
VARIABLE MASS EQUATIONS ii3i

instead of A(2, the angular momentum operator in his
co space, ms=i(~&c)/c)cos —tost)/c)~&), etc. The only differ-
ence is that his theory allows transitions between states
with diGerent k s. Here there is only one k, which is
given. In both cases, an M is found which is invariant
for rotations in spin-space. This seems unnecessary, but
if it is desired, this is a possible M.

In order that LJ,M)=0, for a conservation equation,
we must take

J= e(h.&'&'+A&'&').

There is only one conserved quantity which must be
interpreted as electric charge. The eigenvalues of J are

+ (&+s), + (&—s)

There are thus inevitably multiply-charged particles.

12. CHARGE CONJUGATION

jp is imaginary as has been shown. Thus, with our
previous notation,

This expresses the familiar fact that by interchanging
the roles of creation and annihilation operators in p, the
boson current is reversed.

The A. and the —A.~ have the same commutation

relations. Thus, as usual,

—A =TA"T '
where

It follows that

implies

T—+TT

Je(J,) =J„e(J„)

J(T-'vt) =-J (T 'et)

The eigenva1ues of J occur in pairs ~J„with eigen-
vectors e and T 'v~. This is just what is needed for
fermion charge conjugation.

Usually,
p'=c 'it'

Here we have
QI —~1+ 1$—

13. CONCLUSION

A possible framework for dealing with families of
apparently different particles has been formulated.
Perhaps it may prove possible to describe in this way
what is actually observed to occur.

I should like to thank Dr. A. Salam for his help and
encouragement.
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Proper-Time Electron Forri1alism*
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A classical and first quantized formalism is presented which gives a complete description of electrons in
a given electromagnetic field, including real and virtual pair processes. The Feynman viewpoint of electrons
propagating through space-time is adopted throughout. Interactions betv. een electrons are considered
only in the classical theory, and a nonlocal interaction is assumed to make all effects finite. Consideration
of interactions in the quantized theory is reserved to field quantization, which wHl be presented in a fol-
lowing paper. The calculation of transition probabilities gives the results of hale theory as interpreted by
Feynman.

I. INTRODUCTION

'SE has been made of the proper time' in quantum
electrodynamics as a means of rewriting the Dirac

equation. ' ' It has provided covariant methods of
calculation and prescriptions for the evaluation of
divergent terms.

There are several reasons for investigating the pos-
sibilities of a more extensive use of this parameter. .

* Submitted in partial fulfillment of the Ph.D. requirements of
the Department of Physics, University of Chicago, Chicago,
Illinois.' "Proper time" is used in the general sense of an invariant
parameter describing the motion of the-electron.

s V. Fock, Physik Z. Sowjetunion 12, 404 (1937).
3 Y. Nambu, Prog. Theoret. Phys. 5, 82 (1950).' J. Schwinger, Phys. Rev. 82, 664 (1951).

Feynman graphs' in field-theoretical calculations sug-
gest the interpretation of the electron motion as evolv-
ing in four-space in the course of proper time. Also, the
introduction of a covariant nonlocal interaction between
the electron and electromagnetic field' suggests a
shape to the electron in four-space at each value of the
proper time. As a consequence, a quantum electro-
dynamics has been formulated in which the proper time
plays an essential role throughout.

The concepts to be employed are first introduced

5 R. P. Feynman, Phys. Rev. 76, 749 (1949).
'H. MacManus, Proc. Roy. Soc. (London) A195, 323 (1948).
~ H. Yukawa, Phys. Rev. 76, 300, 1730 (1949); 77, 219 (1950).

C. Bloch, Kgl. Danske Videnskab. Selskab. Mat. -fys. Medg.
26„No. 1 (1950);27, No. 8 (1952}.
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into the classical theory. The state of the electron is
specified by its four-dimensional position and mo-
mentum at a value of the independent, invariant,
parameter, v.. In the course of r, the electron draws out
its world line in four-space in accordance with the equa-
tions of motion and the initial (in r) conditions. The
forces acting on the electron result from a nonlocal
interaction between the electron and the electromag-
netic 6eld. In the corresponding quantized theory, the
state is specified by the wave function, f(q, r), where q
is the coordinate vector for the particIe in four-space.
The development of f in r is obtained from an operator
Hamiltonian corresponding to the classical one.

