order o.m,

P(P„) and IP(P„") may be replaced by IP++* and IP++,
which are expressible in terms of p~~ and It++ as
before. After carrying out the integrations over the
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fourth components of the momenta, we obtain ex- relative order (nz/M)'*, finally give
pressions for Fq~+++, P~~& +, etc. For example,

TcD~ +Tcg)x+ = log(M/4N) 2 log2 1. (33)

+e x+-t- (27)
(E E,"—' Eb"—k) (E— E. —Ei,' —k)—

Aside from the main term AEg~~, which is can-
celled by —hE&~ in the region k nm, DE&&+++ and
AE~D + ' are the only terms which give appreciable
contributions from this region. It is easy to show that
these two terms cancel to lowest order in o. for k eels,

except for terms which are independent of the electron
spin. This means that the region k &m&)nm is the only
important one. On the other hand, the only important
values of p and p" are of order nm, the Bohr momentum,
since the Schrodinger wave functions decrease rapidly
for larger momenta. Since p,p"«k, we may, to the
required order of accuracy, replace p and p" by zero,
p' by k, and y"' by —k in each expression F,s. With
these approximations, the integral over p and p" in Kq.
(19) reduces to

~t d4pdap-y, (p)y, 4 ) = (2~)~ly, (0) lm. (28)

Any AE & is then expressible in the form

where
AE.s= (n4ri/vrp„M) (hfs) T.~,

f
T ~=12 M(e e') ' dkk '(E s).

~0

(29)

(30)

after averaging over angles. E ~ and E~~ are abbrevia-
tions for E,(k) and E|,(k).

We now have, using Fqs. (21), (27), (30), and (31)

Tc&0++54+Tc&x++

= —2M (kdk/E. 'EP) (E,~—4i4+k) —'. (32)
0

To simplify the evaluation of the T &, we split the
integral into two ranges, k(A and k& A, where
m«A«M. For k&2 we expand in powers of k/M and
m/M, and for k) A in powers of m/k and 444/M, keeping
only the lowest order term. After carrying out the
integration, we neglect (444/2) and (A/M) compared to
unity. These approximations, which introduce errors of

(F &) is the expectation value of F ~ for a state with
zero momentum.

To illustrate the procedure, we will carry out the
evaluation of BEcn'++"+DEcDx+4; The expectation
values of the numerators of (21) and (27) are given by

k(~: ~.&~.(k)~'(k))
=k(g n'+ ( k)—~'(k)a),'

=k'(e' sb)/6E, ~E,~ (31)

The other single-photon terms are treated in pre-
cisely the same way. The results, with crossed, un-
crossed, and Breit terms combined, but with positive
and negative energy contributions separated, are

TcD++= —log (M/m) —1,

Tcn += —5 log(M/4')+9,

TcD+ —= —log (M/m) —3,

Tco =3 log (M/m)

(34a)

(34b)

(34c)

(34d)

The total single-photon contribution with Dirac
interactions alone, the sum of Eqs. (34), is then

Tcn = —4 log(M/m). (35)

The integrals for the various T & can also be evalu-
ated in an elementary manner if a cut-o6 is introduced,
i.e., if the upper limit of the k-integration is put equal
to a constant, koa. This cut-oG can be introduced into
all integrals except in those for the Breit terms. These
must be integrated to infinity to be equivalent to the
results of Breit and Meyerott, ' ' which we have used.
With such a cut-oG, the expression for T~D is

Tcg) = —4 log(M/nz) —8(Eo —ko )/ko

+41ogL(Ep +ko )/2ko g, (35a)

where Eo (M'+ko ')'. ——

I'.'(q.) = (~/4M) q.h"'v. '—~.'~.') (36)

where p=p„—1 is the anomalous moment in nuclear
magnetons, and where q, is the four-momentum ab-
sorbed by the proton. q, is equal to kp ol kp according
as the interaction in question is the first or the second
along the world line of the proton, counting the bottom
of a diagram as the earlier part.

Using the new "vertex part" F„, we may eliminate
longitudinal waves just as before to obtain

7 I' '(q)/(q' q'+~~)= & 7'L—~ '(q)/q'

+ P c. 'A,'(qp)/(q4' —q'+id) '$, (37)
i=1,2

where 3„'(q,) =y4'I'„'(q, ). It should be pointed out that
Eq. (37) is a strict identity of matrices, whereas the
corresponding relation for a Dirac moment asserts only
that the relevant matrix elements are equal.

3. SINGLE-PHOTON TERMS WITH PAULI
INTERACTIONS

To take account of the anomalous magnetic moment
of the proton, we replace y„' in the Dirac interaction
terms by
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Ton = TqD
—+=p(——,

' —log2),nated as a Q-interaction. It arises from the fact that

The first term on the right-hand side of Eq. (3'/) if ko tends to infinity. In this limit they are
represents an instantaneous interaction, hereafter desig-

the motion of the anomalous magnetic moment induces
an electric moment which interacts with the Coulomb
field of the electron. To find the effect of the Q-inter-

Ton+ =pt log (M/444)+-', +log2),

Ton ——pLlog (M/4i4) ——',+log2].

