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Variable Mass Equations
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Isotopic spin-space is generalized. The equations of field theory then describe systems of interacting
particles as in ordinary isotopic spin-theory, but the particles and their interactions are more complex. The
different systems which arise from different generalizations are systematically discussed.

l. INTRODUCTION

'HE aim of this paper is to systematize held
equations which describe particles having variable

masses, and to make possible the description of families
of such particles by one general theory.

It is shown that a desire for conservation equations of
the usual charge-current type leads to the study of a
generalized isotopic spin space. This space is Euclidean
and has an arbitrary number of dimensions. It is be-
cause it has the same kind of structur'e as ordinary
coordinate space, that the concept of spin occurs in it.

The general theory allows, but does not necessarily
contain, multiply-charged particles. If the concepts of
mesonic charge and mesonic charge conservation are
introduced, a use for theories with multiply-charged
particles is found. Apparently different particles can be
thought of as differing only in mesonic charge.

It is shown that for interaction, a modified Dyson
graph picture is valid. Renormalization is possible, but
this is not shown.

2. GENERAL THEORY

where J is a matrix in the same space as 3f, and the
boson charge-current vector is taken as

where j is a matrix in the same space as m. Strictly,
charge conjugates should be added in, but these are
temporarily ignored. They make no essential difference.

The equation for total charge-current conservation,
which it is necessary to have, is

BQ Bgt
~4J4+4'i

BSp BSp

By satisfying this equation, we can partially determine
the unknown matrices.

From (1),
l9

fJyl' +QJMQ=O,
BSp,

We shall consider the customary boson and fermion
field equations, but we shall replace the c-number
masses by matrices, whose nature is unspecified save
that they are Hermitian.

The P's and p's are given an extra suKx, and using the
summation convention, the free-field equations are

7aPQPo+~a bPa b

BSp,

y"JP—gM JQ =0;
BSp

so for conservation for a free-fermion field,

PM, Jl =0.

Similarly, for a free-boson field,

[nz',j)=0 (Sb)

'y.+ (m') .by b ——0. We now satisfy the conservation equation for the
interacting fields. The coupled equations are

The matrix multiplication will often just be implied.
When there is interaction, it is assumed that the

Hamiltonian contains a term

&ggaa7nP+ab PPb(go+4'o )y (3)

where the y is an ordinary y matrix, e.g. , y', and the A'

are a set of matrices in the same space as M, whose
nature is unknown. Equation (3) may be written as

8
vV+~4'=gee%(4 +4 ')

BSp

v"+4~=g4~~ (4 +4-')
BSp,

'P,+ (m') pPp i ggyA"P, ——

+Pp (m )p =iggyAQ

(6)

The fermion charge-currerit vector is taken as
(In the last equation, an infinite constant appears, but
as usual disappears when the charge conjugate part is
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added in.) Thus,

8
(&%Ivy) =ia4v [I,A ]4 (4 -+4 -'),

matrices, so it is possible to write the interaction as

-,'igppr p(4 +4„)
(8

This form for the interaction is well known.

3. ALGEBRAIC PROPERTIES OF MATRICES

Suppose A is a linear combination of the A . Then the
fermion matrix A corresponds to the boson matrix a,
where

=isa-'i -s4vA'4 ig4—vA A -t A '(9) [A,A ]=—a pA. &. from (10)

If similarly 8+-+b, then evidently
Adding, the required conservation equation (4) is ob-
tained if A+8++a+b, - (13)

[J,A ]=—j pAt'=At'jp . (10) and a short calculation shows

In this equation of course, J, h. , h. t' are matrices (in
the same space as 3II) and j s is a number, being an
element of matrix j. A trivial solution J= 1, j=0,
always exists and this is the equation

8
(Ave) =o

which expresses the conservation of the number of
fermions interacting.

In general, Eqs. (10) define j, given I and the A, but
they also require j„p———jp . J and A Hermitian
implies j Hermitian, as is necessary.

It is necessary now to postulate some relationship
between J and the A. . When the A are given, the
interaction theory can be set up, and it is expected that
a conserved 1 will depend upon the A . We suppose J
is a linear combination of the A . If Eq. (10) is satisfied
by all linear combinations of the A", it is necessary that

where

[A,B]~[a,b]. (14)

Equation (14) shows that the boson matrices t satisfy
the same commutation relations as the A. , and so are
just another representation of the group to which A

belongs.
It is shown now that (t )'=t Thus s.ince the eigen-

values of t, from the group property, are &k, & (k —1),
(2k an integer), the eigenvalues are 0, +1.