The nonlocal interaction spreads the current density,
j, over a small region about the world line of the elec-
tron. The field equations themselves are unchanged.
The eGect, however, is that of introducing a factor
exp[ —f(U)$ into the field equations, in the sense that
expt —f(CI)jOA„ is equal to the point charge dis-
tribution. Pais and Uhlenbeck' have shown that this
does not alter the positive definiteness of the 6eld
energy, but does destroy strict causality. In the clas-
sical theory, the nonlocal interaction is shown to result
in a 6nite self-mass and a modi6ed and acausal inter-
action for distances comparable to the electron radius.
In the first quantized theory, only a given potential is
considered and the nonlocal interaction results in an
averaging of the potential over distances comparable to
the electron radius.

We will use units for mass and time such that k and
c=1. Electric charge will be expressed in "rational"
units, with e'/4zr= 1/137=rr. The components of a four-
vector, x, will be written as x„, with @=1,2, 3, and 4.
x4 is imaginary and equal to ixo. The three-vector part
of x will be written as x; the magnitude of x is tx(.
The matrix y„x„will be written as x. Complex and
Hermitian conjugates will be denoted by an asterisk;
the adjoint by a dagger.

II. CLASSICAL THEORY

1. Current Density

The field produced by a classical electron is deter-
mined by the current density, j(x), corresponding to
its world line. For a point electron, j is given by"

j(x)=eJt ds(dq/ds)34(x q). (1.1)—

s is the proper time in the conventional sense, with
ds'= —dq'. Equation (1.1) will be generalized in two
ways.

In the 6rst place, s can be replaced by an arbitrary
independent parameter, r, to give

8 8
eF (—x —

q) = —eq„F(x q). —
Br Bxp,

(1.3)

In terms of the independent parameter, 7-, and the
shape function, F(x), the current density is

j(x)= e drqP(x q)— (1.4)

Equation (1.4) expresses the observable quantity, j(x),
in terms of entire motion of the electron in the course
of 7. References to the position of the electron, its state,
or its charge distribution at a 7. are to be taken in a
formal sense, since measurements at one value of ~
have no direct physical signi6cance. If at a v, the elec-
tron is localized to a macroscopic time, then measure-
ments at this time can be interpreted as made at the
corresponding r.

2. The Shape Function

F(x) must be a real, invariant, and odd function of x'. '
F(x) is expressed in terms of a universal length a, and
F(x) vanishes for ~x",&&a'. The length a is of the order
of' magnitude of the classical electron radius, (137zzz) '.

Expressing the dependence of F on x' by a Fourier
integral, we write

1
F(x)=

,

I de(P) exp(iPx')—.
2a ~

(2 1)

Equation (2.1) can be written in a form which is con-
siderably more convenient for calculation, as well as
for interpretation, by making the substitutions

—ZS Q
A (x,u) = exp (ix'/2u),

(2zru)'

f(u) =zzrg(1/2u) e(u),
(2.2)

where e(u) is equal to the sign of u. With this substi-
tution, (2.1) becomes

(Dot denotes r di8erentiation. ) q(r) describes the entire
world line of the electron. If j is a positive time-like
vector for all r, then (1.2) is equal to (1.1). However,
if for any part of the path, j is a negative time-like
vector, then over these portions, (1.1) and (1.2) dier
by a sign. In these regions, the particle would be ob-
served as a positron. ' "

The second generalization of (1.1) is to replace the
delta function distribution by a shape function, F(x—q).
eF(x q) can—be interpreted as the charge distribution
in four-space at a 7. when the particle is at q, since it
satis6es the continuity equation

j(x)=e dr q3'(x q). —(1.2)

' A. Pais and G. Uhlenbeck, Phys. Rev. 79, 145 (1950).
'0 P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 150 (2938).

P(x) = J~ifuf(u)A(x u).

"E.C. G. Stnckelberg, Helv. Phys. Acta 15, 23 (1943).