(41b)

(41c)
action on the single-photon terms, we must replace the
Coulomb interaction operator q

' by the operator

q- L1+(p/2M)P ~ q). (3S)

This is the operator which should now be used in
iterating the Schrodinger wave function to obtain pi.
This will acct the value of AE~D', the contribution
from diagram (1b). The additional term, EEono, is
gotten by substituting Q-interactions for Coulomb
interactions in Eqs. (21) to (24), and in the part of Eq.
(20) corresponding to BEc~~ . These terms represent
a Q-interaction and a Dirac photon, the two interactions
being uncrossed. Finally, we will have to add terms
AE@D+ representing new diagrams resulting from dia-
grams (2b) and (2c) by the substitution of a Q-inter-
ation for the Coulomb interaction. Of course, we no
longer subtract Breit terms.

For positive energy intermediate states of the proton,
the integrands are smaller by a factor of order (k/M)'
if we use a Q- instead of a Coulomb interaction. For
negative energy states, they are not changed in order
of magnitude. We may, therefore, still neglect the
region k O,m, since only the positive energy terms gave
contributions of the required order to AEgD from this
region. These contributions, one of which was of order
(hfs), are now reduced to n'(m/M)' (hfs) or less.

For k))o.m, it is easy to show that introducing the
matrix (p/2M)pbnb 41 simply multiplies the integrand
by a factor f@, given by

f+'= (p/2M) (E—b' M)—
f &= (p/2M) (Eb"+M),

(39a)

(39b)

Ton 2p log(M/444) —'2p, log/(E——o+ko)/2ko), (40)

where Eo= (M'+koo) &. The Positive and negative
energy components of Tq~ converge individually even

'5 BED~ and b,X@I are the terms which were neglected errone-
ously in reference 11.

where f~44 or f 44 is used according as the intermediate
proton energy is positive or negative. Such multipliers,
used to convert Dirac terms to Pauli terms, will here-
after be called f factors.

To compute EEon ——EEono+AEqnx, we simply mul-

tiply the integrands in the CD' and the CD terms by
f@ and re-evaluate the integrals. " Since some of the
Pauli terms diverge logarithmically, we, introduce a
cut-o8 ko into the k integrals for all Pauli terms. The
result for the QD terms is

f+= (p/2M) (Eb"+M+k,),
f+'= (p/2M) (Eb"+M—k4'),

f = —(p/2M) (Ebb —M —k4),

f '= —(p/2M) (Eb" M+k, ')—

(43a)

(43b)

(43c)

(43d)

f+ is the appropriate one to use when the intermediate
proton energy is positive and when k„rather than k„'
is the four-momentum absorbed by the proton from
the photon, i.e., when the photon is the second inter-
action along the world line of the proton. The other
three cases are speci6ed analogously.

To find k4 (or k4') for a given term, we examine the
integration over co and ~', the fourth components of the
photon momenta, and put k4(k4') equal to the value of
4o(4o') at the pole. If the term in question arises from
several poles, it must be split up into partial terms, each
arising from a single pole. This is the case with AE~D™~,
for example.

After the appropriate f-factors have been introduced
into the CD terms, and the integrals re-evaluated up to
the cut-oG ko, we 6nd

Tcp —4p log(M/444) —(S——p/ko) (Eo—ko)

+4p, loge(Eo+ko)/2kog. (44)

Ke will now examine the terms AEVI, involving a
Coulomb interaction and a Pauli photon. These terms
are obtained from the corresponding Dirac terms by
replacing n;~ by

~"(q.) = ( /4M)P'q, (v, 'v" v"—v, ')
—(ip/2M)Pb(4rbXq);+(pq4/2M)Pbn;b (4. 2)

The first term of (42) represents the interaction of the
magnetic moment of the proton with the magnetic
vector of the photon wave, while the second term
represents the interaction of the electric moment with
the electric vector.

It can be shown that, to the required order, the CI'
integrands are equal to the Dirac integrands multiplied
by p for k o.m. We may, therefore, cancel the Pauli
terms in this region by multiplying the Breit terms by
p and subtracting them. As before, the Breit terms will

give the ordinary hfs produced by the Pauli moment
with the reduced mass factor (1—3m/M), while our
deviation terms will give additional mass corrections of
relative order atm, ~M.

For k))n444, replacement of 4b,
b by A,b(q, ) is equivalent

to multiplying the integrand by one of the following
f-factors:
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@++,@++*, and interposing projection operators to
remove the Dirac matrices from the denominator.

The terms arising from negative energy proton states
give contributions of order n(hfs) from the range k nm.
As in the single photon terms, however, these contri-
butions cancel each other to lowest order in n, except
for terms independent of spin. YVe may therefore restrict
outselves to values of k much greater than o,m and, after
expressing the DD terms in the form (19), replace

p, p', y", and p"' in F & by 0, k, 0, and —k respectively,
as in Sec. 2. The integrands will contain the expectation
values

If kp tends to in6nity, the positive and negative energy
components of Tgp again converge. Their limiting
values are

(45a)Tgp~= 2N log2,

Tcp += —4p log(M/m) —6p log2+8p, (45b)

Tcp+ = —2p log(M/m) —2p log2 —4p, (45c)

Tcp 2p lo——g (M/m)+6m log2 —4y. (45d)

Finally, we may replace the Coulomb interaction in
the CI' terms by a Q interaction. For this we use the
same procedure as in the conversion of Tg~ into TQ~.
The results, using the finite cut-oG kp, are