[Iia Pla I2a]] I2a

Thus, for given 8, [A', [h',h&]].=A.&i.f 8 and. P have a
superscript in common, and zero otherwise.

Now
[Ab,A-] =Ast,.b,

and so tp '=0 if 0 and P do not have a superscript in
common. Thus, summing on P,

[A', [A',At']]Ip, A&tp, ,
——

so
A&(tb) p, =A&tp„

t3= t.

This equation may be satisfied by taking for the A,
the members of the group of generators of infinitesimal
rotations in a Euclidean space of arbitrary dimensions.
These are usually written

I'2, i/ j; I'~ = —I&',

and satisfy

[I'b,I' ]=is„I "+isbgI" i8b,I'~ i8 gI".—(12)—
These evidently satisfy (11), for (11) is certainly
satisfied if I b, I'", commute, and if they do not
commute they have a common suffix, and it is seen that

Pab Iac] iIbc

Pab Ibc] iIac

which is what is required.
As a particular example, the spin- —, infinitesimal

generators in 3 dimensions are just half the Pauli

Hence, the eigenvalues of t are 0, ~1. This is a
welcome result because if one of the t's is interpreted as
boson charge, as is expected, the boson charge values are
just 0, &1.

It is interesting to observe that if the Dirac y& are
considered as 4 of the 10 infinitesimal rotation genera-
tors in 5 space, in the appropriate representation, and if

[I,I-]=S., P
the 10, 10&&10 matrices 8& will just be the 10X10 P
matrices of Kemmer. In fact the y's and P's are related
in a way similar to the way in which A. 's and t 's are
related.

4. GAUGE TRANSFORMATIONS

The parts of P and P on which the A's and the t's

operate respectively, are not completely determined. It
is possible to have a series of infinitesimal unitary

1 See, for example, H. J. Bhabha, Revs. Modern Phys. 17, 200
(1945).
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implies

that is,

J+-+j
Z+ ice[~,S]~j+i~e[j,s];
—i08SJp+i o8S+-+e—i888jp+s888

It has been possible, by starting with conservation
equations, to produce an isotopic spin space and to
obtain invariance of the interaction under rotations in
it. Of course, it would have been possible to have
started with a generalized isotopic spin space and to
have assumed invariance, and then, vice-versa, the
conservation equations would have followed.

S. MASS MATRICES

It is unnecessarily restrictive to demand that the
Geld equations should be invariant under rotations in
spin space. (Since the proton mass does not equal the
neutron mass, this is evidently true. ) We take

3E=F(X A ), m= f(X t ),
where F and f are arbitrary functions. X A and J are
chosen so that [X A~,J]=0. Thus, by (14), [X t,j)=0,
and hence

[M,J]=0, [m', j]=0.
Thus, the conservation condition for free 6elds is
satisfied. F, an arbitrary function, merely means that
the eigenvectors of M are the eigenvectors of X A, but
that the eigenvalues are arbitrary.

Suitable forms for A. , M, m, J, j have now been
found. The theory can now be applied.

Example: The simplest case is obtained by taking the
spin--, representation in 3 dimensions, for the matrices
A. . The A. are then the three matrices 0 = ~T where T

are Pauli matrices.
It is of interest because it gives two internal fermion

states and three internal boson states, and may be used
to describe the neutron, proton, x-meson system.

transformations of the type

P~gl —e is80P

y~y~ —eis8|ty ~

where S is a linear combination of the A' s, and

[S,A ]=Aese = —s pAe.

This may be regarded as a rotation in isotopic spin
space. It is the precise analog of the similar gauge
transformation which operates on the part of g on
which the y matrices act. In this case, of course, it is
familiarly recognized as a Lorentz rotation.

A trivial calculation shows that the interaction

igtpyA ip(p +p )

is invariant under such rotations.
The relationship (10) between J and j is also in-

variant, as is necessary, for (13) and (14) show that

The o-'s have eigenvalues ~—,
' and the t's corresponding

to them have eigenvalues 0, ~1.The matrices t can be
obtained explicitly at once. For example,

t' 0 i—Oy
t,=i+i 0 0 i.