(2.3)
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'a'—6/-ax '=vah/ar.

Its derivatives are

(2.4)

ah/ax„= ~(x„/r) 5,

ah/ar = [(2/r)+—ix'/2r'j6;
(2.5)

and some four-dimensional integrals involving it are

In the limit of u—4 (from either direction), A(x, u) has
the properties of the four-dimensional Dirac delta
function. For a finite I, 6 oscillates with increasing
rapidity for 1x'1&)u. When 5 is a product in an inte-
grand, contributions from 1x'1 less than u will pre-
dominate. Such integrations are to be performed in a
way which combines diferent x' before integrating over
the infinite surfaces of constant x'. The integral of
h(x, u) over all x is equal to one for all u.

As F (x) is a distribution over distances of the order a,
the range of u in f(u) is of the order of e'. Furthermore,
for F real and an odd function of x', f(u)=f( —u)
=f*(u). F(x) is to be normalized to one J'd'xF(x)
= J'duf(u) =1.

The function h(x,u) is of particular value in later
calculations. It is used in determining the Green's
function for the wave equation, for it satisfies the
homogeneous wave equation

so that

dudv f(u) f(v)M(u+v) = t dsW(e)M(s). (2.9)

The function W(e) contains all the information about
the shape function, F(x), which affects electron inter-
actions.

The limiting case of the point electron is included
with f(u) =8(u), and W(s) = 8(s). In general, the range
of s in W(s) is also of the order of a', the square of the
electron radius.

3. Equations of Motion

The classical equations of motion are derived from
the variational principle,

d I. (q)+ dx2 r( x)+ d4xZ (x) =0. (3.1)
J 4

I~ is the electron Lagrangian, and Z~ and Zg are the
interaction and Geld Lagrangian densities. They are:

Le= ', q„', &r=-j,A„&s=4f.f., (3 2)

j(x) is (3.2) is the current density of the electron, (1.4),
together with any external currents. The field strengths
are defined in the usual way,

f„„=aA „/ax„aA„/-ax. (3.3)

~
d'x'x„'x„'S(x —*', r)S(x' x",r')—

= (x„x„+g„„rr'/r+r')D(x x", r+r')—,

d4x'e '""A(x x' r)A(x' x",r')—-
(2.6)

I d4'xx'S( x—x', .)S(x'—x", ")=x„S(x—x", r+ r'),
The nonlocal interaction does not alter the propagation
character of the field itself, so that the fields produced
by a given current distribution are uniquely determined
by deriving them from the retarded potentials only.
All the eGects of the nonlocal interaction are included
in j(x).

We introduce a potential in coordinate space by

= (exp —i[px+ p'rr'/2 (r+ r') j)D(x x", r+r'). —
A„(q) = d4xF (x q)A„(x)— (3.4)

On the right in the equations of (2.6), x is the mean of
x and x" weighted by r ' and ~' ' respectively:

For the point electron, the average potential, 2„, is just
3„.For a variation in the electron path,

x„=(x„r'+x„"r)/(r+ r'). (2.7) 81
' drL + d4x2r 1=8 "drL,

J
(3.5)

where L is defined by L= 2q„'+eq„A„.The equations of
motion for the electron are

(3.6)q„=ef„„(q)q..

f„„is defined analogously to A„by

f„„(q)= aA„/aq„aA„/aq„—=, d4xF(x q) f„„(x). (3.7)—
Equation (3.6) differs in two ways from the more

usual equations of motion involving the proper time,
W(») =~~ deaf(s+y)f(e y), —

QQ

(2.8)
md'q„/ds'= ef„,(q) dq, /ds, (3.S)

With the use of the integrals of (2.6), the shape func-
tion, F(x), and the Green's functions can be readily
combined in coordinate space; the momentum repre-
sentation is not required. However, the Fourier trans-
form of 6 (x,r) is exp (—irk2/2) .