Q P'(n'n'A, g~( k)—A, p(k. )n'n')
i=1 j=l

—(ng' ng'A, &'(k)A, oo(k) n,".n, ')alld
T QP ~QP

=p'{(Ep—M—ko)/2M ——', logL(Eo+ko)/M$),

(50b)

for a state with zero momentum, where «1 and «2 are
equal to &i. After averaging over angles, these are
each equal to

46b

Tqp+ = Tqp =p'{ (Ep—M——kp)/2M
—-', logL(Eo+kp)/M]),

(E,P «1m)—(Eo" «2m) —(n' no)/6E, "EpP. (50c)with a total of

Tql =2p,' log—/(Eo+kp)/M], (4'i) Using (50a, b, c), the DD terms may be expressed as
one-dimensional integrals T in accordance with Eqs.

which is logarithmically divergent if ko approaches (29) and (30). If, as in the case of the CD terms, we

ln6nlty. introduce a cut-oR' kp~, we find

4. DOUBLE-PHOTON TERMS

The Dirac double-photon terms include the first
order energy d Eznx from diagram (2d) and the second
order energy AE&no from diagram (1b). The latter, as
shown by 5, is gotten by computing a 6rst order energy
for the uncrossed diagram (2e), as if this diagram were

irreducible. These two terms can be written in the form

»» = (i/2~) (~'/2~')' d'pd'p'd'p "4*(p.)

y Se P(P„")(co'—k'+iA) '(«o'P —k"+id') —', (48)

where n stands for 0 or )&, and where co and ~' are the
fourth components of k„=p„'—p„and k„'=p„"—p„'.
The expressions for X are

Tnn ——jog(M/m) —log[(Eo +ko )/2ko j (51)

The positive and negative energy components, in the
limit as kp~ approaches inanity, are

Ton++= -,'log(M/m)+-, ' log2+ —,'„
T» += -', log(M/m)+~ log2 ——,'„

(52a)

(52b)

Ton+ = Ton = ', log(M/m) ——,
'-log2+ —,', . (52c)

Any term in which either of the two photons interacts
with the Pauli moment, the other photon interacting
with the Dirac moment, is obtained by multiplying the
integrand by the sum of the two appropriate f factors,
as given by Eqs. (43). The sum of these terms, up to
the cut-oG kp, is

2 2

X =P P'n'n; [q,E H, (p"')+«"—«o+ibP')—
i=1 j=1

&& LqoE —Ho(y') —«—a)+i8P'j —'n n,

Tr~ 2p log(M/m) —2——p log)(Eo+ko)/2koj. (53)

(49a) The positive and negative energy components, for
in6nite kp, are

where p„"'=p„"—k„, where «and «" are the fourth
components of p„and p„", and where P and g' repre-
sent summations over the two directions perpendicular
to k and to k' respectively; and

Xo=n~ ng'Lg~ —H, (p')+«+«o+Qp') '

Tr n++= 4p log(M/m)+-, 'p log2+ op,

Tpg& += ,'p log(M/m)+-', p, log—2—7pp,

Tpn+ =Trn p'p, log(M-/m) —-',p
—l——og2+ Pop.

(54a)

(54b)

(54c)

)& LgoE —Jfo (p') —« oo+ihP'1 —'n~" ng' — (49b).

As in the case of DER~', these are evaluated by setting

p, p* equal to f~, 1t~*, expressing these in terms of

The I'D terms are exactly 2p times the DD terms.

Finally, the terms in which both photons interact
with the Pauli moment are derived from the DD terms

by multiplying the integrands by the products of the
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The total is

Tpp p, '(4s l——og(M/nz)+ rs ss log—[(Eo+ko)/2ko]
——,

' log[(Eo+ko)/M$}, (56)

which diverges logarithmically as ko approaches infinity.
Notice that the only divergent terms are AE@J and
5EII, i.e., the terms involving two Pauli interactions.

5. THREE-DIMENSIONAL METHOD, SINGLE
PHOTON TERMS

As an alternative to the covariant procedure, we shall

now describe an approximate, but simpler, method for
calculating the mass corrections to hfs, based on
orthodox three-dimensional perturbation theory. This
method, like the four-dimensional one, involves an
integration over a photon momentum, k. Ke shall

expand in powers of k/M as well as m/M, treating the
proton velocity as non-relativistic throughout, and
arbitrarily impose an upper limit of order 3I on the
k integration. Unlike the three-dimensional treatment
of the fs, described in S, the hfs calculation gives no
contribution of the required order from the region
nm& k«m, so that no terms involving logn are obtained.
It will therefore be possible to expand in powers of m/k
also, and to introduce a lower limit of order m for the
k integration. These approximations will give only the
mass corrections involving log(M/m), neglecting terms
of order unity relative to this logarithm.

For the interaction of the electron and of the Dirac
part of the proton moment with the transverse electro-
magnetic field, we use the customary perturbation
Hamiltonian:

where
II'=H +Ho,

2

He —tr p p rr a(q opeik ~ ra+ qk, ops —ik ~ rn) (58)
k i=1

in the notation of 5. The expression for JI~ is obtained
from (58) by replacing r. and en,' by rp and (—err/).

qk,
I' and gk, & are the usual absorption and emission

operators for a photon of momentum k and polarization
z.