&0 0 0)

The most general form for X A. , allowing a rotation,
is just Xo~. Thus J is taken as e(-,'+os). (There is an
extra term —', e here, which was not in the theory and
which has been put in solely to give the customary zero
of the fermion charge; since ~ietpyg is separately con-
served as has been shown, this addition is unimportant. )
Also j is taken as et3. Hence, there are two fermion
states having charge 0, e and three boson states having
charge 0, &e. The masses corresponding to these states
are arbitrary. Explicitly for example, M may be written
as a+bo3 where a and b are arbitrary.

The current and charge has been introduced as
something which is conserved. So far there has been no
electrical interaction. To introduce it, a term X„A„ is
taken in the total Hamiltonian, where A„ is the custom-
ary electric vector potential, and I„ is the current
vector previously defined. Since BX„/Bx„=O, there is

gauge invariance under the transformation 3„—+A„
+8@/Bx„

A solution is p= e'»& '*I"u(p(nz)m)v(m), where e and o

are column matrices operated upon by the p's and by 3f
respectively, and Mn(nz) =me(m) (o normalized).

We proceed as usual by taking a general linear
combination of such solutions as the general solution,
the coefficients being annihilation and creation opera-
tors. For a creation, it is necessary to specify the
internal state of the particle created and similarly for a
destruction. Thus,

p= P a[p(m)m]e'»~ &*~u(p(m)m)v(m)

where
+conjugate part,

[a(p(m)m), ot(q(e)e)]=h „8„,.

p is dealt with in the same way. Suppose the column
eigenvectors which arise here and correspond to the m's

are called w(p), the p labelling the eigenvectors, as m
labelled the eigenvectors of 3f. The interaction term in

0. INTERACTION AND THE 8 MATRIX

It will be shown that the usual Dyson graph picture is
valid, but that for each vertex of the graph there is an
additional factor occurring in the appropriate S matrix
term, and that this factor depends upon the internal
states of the particles interacting at that vertex. This
factor multiplied by g will be termed the effective
coupling constant.

The free fermion equation is
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the Hamiltonian is

i'll'vA'V(d +4 ')

There is, thus, an extra factor at each vertex, as
compared with usual theory:

vt(nag)A v(nz2)w (p).

This particular factor comes from a vertex where there
are three lines with the additional labels m~, m2, and p
which describe the internal states of the particles. The
effective coupling constant is

f(m, m2p) =gv'(mg)A (vm )2w(p)

(It is determined only to within a phase factor. How-
ever since m's always occur in conjugate pairs, this is
unimportant. )

As an example, consider the 3-dimensional spin--',

case:
0 p

&0 —-', )

t
0 —i Oy

o oI,
&0 0 0)

so (labelling eigenvectors by eigenvalues of 08 now),

t'1q (0)
v(k)=l I, v( —l)=l I

&0) &1)

w(1)=1/~~l i I, w( —1)=1/~~l —i
I

~1~ t 1q )Oq

&0& & O ) &1)

The nonvanishing f's are

The zero f's are those at which charge is not conserved.

By using effective coupling constants, it is perhaps
possible to describe by one theory many different
mesonic decays. The apparent differences in coupling
constants necessary to account for these decays, may
just be differences in the relevant effective coupling
constants.

If eGective coupling constants are renormalized,
renormalization theory can be applied. There is a
difhculty however, since in the customary theory coup-
ling constants are given their observed values after
renormalization. It is not clear to what extent re-
normalized effective coupling constants are arbitrary.

Charge conservation may be shown directly from the
theory in a very simple way. J is related to j by

[J,A 7=3.eje .
Let J have eigenvalues J'„, J, and vectors v(J„), v(J,).

Let j have eigenvalue j& and vector w (j&). Then,

w v'(J„)[JA 7v(J,) =vt(J„)Aev(J, )je.w. ,

giving

(J„—J,—j&)vt(J,)A v(J,)w.=o.

Thus, charge is conserved at those vertices where the
effective coupling constant does not vanish, and other
vertices just do not occur.

'7. TWO-FAMILY FERMION SYSTEM

Certain interesting features arise when we consider
higher dimensions for the spin space. As an example
consider 4 dimensions, and take the representation in
which

go&=P g33) 3)

g02= p30i ~3~=Or3 1) 1)

P3= p30. I"=0-
2) 2)

where the 0's are the previous a's and p3 is a Pauli
matrix commuting with the 0-'s. Take

3f=F(nP'+PP'),
m= f(nto'+pP),

J=eP'+-', e,

j=eP'

The eigenvalues of J are thus 0 and e, and the eigen-
values of j, 0, and &e. The eigenvalues of nP'+PP' are
&~2n~~2P. The eigenvalues of nt"+PP' are 0 (twice) and
&n+p. The latter are calculated by writing down
explicitly the relevant matrices. Since nP'+ pP' repre-
sents a fermion "current" and nto'+pt" represents a
boson "current" which is conserved, there can be no
transitions from the fermion state -', (n+ p) to the state
-', (n —p), for this needs a boson with "charge" p which
does not exist. Thus the fermions split into two
separately conserved families, those whose mass is
F[+-', (n+p)7, and those whose mass is F[+-,'(n —p)7.
Each of the families possesses electrically charged and
uncharged particles.