In all interactions between electrons, the shape
function will appear at least twice, in the emission and
absorption of virtual photons. In these instances,
integrals of the type J'dudvf(u) f(v)M(u+v) appear.
We define the weighting function W(s) by
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In the first place, f„„in (3.6) implies an averaging of
f„„over the distribution, F(x—q). This is the effect of
extension of the electron on its motion in an external
field. The second difference is that m does not appear
in (3.6).However, as a consequence of (3.6), Bq„'/Br =0,
and the length of the vector j is constant. To obtain the
particle path corresponding to (3.8) we impose the
initial condition in ~ that j be time-like and with
length ns. Then, since its length is constant, it will be
time-like with length m for all ~. The mass of the par-
ticle is simply the magnitude of its four-velocity, and
gives the speed with which the particle moves through
four-space in the course of v. ds, the length of an element
of the path, will then be equal to nsd7-. Kith this rela-
tionship between s and ~, except for the eGects of the
extended charge distribution, (3.8) agrees with (3.6).

D„,(q q') = )I d'xd4x—'F (x q)F(x' q')D—...(x x')—. —

(4.1)

D„f, is equal 'to half the sum of the advanced and
retarded Green's functions, plus half their difference.
Their difference is a solution of the homogeneous wave
equation, and is not affected by the averaging of (4.1).
Their sum can be expressed in terms of the 6 function
of (2.2) by

~+00

—,'(D,«+D.g ) =-', i) dse(s)b, (x,s)

Then, using the first of the integrals of (2.6), the
definition of W(s) of (2.8), and the fact that W(s)
=W(—s), we obtain

2 (Dret+Dedv)

00 —l~l

,'i dsW(e) I dsA(x, s)—)I—
—00

dsA(x, s) . (4.3)

In (4.3), the effect of the nonlocal interaction in
removing the portion of the integration in the region
about s=0 is shown. This is just the region where
h(x, s) has its singularity. The nonlocal interaction will

have essentially this same effect in quantized field
theory.

The field derived from -', (Dree —D,qv) is responsible
for the radiation-damping part of the electron self-

4. Interactions

The interactions among electrons, including self-
actions, follow from the equations of motion of (3.6) if
the field produced by the electrons is included in f„„
The 6eld intensity, f„„(x), produced by the current
distribution, j„(x) is obtained from the usual retarded
Green's function, D„~. However, the averaged field,

f„„,produced by an electron whose world line is q(r),
is obtained from the averaging of D„f,over the electron
charge distributions,

action, "and is not affected by the nonlocal interaction.
The 6eld from 2 (Dr«+Dedv) at a point on the electron's
path, to lowest order in the ~ derivatives at that point,
is

f"(q) = (l~/m') (q.q —
q q.). (4 4)

In (4.4), m'= —q' and X is the integral over qo of
,'e'(D—«+D,e ) at q=0,

~

"d.W(.) ~.
~

—:.
2z' ~

(4.5)

S. Hamiltonian Form

To facilitate quantization, the equations of motion
(3.6) are put into Hamiltonian form. The Lagrangian
of (3.5) is

L(q, q) = 'q'+eq. A. (q). - (5.1)

We construct the momenta conjugate to q, and the
Hamiltonian, by

p„=BL,/Bq„= q„+eA„,

H =p„q„L=,'(p eA)„'. — -—(5.2)

(5.3)

Writing v (p, q) = q, then from (5.2) we have for (5.3):
ZT

CC —gal P,7l IJ, ~ (5.4)

Since for an actual path, j is time-like with magnitude

m, the numerical value of the Hamiltonian of (5.4) is
re'/2 m'—/2 will . be called ~, and is analogous to the

energy in the more usual canonical formulation. The
Hamiltonian gives the r dependence of q and p by

q„=BH/Bp„p„= BH/Bq„—(5.5)

These relationships can be conveniently expressed by
introducing the Poisson Brackets of any two functions,
eandvof pandq,

{e,v}= (Bu/Bq„) (Bv/Bp„) (Bv/Bq„)—(Be/Bp„) (5.6).
Then,

{m,H}=u, {q„,q„}=0, {q„,v.„}=B„„,

{v„,v;}= ef„,(q), H = ', v„7r„. -(5.7)

In the presence of an additional external field, F„„(x),
the equations of motion, (3.6), become

q, (1+X/m) =F„.(q) q, . (4.6)