In the usual lowest-order perturbation treatment of
hfs, the wave equation is Grst solved for a Hamiltonian
containing the Coulomb interaction, but not containing
H'. I.et ~0) denote the eigenstate of such a Hamiltonian
corresponding to the initial state of the hydrogen atom
and

~
tn, k, i) the eigenstate of the same Hamiltonian con-

two appropriate f factors. With a finite kp, they give

Tpp~= p'f ', log-(M/m)+ —,',+ (Ep kp)—/4M

+—,', log[512Mkos/(Eo+ko) 4(Eo+M)']}, (55a)

+= ~ps ——P

Tpp+ = Tpp =p'(s (Eo——ko)/4M
——,', log[8(Ep+kp)'/M(Ep+M)'$}. (55c)

taining the hydrogen atom in state
~
m) plus a photon of

momentum k and polarization i T.he Fermi expression
is then contained in a term of the form

P (0(HP)~, k,i)(~,k;(H. (0)(E,—E,)-', (59)
m, k, i

plus a similar term with II and II' interchanged. This
procedure is not well adapted to the present problem. ,
in which we are interested mainly in evaluating ac-
curately the small contributions to the hfs of momenta
k large compared with the Bohr momentum nm (in fact,
larger than m). If we consider the atomic wave functions
in momentum space, the main part of the ground-state
wave function lies in the region of small momentum for
both the electron and the proton. The momentum
spread is of order nm, with only a small "high-momen-
tum tail" depending mainly on the high-frequency
Fourier components of the Coulomb field. The main
part of H'

~
0) has a momentum spread of the same order

around an electron of momentum k and a proton at
rest, whereas Ho~0) is similarly centered around a
proton of momentum —k and an electron at rest. The
high-frequency components of the Coulomb field again
add small "high-momentum tails" to these wave func-
tions, extending over large distances from the peak. of
the momentum distribution. Hence, if we use a repre-
sentation in which the unbound states of the atom
consist of plane waves perturbed by the Coulomb poten-
tial, it is impossible for the main part of any state
~m, k,i) to overlap" the main parts of both H ~0) and
Ho~0) simultaneously, and the matrix element in Eq.
(59) depends critically on the "high-momentum tail"
of at least one of the wave functions involved. In, Eq.
(59), relativistic wave functions accurate over a large
range of internal mornenta wouM therefore be required,
and it would no longer be correct to replace

~
0) and

~
m)

by a Schrodinger wave function and a plane wave re-

spectively.
Because of this difficulty, we shall, in the case of the

single-photon terms, use a somewhat modified per-
turbation procedure, which is made possible by the
fact that we are interested only in terms for which

k))nm. We consider the Coulomb interaction V in
momentum space and split it into two terms, Vo con-

taining momenta less than 8, and V' containing mo-

menta greater than 8, where nm«B«m. As unper-
turbed wave functions we take the eigenfunctions of a
Hamiltonian containing only the part Vo of the Coulomb

potential, and treat U' as an additional perturbation.
These unperturbed wave functions decrease rapidly
outside regions of diameter 8 at the most, so that the
state vectors

~
nz, k,i), H'

~ 0), and H'
~
0) no longer overlap

appreciably. Term (59) is now negligible for k))B, and

'6 In other representations, e.g. , the angular momentum repre-
sentation, the main parts of certain states )rl,k,pl would overlap
simultaneously with H' Ol and HP ~ol, but the large contribution
from such a state would be cancelled by the contributions of
other such states.



A. NEWCOMB AND E. E. SALPETER

the high-frequency contributions to the hfs are given
by third order perturbation theory as a sum of six
terms, AB~ to AE6, where

(0(Hbim, k, i)(m, k,i(II'(n)(n( V'(0)
DEi ——Q, (60)

m, n, k, i (Eo-E o) (Eo—E.)
and the other five terms dier from DEj by having a
diGerent order for the operators B, B~, and V'.

In (60), the main parts of the various state vectors
overlap, so that: (1) the initial and intermediate atomic
wave functions may be replaced by a Schrodinger wave
function and a plane wave, and (2) momentum is
approximately conserved in all the transitions. Hence,
for k))am, the state ~m) consists approximately of a
free electron at rest and a free proton of momentum

(—k), while state
~
n) is like

~
m) except that the electron

has momentum k. This will enable us to replace the
energy denominators by simpler expressions. Finally,
the third matrix element in Eq. (60) corresponds to the
transfer of a momentum approximatel'y equal to k
from the proton to the electron by means of the Coulomb
interaction V'. An expression similar to Eq. (60) for
AE~ could have been obtained by substituting the
iterated wave function t'ai given by Eq. (29) of 5,
which is a good approximation everywhere in mo-
rnentum space, for ~0) in the second matrix element of
(59). The term similar to (60), but having the operators
in the order B~V'H, corresponds to taking the Coulomb
interaction in the intermediate state of (59) into
account.