There are six kinds of boson; two of charge &e
interacting with the first family only; two of charge ~e
interacting with the second family only, and two with
zero charge interacting with both families.

8. MULTIPLY-CHARGED FERMIONS

In three dimensions, spin-k representation, there will

be three A' s, m~, m2, m3, whose eigenvalues will be
+k, & (k —1),2k an integer. As in spin--', theory, J
is taken as nba. There are thus 2t't+1 fermion charge
states. Here and in general, the effect of altering the
representation of the A. 's is to change the number of
fermion charge states.
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9. MULTIPLY-CHARGED BOSONS

In order to obtain a theory with multiply-charged
bosons, the interaction term is taken as

igfyh A P(&b 8+/ p )

where the A. are matrices of the type previously dis-
cussed.

This is just the analogue of ordinary tensor coupling.
Equation (10) is now

[J,h. APj= —
j& p)&~())A'1A

=~'~'j(~»( w

and this is satisfied so long as J is just a linear combina-
tion of the A.~. The whole theory works as before.

The interesting difference is this. If j is dined as in
the ordinary theory by

[J,A-)= —j.pAP

and the eigenvalues of j p are 0+e, then the eigenvalues
of j(~p)(~» are ~2e) ~e) 0.

For, from (15), j&~p)&~s) ——j~~bp1+b, ~jps& and so the
eigenvectors of j& p)&~s) are just &7(j))&bs(j2), where

p~( j1) is an eigenvector of j ~ belonging to eigenvalue

j1. Thus eigenvalues of j&~8) &») are j1+js which gives
the result.

By taking higher order "tensor" coupling, more
highly charged bosons can be obtained. Highly charged
bosons may be unable to interact, because they may be
unable to lose their charge. Such bosons will be stable.

iO. MESONIC CHARGE

There is at the moment no use for theories with
multiply-charged particles, so long as this charge is
considered as electric charge. However if it is considered
as mesonic charge (whose only property is that it is
conserved) there may be a use for such theories. To
describe electric and mesonic charge together a product
theory is needed. The generalization is simple.

The interaction term is taken as

where the A. 's are matrices of the type previously
discussed, but where the A(" and the h. ('~ are in diferent
spaces.

Everything works as before. J is of the form

g A(1)a+2&pA(2) p

j—
P ((1)~+)&pI2)8~,

M is of the form

M=F(X A&"~ &18«2)8),

2)2= fP 'I&p)t »p)&2,

where

[JX A&')~/=0

[J&18A(2)8]=0.
As an example consider the spin-~, 3-dimensional theory
for the fermions, in both spaces.

4V"(sf+ fo ")4
It is possible however to vary this slightly. Electric

fermion charge can be taken as

pgpv(os(1&+o. (2))p

Then there will be greater symmetry and the zero of
electric charge will depend upon the mesonic charge.

The fermion mass is taken as

M =a+ b (("T+co.:&"+da2. &') o.,&') (16)

It may be felt that the natural generalization of M to
a product theory should be

3I=F(X A&'& +128A&2) 8+» pA&'& 8&2)p).

We consider as an example of this more general form:

M= a+ bo 2&'&+ Cos&'&+ do, &'.&o 1('&

There is here an essential difference. The eigenvectors of
M are now no longer just products, but are sums of
products of eigenvectors of o.3(" and a.3"', and the
mesonic charge conservation equation is lost. If d is
small, however, in Eq. (17), mesonic charge is almost
conserved. This means that when there is interaction,
there exist weak. transitions which violate mesonic
charge conservation, i.e., the absolute selection rule
which previously existed is replaced by a weak selection
rule. If this second scheme is used to describe proton,
neutron, V-particle system, V-particle decay may per-
haps be explained in this way.