For a given external field, the curvature of the path
will be reduced by this effect of the self-action. This
gives the same resultant path as would be obtained if
the self-action were disregarded, and the initial mag-
nitude of the four velocity, m, increased by the coef-
ficient of q„ in (4.6), giving m =m+X. The X of (4.5)
is the classical self-mass of the electron in terms of the
W(s) of (2.8), and the well-known result that it is
inversely proportional to the radius of the electron
follows from the fact that the range of s in W(s) is the
square of the electron radius.
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The set of equations of (5.7) provides a simple, gauge- adjoint by the inner product of
invariant expression of the classical mechanics in a

cform suitable for quantization.
(6.9)

QA (c)=c;4 (v),

II„Q(q) = ( iB/Bq„—eA„)f(—q).
(6.2)

The anti-Hermitian character of Q4 and 1I4 causes no
difhculty.

The numerical value of the classical Hamiltonian
equals —~ (or —m'/2), and for an eigenstate of the
Hamiltonian operator,

(6.3)

In the Schrodinger representation, f develops in r in
accordance with

Hf = 'c1b$/l3 .r (6.4)

Were we to choose for the Hamiltonian operator the
direct analog of (5.4), H= ,', rr„rr„, we w-ould have a
description of a scalar particle. Instead, we use the
Pauli 2& 2 spin operators,

&z (&zq&yq&z&2) &
K (Kz&Py&Kzy Z) &

(6.5)

with o„"+o„&=2h„„Classicall.y, ~„and m. commute, so
that the classical Hamiltonian can be written:

7T 1 izP/= g7iP,7lPOP z (6.6)

The Hamiltonian operator applicable to the electron
corresponds to (6.6) instead of (54), giving

H= —rr„rr„„"=—'rl„rr„+—'see'„„„". (6.7)

This Hamiltonian would not be self-adjoint if the inner
product between states were defined as

8'bA' ) J
d g4'b 4' (6.8)

However, II„a& as well as II„O.&H would be Hermitiao.
We can therefore make the Hamiltonian of (6.7) self-

IIL FIRST QUANTIZATION

6. Two-Component Wave Equation

We quantize this classical theory by associating
operators to dynamical variables such that the com-
mutator of two operators corresponds to i times the
corresponding classical Poisson Bracket, i.e.,

U~&, V—+v, LU, Vj—bb fe,e}, (6.1)

where $U, Vj= UV —VU and (N, e} is the Poisson
Bracket de6ned by (5.6).

As in the classical theory, the state refers to a single
v, and not to a single time. The state at a v is specified
by the wave function, P(q), of the Q representation. In
this representation, the operators Q„and II„, corre-
sponding to q„and m„of the classical theory, are: (AA") =&.b& (&)

Z. e(e)0., , (V)0., .(V') = ~"~'(V V'). —(6.11)

f(q) is equal to (11„o.g)*. States with e(a) equal to
plus or minus one will be called electron and positron
states, respectively, since for the eigenstates of II with
eigenvalue equal to —m'/2, this reduces to the usual
nomenclature.

The expectation value of an operator, A, is (P,AP),
for states normalized by (6.11). In particular, the ex-
pectation value for the c-number, e, is +e for an electron
state and —e for a positron state. The expectation
value for the energy, Pb, is (f,P&f) and is positive for
the customary electron and positron states.

The r-independent wave equation of (6.3) can be
used for solution of eigenvalue problems. It is the
second order Dirac equation, IIII'= —mQ, for an
eigenstate of yb (=—yiy~yby4) with eigenvalue —1, and
therefore the usual eigenvalue relations follow.

The r-dependent equation of (6.4) can be used for
obtaining transition probabilities. It is mathematically
more convenient to rewrite it first as a erst order, four-
component wave equation. In this form, it will be shown
that the results are those of Dirac hole theory expressed
in the form of Feynman graphs, ' suitably modified by
the nonlocal interaction.

7. Four-Component Syinors

The r-dependent equation of (6.4) is inconvenient to
work with because it is of second order both in the
coordinate derivatives and in the potentials. In place
of the two second-order equations it represents (one for
each spinor component) it can be written as four first-
order equations. This will be only a rewriting, and there
is a one-to-one correspondence between the solutions of
each set.