To evaluate hE&, we first split it up into four parts by
inserting the sum of the projection operators A.+'(k)
after H and A~o(k) after Ho. Consider first the part
AEi++ involving A+'A+'. From the arguments of the
last paragraph, and from the presence of the positive
energy projection operators, it follows that we may
substitute (k+k'/2M) and (E,o—m+k'/2M) for the
energy denominators in Eq. (60). Since the energy de-

nominators are now independent of the indices m and

m, we can apply a sum rule to eliminate the intermediate
states altogether. Introducing the explicit expressions
for B and H~, we finally get

where
me= (k&/6ME. ")yg(1)~' ~'y, (P"), (63)

after averaging over angles.
Since the energy denominators in Eq. (62) do not

contain p.and p", the integration over these two vari-
ables can be carried out immediately, and an ex-
pression of the form (29) is obtained for BEi++, in which

p 00

Tz~= ' dk(Mk/E, ') (k+k'/2M)
4O

X (E."—m+k'/2M) '. (64)

To obtain the contribution of any other ordering of
the operators, we replace (k+k'/2M) and (E,'—m
+k'/2M) in (64) by the energy denominators appro-
priate to the process in question. The total positive-
energy contribution is then given by

T++=2M I (kdk/E, ")$(ab) '+(ac) '+(bc) '$ (65)
~o

where
a= k+k'/2M,

b=E," m+k, —

c=E,"—m+k'/2M,

(66b)

(66c)

To find the contributions of negative-energy electron
states, we must use hole theory to get the correct sign.
It is easy to show that the negative-energy electron
terms can be derived from the known positive-energy
terms by replacing (E "—m) in Eqs. (66) by (E,~+m).
Similarly, negative-energy proton states are accounted
for by replacing k'/2M in Eqs. (66) by (2M+k'/2M),
which may be set equal to 23'.

Ke will first examine the range m«k«M. Expanding
in powers of m/k, we find

T++= dkD4M/k')+ (4M'm/k') (3/k) $—. (67)

Since we are interested only in mass corrections, we
subtract the part of AE. + which would be given by an
infinitely heavy proton and an electron with the reduced
mass mz mM/(M+m). Refer——ring to Eq. (29), the
part of T'~ which remains is, in our approximation

(0~ e~ o,g'~ (k)A+'(k)e '"'V'~0)
(61)

(k+ k'/2M) (E.' m+ k'/2M)—
M

Tcg&++= t dk( —3/k) = —31og(M/m). (68)

where r= r' —r~ and V' is the high-frequency part of

(—e%). Expressing V' and
~
0) in the momentum repre-

sentation, and neglecting the initial and final momenta
p" and p in comparison to k,

e4 r d'kd'pd'p" BR
&s,++ (62)

Ss 4 " k'(k+k'/2M) (Eo'—m+k'/2M) TcD+ = TcD =log(M/m). (69)

The negative-energy electron term T + divers from
7+~ only by a change in sign of m in the energy de-
nominators which, to the present approximation, does
not acct the mass correction term. Hence, T~D +and
T&D~ are equal. For negative-energy proton states, we
substitute 2M, 2k, and 2M for a, b, and c respectively,
so that
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Nothing has to be subtracted from Eq. (69), since
negative proton energy terms would not arise for an
infinitely heavy proton.

Next, we consider the range o,m(0 &m to see whether
there are any terms containing logn. For k&(nz, we
expand the integrand of T++ as a power series in k,
carrying only the 6rst two terms. We find that

T~= dk(8Mmg/m) $k
—'+ (1/2m') k-'+ j. (70)

Equation (70) is identical with the equivalent term for
an indnitely heavy proton and an electron of mass mz.
Hence, there are no mass corrections containing logo,
from the positive-energy components. Essentially the
same argument holds for the (—+) terms, and the nega-
tive-energy proton terms are obviously negligible in this
tange. The total contribution from Dirac terms for all
values of k))nm is therefore

Tcg) =—4 log(M/m), (71)

p@~++—p@~ +—0

Tqn+ =TqD =p log(M/m),

(72a)

(72b)

with a total of

Tqn 2f4 log(M/m—)—, ('73)

in agreement with Eqs. (40) and (41).
To evaluate Tcp, we approximate the f-factors in

Eqs. (43) by

f+= f4 (1+k4/2M), (74a)

f~'= f4 (1 k4'/2M), —

f =f4k4/2M,

f '= —pk4'/2M.

(74b)

(74c)

In Eqs. (74), k4(k4') is again the fourth component of
the momentum absorbed by the proton from the photon
when the photon represents the second (first) interac-
tion along the world line of the proton. We shall set it
equal to %k according as the photon is absorbed or
emitted by the proton. In converting from positive to
negative proton energies, we must interchange k„and
k„', since the order of interactions along the proton

' There is an apparent discrepancy between the logarithmic
terms of Eqs. (34) and of Eqs. (68) and (69). This discrepancy
arises from the fact that the Breit terms are subtracted in Eqs.
(34), but not in Eqs. (68) and (69). Each of these terms indi-
vidually gives a logarithmic contribution, but their sum is zero.
The same situation holds for the CP terms.

in agreement with Eq. (35)."
We shall now examine the effect of the Pauli moment.

First of all, if the Coulomb interaction is replaced by a
Q-interaction, the positive and negative proton energy
integrands are multiplied by factors of (—pks/4M')
and p, respectively. The result is obviously

world line is the reverse of the temporal order for nega-
tive-energy states.