We will here denote the two-component spinor of
Sec. 6 by N. The r-dependent wave equatio'n of (6.4)

This inner product has the properties

(Pb, lt,)*=Q.,Pb), g b,HP.) = (Hgb, g.). (6.10)

The metric is indefinite, as (f„f,) can be of either
sign. Though an indefinite metric usually raises the
serious physical objections of negative probabilities,
here no physical significance is associated with meas-
urements at a particular r.

In Sec. 8, we will give explicitly a complete ortho-
normal set of wave functions that diagonalize the field-
free Hamiltonian. In the presence of fields, we assume
that there are still complete, orthonormal sets of wave
functions, with
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can be rewritten as is an eigenfunction of H with eigenvalue —m'/2, then
these equations are equivalent. For such a state,

The first equation of (7.1) defines e, and i—e* is the f
of Sec. 6. These equations can be combined into a single
equation by defining a four-component spinor by &0 ~&

(7.12)

Under the non-unitary transformation P'=T 'P, M'
(7 2) = T*MT, II'= T*IIT, with

The Hermitian Dirac matrices, y„, can be repre-
sented in terms of the 0-„and 0& by

f4rrb 0 q

Eo I—:) (7.13)

These satisfy the usual anticommutation relations,

{v., v.) =25"
In this representation, y~ is diagonal and equal to

l1 0~
&0 —1)

M'=4rr, and II'=lI, so that (7.9) transforms into the
(7 3) Dirac equation.

The four-component wave equation of (7.9) and the
expression for inner products of (7.10) will be used
instead of the corresponding equations, (6.4) and (6.9).

(7.4) The transformation properties of the wave equation
(7.9) under a Lorentz transformation, x„'=a„„x„,are
the usual ones."M commutes with the product of any
two y's; a~d only such products appear in the matrix S

(7.5) giving the transformed spinor, f =Sit. 8 is determined

by

We introduce the operator, M, 5 '7„5=a„,y„, 745*F4=S. (7.14)

1 0

E 0 —2icl/rlr 2

Its adjoint, JI/It, will be shown to equal

lI 2i rl/dr 0)—
o

(7 7)

Under a gauge transformation, A„'=A„+rid/clx„, the
transformation for P involves the average of A over the
charge distribution, and is

P' =exp (ie(h) „,)f, (A)&„——
~
"d'xF (x—

q)4 (x). (7.15)

8. Field Free-Motion
Together, they have the properties:

My„= y„Mt, My„y„=y„y„M,
MMt =MtM = 2i rl/rlr. — (7.8)

(ilI+M)$ =0, (7 9)

The last equation of (7.8) justifies denoting this
operator by 3I, since classically, m'= —2II. It is a
"mass operator" only in a trivial sense, for it has nothing
to do with the effects of coupling to the radiation field.

The equations of (7.1) can now be combined to give

As an illustration of this approach, we consider the
6eld free motion of the electron, and choose the gauge
A =0. Then, a complete set of self-adjoint, commuting
constants of the motion are P'0, P», P2, P3, and 0„
where o-~ is the spin operator in the direction of the
three-vector, p. For those states with p=0, a-~ is in
the direction of an arbitrary three vector. They com-
mute with the Hamiltonian of (6.7), which in this case
is just ~P„P„.

From the r-independent equation of (6.3), the eigen-
values of H and P„satisfy

where II=x„y„.The inner product between two states
of (6.9) in terms of the /of (7.2) is from (7,1) and (7.2), p p

= 2co =re. (8.1)

(4'b 4")= ' d q4'b 744'' (7.1o)
The two-component eigenfunction with eigenvalues
p„and X for P„and o.