The negative proton energy terms clearly give zero,
since they all gave contributions no larger than the
required order to the Dirac terms, and since they are
now multiplied by small f-factors. The positive energy
terms, however, are not simply multiplied by p, since
they contained large terms which were subtracted off.
For the Pauli terms, the subtraction should not be
carried out until after the integrands have been multi-
plied by the f-factors (74a) or (74b). The resulting
mass correction is

TcI++=Tcz += 2f log—(M/m),

so that the total is

(75)

Tcp = —4p, log (M/m), p6)

AE.~= —n'(2s) ' t d'kd'Pd'P"k 'y *(y)

XX.&y,(I")6.f', (77)

where ps is the momentum-space wave function for the

in agreement'" with Eq. (44).
The term T@p is obviously zero, in agreement with

Eq. (47), since only positive proton energy terms con-
tribute to TqI, and these are reduced below the re-
quired order by the f-factor (—pk'/4M') in Tqr.

0. THREE-DIMENSIONAL METHOD,
DOUBLE-PHOTON TERMS

We consider now the exchange between electron and
proton of two photons, transferring momenta k and k'
respectively from the electron to the proton. k' again
represents the first of the two momenta absorbed by
the proton along its own world line. We treat these
processes by means of orthodox fourth order perturba-
tion theory, as in Sec. 5 of S. The operators H and B'
(or their Pauli equivalents) each occur twice, and the
atom starts and finishes in the same state. There are
twelve such terms, differing from each other in the
temporal order of the emissions and absorptions. Since
we are interested only in the range k,k')&O.ns, we can
again neglect the momentum spread in the initial and
intermediate states and break. each term into its positive
and negative energy components by inserting projection
operators. The intermediate states are then given ap-
proximately by free-particle states of positive or nega-
tive energy, depending on which projection operators
occur. Neglecting the difference between k and k',
which is of order o.ns, the three energy denominators
can be approximated by expressions depending only on
k, but not on the indices of the intermediate atomic
states. We then apply sum rules to eliminate these
intermediate states.

Restricting our attention first to the Dirac part of
. the proton moment, we can write each fourth-order

term hE & in the form
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initial state, K is a product of four Dirac matrices
and two projection operators, and (P & is the product
of the reciprocals of the three energy denominators
(E;„„., E;—;,). After averaging over angles and ne-
glecting p and p" relative to k, the expectation value
for proton and electron at rest of each positive energy
K„reduces to

(X.++)= o.—p, (k'/2M) (1—I/E.")(0' 0') (78)

the positive-energy f-factor is needed only to lowest
order. We therefore use f= IJ., yielding

TpD~= Tpa += fp log(M/m). (85)

For negative-energy proton states, we use the
f-factors (74c) and (74d). Although f is small compared
to one, the large terms which previously cancelled now
have the same sign, and give a contribution of the
required order when multiplied by f. The result is

where e is &1 according as the electron interacts first
with the k or the k' photon. Again neglecting p and p"
relative to k, 6' ~ is independent of p and p", so that
the integration over these two variables can be carried
out immediately. This reduces DE ++ to an expression
of form (29), where

T~~+ =Tpn
— ,'l—J, lo——g (—M/m),

giving a total of

Tag) ——2p log (M/nz),

(86)

(87)

T ++= (M'/2) dk(k'/2M) (1 m/E.—')o.6'.++ (79).
0

d =E "—m+k'/2M+2k. (81)

It is easy to verify that the range nre«k«ns does not
contribute to the required order; hence no logn terms
can arise. For m«k«M, we can replace u, b, c, a,nd d

by k, 2k, k, and 3k respectively, reducing P o tP ++ to
(3/2k). Using this approximation in Eq. (79), and
integrating only from m to 3f, we get

Summing over all orders of the emissions and absorp-
tions,

P. o tP ++= [(d—c)/cd][(a+b)'/a'b'] (80)

where a, b, and c are given by Eqs. (66), and where
Tpp++=Tpp += ,'I'log—(M/-m),

Tpp Tpp

Tpp —,P p' log (M/nz)——,

(88)

(89)

(90)

in agreement with Eqs. (55) and (56).
We have now succeeded in deriving all the log(M/m)

terms by three-dimensional perturbation theory, and
in showing that they agree in detail with our previous
results from the covariant method.

in agreement with Eqs. (53) and (54).
If both photons interact with the Pauli moment, the

positive-proton energy terms are multiplied by p',
whereas the negative proton energy terms are multiplied
by a factor of order p'k'/M', which makes them negli-
gibly small. We have, therefore

Tn~++= pslog(M/I). (82) V'. NUMERICAL RESULTS AND DISCUSSION

so that
T~n+ = Tg)D ——-', log(M/I))

TDg) = log (M/m).

(83)

(84)

These results are in agreement with Eqs. (51) and (52).
If only one of the Dirac interactions is replaced by a

Pauli interaction, we must multiply the integrand by
twice the appropriate f-factor. Since there is no can-
cellation of large terms for positive-energy proton states,

The terms contributing to TDD~ are all of the same
order, and there is no cancellation of large terms.

Taking account of hole theory, negative energy states
are treated by replacing (E,"—nz) by (E,"+m) for the
electron and k'/2M by 2M for the proton in Eq. (78)
and in the energy denominators a, b, c, and d. Also, k
and k' are interchanged for negative proton energy
terms. Since we neglect nz compared with k, the ex-
pressions for (o(P) and T are the same for positive and
negative electron energies.

For negative energy proton states, some of the
processes give contributions of a larger order of mag-
nitude than the total, which cancel to lowest order.

The negative proton energy totals are

In Secs. 2 to 4 we have calculated the total proton
recoil correction AZ,.~ of relative order nm/M to the
Fermi formula (with the simple reduced-mass factor)
for the hfs splitting of 5-states of the hydrogen atom.
We denote the ratio of this correction to the Fermi
splitting itself by (—F). Using p+=2.79, it follows from

Eq. (29) that

F= —(o./mph') (m/M) T...=—(4-53X10 '. )T,.& (91).

Writing T~,t as the sum of contributions T, and T~
from single and double photon terms respectively, and
collecting all terms given in Eqs. (35a), (40), (44),
(47), (51), (53), and (56), we have

T,= TcD+ TqD+ Tcp+ Tqp

= —2 (@~+1)log (M/m) —8 (EP—kP)/koD

—8 (p~ —1) (&o—ko)/ko

+4 log[(ZpD+kp )/2ko )
+2(p„—1) log[(Eo+kp)/2ko]

—2(p„—1)' lo8[(Zo+kp)/M], (92}
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= —57.0—(6.4) log (2kp/M),

Ts= -', (p„+1)(3p,„—1) log(M/m)+-'s (p„—1)'
—s (p9—1)' »g(2kp/M)

=52.9—(0.8) log (2kp/3II)

(95)

(96)

Td = TDD+ TPD+ TPP

', (p-p+ 1) (3p„—1) log(M/m)

+s(pp 1)'——log[(Ep +kp )/2kp ]
—

4 (pu
—1) (3l m+5) log[(&p+kp)/2kp]

—s (p~ —1)' log[(Ep+kp)/M]. (93)

In Eqs. (92) and (93) we have cut-offs kP for terms not
containing any Pauli interaction and ko for terms con-
taining at least one Pauli interaction. Eo stands for
(3P+kp')*', with a similar expression for Fpo.

As was pointed out before, both T, and Td diverge
logarithmically if the Pauli cut-oR approaches infinity,
and the divergences in the two terms do not cancel
each other. If we let ko equal ko, and take the limit as
(kp/M') tends to infinity, we get

T,= —2(p, +1) log(M/m) —2(p —1) log(2kp/M) (94)

. T, (k(A) = —2(p„+1) log(2A/m)+8p„, (100)

T„(k(A)= 4(3p„1)(p„+—1) log(2A/m)

+-'.(..-1)' (1«)

If the structure corrections are really negligible for
k(A, the consistent theory may be able to use Eqs.
(100) and (101) for this range, while making an ex-
pansion in powers of (m/k) for k)A.

At least a rough experimental determination of the
combined correction factors (F+8) is now available.
Fine-structure measurements, "whose interpretation is
virtually independent of nucleon structure eRects, give
a value for the fine-structure constant of

splitting with a point proton and with the correct
proton structure, using a cut-off ko))M in the same
manner as in this paper. " If we call 6' the sum of 5
and the term in Eq. (98) involving kp, one would hope
that 6' wouM approach a finite limit as ko approaches
infinity, and we would have

F+o= (1.86X10 P)+8'.

The structure corrections will presumably be neg-
ligible for photon momenta less than some value A,
where re((A((M. For this reason, we give our results
integrated up to such a cut-off A:"

and n '= (137.0365&0.0012). (102)

T„, = —'(p —3) (p„+1)log(M/m)+ —'(p,„—1)'
—(9/4) (p.—1)' log(2ko/M)

= —4.1—(7.2) log(2kp/M),

so that

'(97)

Measurements of the hfs splitting in the hydrogen
ground state, "after applying the known radiative cor-
rections"" of orders n and a' and the simple reduced-
mass correction to the Fermi formula, yield the rela-
tion P4"

n
—'= (137.0365&0.0006) [1+-',(F+5)]. (103)

F= (1.86X 10 )+ (3.26X10 ) log(2kp/3II). (98)

Note that there is an almost complete, but quite for-
tuitous, cancellation between the finite parts of T, and
T~, making the finite part of F much smaller than
(nm/M) log(M/m) = (3.0X10 '), which is the order of
magnitude one might have expected.

In this paper we have attempted to treat the proton
as a point particle with no internal structure and with
an anomalous magnetic moment exactly of the Pauli
type. In addition to the fractional mass correction (—F)
which we have calculated above, a consistent field-
theoretic treatment taking the meson field into account
would give an additional correction arising from the
internal structure of the proton. Such a consistent
treatment would presumably modify the behavior of
the proton at short distances, or large momenta, and
remove the divergence obtained in Eq. (98) with an
unmodified Pauli moment.

The divergence makes an unambiguous separation of
the correction terms into mass corrections and structure
corrections impossible. But, when a consistent theory is
available, one might be able to calculate the fractional
di6'erence 6 between the values obtained for the hfs

A comparison of Eqs. (99), (102), and (103) therefore
yields

8'= (F+"p) (1 86X10 ') =—(—0 2+2 0) X 10 ', (104)

where the estimated error is the rms of the errors in
Eqs. (102) and (103).