~ is

For p, and fb sayisfying the r-dependent wave equation
of (7.9), the operator 3IIt of (7.7) is the adjoint of M,
since

(A W') = (MV bA) (7 11)

0„,g(q) =e'"'I,, b, (8.2)

where m„), are the normalized eigenvectors of o-~ with
eigenvalues X=&1. The states can be normalized by

(4.,..f. , b) =&'()b —p')5»e(P, ) ) (8 3)

Equation (7.9) differs from the Dirac equation in

that the operator M replaces re, the electron mass. If p Scheel (J. Springer, Berlin, 1926), Vol. 24, part I, p. 259.
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to give
lt, , i(q)= (2~) '~ ps+)ip~-'e' u„,,

e (p, )&,) = sign (ps+Xi&) .
(8.4)

satisfies (9.1) and (9.2). Substituting (9.4) into (9.1),
we obtain

(y„B/r)q„+M)S+= ', ( —r—&'/Bq„' 2—iB/Br)h+ .(9.5)

For p'=0 (states of zero mass), the two spin states
cannot be orthonorrnal in the sense of (8.3). Since for
the electron, —p'=no', these states enter only into
virtual transitions, in which case integrals over p are
taken. In this sense (8.3) can be fulfilled. For states
with the electron mass, (p( is less than

~ ps~, and e is
equal to &1 depending on the sign of ps.

A wave packet localized in space-time at a single v.

can be formed by superposing eigenstates of P„whose
eigenvalues range over a small four dimensional region
about p„. Such a packet combines states of slightly
diGering masses. If the dimensions of the packet are
large compared to the wavelengths involved, the packet
moves through four-space with the group four-velocity,
p. In the presence of slowly varying potentials, the
packet is deAected in accordance with the classical
equations of motion of (3.6). This is the four-dimen-
sional analog of Ehrenfest's theorem.

9. Green's Functions and Feynman Graphs

The development of the state in v. is given by the
r-dependent wave equation of (6.4), or its equivalent,
(7.9). The wave functions at a later r is determined by
that at an earlier one and can be evaluated with the
use of the appropriate Green s functions. If, initially,
the state is an eigenstate of the electron Hamiltonian,
it will remain so for all 7. since the potentials, A„are
independent of v. We need only impose the initial con-
dition on the wave function that its eigenvalue of H
correspond to the observed electron mass to insure that
o&=no'/2 will always be the observed one.

For the solution of the wave equation which is equal
to the given one at the initial v, the boundary condition
on the Green's function is that it gives propagation
forward in ~. When used for the evaluation of transition
probabilities, it gives the results of Feynman, and
hence of hole theory.

The field-free Green's function, S+(q, r), satisfies the
inhomogeneous wave equation corresponding to ('7.9)

and gives propagation forward in v,

S+(q,r) =0, r(0 (9.2)

The choice of the numerical constant in (9.1) is made
to simplify subsequent equations. S+ can be explicitly
evaluated in terms of the h function of (2.2). We first
define d,+ by

h satisfies the homogeneous wave equation (2.4), a,nd
is equal to the four dimensional Dirac delta function in
the neighborhood of ~=0. From the discontinuity in
h+ of (9.3), the inhomogeneous equation (9.1) follows.
The properties of (2.5) and (2.6) apply to h+, provided
all the v are positive.

The co frequency component of the v dependence of
6+ is the Feynman propagation function 6&,"

hp(q) = I dre '"'h+—(q, r) =~(q,o&) (9 6)

Similarly, the o& component of S+ from (9.4) differs
only by the transformation of (7.13) from siSp(q). For
a state which initially has the eigenvalue of H equal to
—~, only these components of S+ will be involved in
the perturbation expansion of the Green's function.

In the presence of fields, the Green's function 6
satis6es

(i II+M)G( q,
q', r) = —i54(q —q') (1&r),

G(q, q'; r) =0, r(0. (9.7)

G„(q,q', r r') = e"—)~dQ&'& dQ& "&5~(q—q&'&, r—r&'&)

XA(q&'&) A(q&"&)S+(q&"&—q', r&"&—r) (9.9).
The volume elements of integration, dQ|:", are equal to
d'q&') dr&') and the integrals are made over all q&') and v '.
Since the S+ vanish for negative r, there will be con-
tributions to the integral of (9.9) only when r, r&'&, ~ ~

r&"&, r', are in the order of decreasing r. Equation (9.9)
can readily be interpreted as a Feynman graph with
one electron line and e vertices, each following the next
ln 7.