The mean of this experimental value for 8' is much
smaller than one might have expected. Taking a finite
cut-oR ko= ko in the calculations of this paper is
equivalent to including in a naive way some non-
relativistic structure eRects, i.e., a crude smearing of
the total moment of the proton over distances of the
order of ko '. In fact, for ko&M, most of the cut-off
dependence of T, and hence of Ii, comes from terms
"Of course, this might not be an unambiguous procedure, since

the cut-off was not introduced in a covariant way in this paper.
"Equations (100) and (101) cannot be derived by setting kp

and kP both equal to A in Eqs. (92) and (93), since the latter
were derived by neglecting A in comparison with k0 and k0 .

sP Dayhoff, Triebwasser, and Lamb, Phys. Rev. 89, 106 (1953).
» A. G. Prodell and P. Kusch, Phys. Rev. 79, 1009 (1950).
sP N. M. Kroll and F. Pollock, Phys. Rev. 84, 594 (1951).
2' Karplus, Klein, and Schwinger, Phys. Rev. 84, 597 (1951).
s4 N. M. Kroll and F. Pollock, Phys. Rev. 86, 876 (1952).
~5 The stated error includes an estimate of the unknown radiativc

corrections of order cP,
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which represent the omission of momenta greater than
kp from the Fermi splitting itself. For kp=kp equal to
the n-meson mass, Eqs. (92) and (93) yield a value of
(5.8X10 ') for Ii (I'=0.9X10 ' for ks=M), which is
larger than the value of 3' given in Eq. (104). This
result merely emphasizes the prevalent feeling that a
crude nonrelativistic "spreading" of the nucleon bears
little relation to reality.

We wish to thank Professor R. Karplus, Professor
J. Schwinger, Dr. R. Arnowitt, and Dr. A. Klein for
informing us of their work prior to publication. We
would, also like to thank Dr. M. Baranger, Dr. C.
Greifinger, and Professor F. J. Dyson for helpful dis-
cussions. One of us (EES) is indebted to the Australian
National University, where part of this work was
undertaken.
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A Hamilton-Jacobi formalism of classical relativistic field theory is developed. Both "time-independent"
and "time-dependent" formulations are given, and the relation between them is discussed. In the former,
the constants of the motion are identified with the "new" field variables, whereas in the latter they are the
values of the fields on a suitable spacelike surface. The explicit introduction of a Hamiltonian density is
avoided. As an illustration of the respective procedures, the classical Dirac and Klein-Gordon free fields are
solved explicitly. A perturbation method is formulated for the case of fields in interaction. The metric
tensor is not treated as a field quantity.

INTRODUCTION

'HE purpose of the present paper is to serve as a
starting point for the extension of Bohm's rein-

terpretation of particle quantum mechanics' to the
theory of quantized fields. It will be shown in a sub-

sequent paper that such an extension is indeed possible,
and can be based on a Hamilton-Jacobi formulation of
classical 6eld theory. It was thought preferable to
develop the necessary Hamilton-Jacobi formalism in a
preliminar'y paper, so as not to break the continuity in
the argument of the subsequent paper, and also because
a Hamilton-Jacobi formalism for field theory may be of
some interest in its own right. The formulation in the
present paper actually goes beyond what is needed for
a causal presentation of the theory of quantized fields.

The usual particle Hamilton-Jacobi formalism is
based on Hamiltonian mechanics. However, the essen-

tial features of Hamilton-Jacobi theory (i.e., the trans-
formation to "appropriate" variables, which are essen-

tially the constants of the motion, ' transformation
theory, and the reduction of the entire problem under
consideration to the solution of a nonlinear 6rst order
partial differential equation) can be based as well on a
Lagrangian formulation. In view of the greater adap-

*Originally reported at the 1954 Minneapolis meeting of the
American Physical Society.

r D. Bohm, Phys. Rev. 85, 166 (1952).
See, e.g. , C. Lanczos, The Vcfigfionat Priecip/es of Mechueics

(University of Toronto Press, Toronto, 1949).
'In some formulations of the theory, the momenta conjugate

to the "appropriate" variables are the constants of the motion.
Such formulations, while perfectly acceptable for particle dy-
namics, lead to difhculties in field theory.

tabiiity of the purely Lagrangian approach to the
requirements of covariance, 4 it is used throughout. A
Hamiltonian density could be introduced explicitly, for
instance by carrying out the differentiation in the right-
hand side of (10). However, no useful purpose would
be served, as it is not desired to develop a Hamiltonian
formalism. '

In particle mechanics, the case of conservative
systems can be treated by "time-independent" Hamil-
ton-Jacobi theory pI(tI, BS/Btj) =8j, whereas for
non-conservative systems, "time-dependent" theory
LII+BS/At=0, which will be written L=dS/dlj is
required. The functions 8 and 5 are not identical, but
for a conservative system, which can be treated by
either method, S can be obtained from S. From the
point of view of generality, one might think that the
time-dependent formalism should suffice. This is so
for particle mechanics, but not for 6eld theory. It
might be impossible to express the Lagrangian L as a
function of the Geld variables and conjugate momenta
alone, but still possible to express suitable constants of
the motion in terms of these variables (these constants
of the motion playing a role analogous to that of JI for
particle mechanics), in which case time-independent
theory is an indispensible tool. That is, in fact, what
happens in the case of the Dirac 6eld. Aside from this
contingency, solutions of field Hamilton-Jacobi equa-
tions are usually quite difficult to obtain, and one or
the other method might prove more convenient.

' J. Schwinger, Phys. Rev. 82, 914 (1951); P. G. Bergmann,
Phys. Rev. 89, 4 (1953).' Such as thatof R. H. Good, , Jr., Phys. Rev. 93, 239 (1954).