We can express the solution of wave equation satis-
fying the boundary condition that it equal a given &P

at the initial v by

4(q, )= d'q'G(q, q', —")(1—~)lt(q', ') (9«)

This can be written, "
(y„a/Bq„+ M)G(q, q'; r)

=ieA(q)G(q, q'; r) ib4(q q')7'&(—r). (9—.8)

To obtain G as a perturbation expansion in powers of e,
we treat the term involving e as a perturbation, and set
G=Q„G„,with G„of rith order in e. Then,

h. (q, )=h(q, .),
=0

7 «0; (9.3) (1—7s) is twice the projection operator which selects

then
~+(q, r) = s( V.~/~q. +~')h+(q r—) (9.4)

"See, for example, F. J. Dyson, Phys. Rev. 75, 486 (1952).
"A(a)=As(9)vw.
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the last two components of &p. From (7.1) and (7.2),
these two components are sufficient to determine all of
&P at the initial r, and also for all r. These two com-
ponents are just the original two component spinor, and
since the four-component equation is only a rewriting
of the two-component equation, one might expect only
these components to determine the initial state, and
hence appear in (9.10).

The wave function at a r can be expressed as a linear
combination of an orthonormal set, &p„by

the initial state, a', to the final state, g,

with
c.=c(a)Q e"c.~")

c,&")= dQ&') dg&")&P, (q&'), r&'))A(q&'))

yg (qo) q(2) /o) 7-(2)). . .

(9.18)

Then
4 (q, ~) =E.cA'(q, ~)

c.= Q"A) ~(o)

(9.11)

(9.12)

The inner product (&P,,&P) of (7.10) can be rewritten, in
view of (7.1) and (7.2), as

(4.A) = d'm4*v4 = "d'q0. (1 v~N, —(9 13)

where

4 = (v ilail)*. (9 14)

lt satisfies the adjoint wave equation,

&P (iII+M) =0. (9.15)

The differential operators operate on &P with their sign
reversed. In terms of the original two-component I
and vq

(9.16)/=2 &(—2u*, ii&*)—

The transition amplitude c, at r for an initial state
0"(~'), is

c.= c (a) d'qd'q'&p. (q, r) (1 yg)—
~G(q q' —')(1—& )4' (q' '). (917)

We set &P, (q', r') equal to the solution of the field free
wave equation equal to &P, at the initial r', and &P, (q, r),
the corresponding solution equal to &P, at the final r
Then, since the terms in the perturbation expansion of
(9.9) all begin and end with the field free propagation
functions, we obtain for the transition amplitude from

The limits of integration on ro) and r&") are r and r'.
All other integrations range from ~~. However, since
S+ vanishes for negative r, all the r integrals give con-
tributions only from the range r to r'.

If the states a and a' are eigenfunctions of the field
free Hamiltonian with eigenvalues —or and —ar, , then
&P, and &P, depend on r in an exponential manner, e'" '"
and e '", respectively. %hen the difference r—r' is
large compared to the periods of the cv frequencies,
each successive r integration selects the co component
of S+ until the last is reached. The last integral intro-
duces a factor which can be written either as
2~8(e —&o, ) or (r r')8, , Th—e transition proba-
bilities per unit r follow from (9.19).

For a plane-wave initial state, the transition prob-
ability per unit time is

~ p& ~

' times the transition
probability per unit 7., since po is the time-like com-
ponent of the four velocity. Also

8(M —(o') =E 'L8(pp —E)+5(po+E)j, (9.20)

where E= (m'+1&')' and m'= —p" for the initial state.
Therefore, the transition probability per unit time is

2~(popo'j-'p(po —E)+&(po+E)jjM(', where OR is
given by the sum of the expressions of (9.19) with the
last r integration omitted. Since the co components of
S+ are just the Feynman propagation functions, Sp, the
equivalence of this method to the usual hole theory is
established for an electron in a given electromagnetic
field.

In the evaluation of specific terms, the properties of
(2.6) and (2.7) are of value if the q integrations in (9.19)
are made first.