~~. PAIS) THEORY2

It is possible to consider a product theory in which the
A. " ) h. ('&& are in diferent spaces, but in which a
rotation in one space implies a rotation in the other. Ke
consider the 3-dimensional case and take the spin--,'
representation for the A(') and the spin-k representation
for A.("~ %'e take

~—@+b («1)l«2)1+«1)2«2)2+A(1)3A(2)2)

Since the spaces rotate together, ~ is invariant. This
is almost the Pais form for the fermion mass. He takes,

' A. Pais, Physica 19, 869 (1953).

This scheme means that there are two electric charge
states and two mesonic charge states for the fermions,
and thr'ee electric and three mesonic charge states for
the bosons. This might be useful in describing the
proton, neutron V-particle system, if the V particle is
considered as a mesonically charged nucleon.

State vectors in this theory are just products of the
state vectors for the two simple theories considered
separately. No new features arise. For example the
electric charge current vector is taken as

Pp" (-,'eq eo &'))P

and the mesonic vector as
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instead of A(2, the angular momentum operator in his
co space, ms=i(~&c)/c)cos —tost)/c)~&), etc. The only differ-
ence is that his theory allows transitions between states
with diGerent k s. Here there is only one k, which is
given. In both cases, an M is found which is invariant
for rotations in spin-space. This seems unnecessary, but
if it is desired, this is a possible M.

In order that LJ,M)=0, for a conservation equation,
we must take

J= e(h.&'&'+A&'&').

There is only one conserved quantity which must be
interpreted as electric charge. The eigenvalues of J are

+ (&+s), + (&—s)

There are thus inevitably multiply-charged particles.

12. CHARGE CONJUGATION

jp is imaginary as has been shown. Thus, with our
previous notation,

This expresses the familiar fact that by interchanging
the roles of creation and annihilation operators in p, the
boson current is reversed.

The A. and the —A.~ have the same commutation

relations. Thus, as usual,

—A =TA"T '
where

It follows that

implies

T—+TT

Je(J,) =J„e(J„)

J(T-'vt) =-J (T 'et)

The eigenva1ues of J occur in pairs ~J„with eigen-
vectors e and T 'v~. This is just what is needed for
fermion charge conjugation.

Usually,
p'=c 'it'

Here we have
QI —~1+ 1$—

13. CONCLUSION

A possible framework for dealing with families of
apparently different particles has been formulated.
Perhaps it may prove possible to describe in this way
what is actually observed to occur.

I should like to thank Dr. A. Salam for his help and
encouragement.
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Proper-Time Electron Forri1alism*
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A classical and first quantized formalism is presented which gives a complete description of electrons in
a given electromagnetic field, including real and virtual pair processes. The Feynman viewpoint of electrons
propagating through space-time is adopted throughout. Interactions betv. een electrons are considered
only in the classical theory, and a nonlocal interaction is assumed to make all effects finite. Consideration
of interactions in the quantized theory is reserved to field quantization, which wHl be presented in a fol-
lowing paper. The calculation of transition probabilities gives the results of hale theory as interpreted by
Feynman.

I. INTRODUCTION

'SE has been made of the proper time' in quantum
electrodynamics as a means of rewriting the Dirac

equation. ' ' It has provided covariant methods of
calculation and prescriptions for the evaluation of
divergent terms.

There are several reasons for investigating the pos-
sibilities of a more extensive use of this parameter. .

* Submitted in partial fulfillment of the Ph.D. requirements of
the Department of Physics, University of Chicago, Chicago,
Illinois.' "Proper time" is used in the general sense of an invariant
parameter describing the motion of the-electron.

s V. Fock, Physik Z. Sowjetunion 12, 404 (1937).
3 Y. Nambu, Prog. Theoret. Phys. 5, 82 (1950).' J. Schwinger, Phys. Rev. 82, 664 (1951).

Feynman graphs' in field-theoretical calculations sug-
gest the interpretation of the electron motion as evolv-
ing in four-space in the course of proper time. Also, the
introduction of a covariant nonlocal interaction between
the electron and electromagnetic field' suggests a
shape to the electron in four-space at each value of the
proper time. As a consequence, a quantum electro-
dynamics has been formulated in which the proper time
plays an essential role throughout.

The concepts to be employed are first introduced

5 R. P. Feynman, Phys. Rev. 76, 749 (1949).
'H. MacManus, Proc. Roy. Soc. (London) A195, 323 (1948).
~ H. Yukawa, Phys. Rev. 76, 300, 1730 (1949); 77, 219 (1950).

C. Bloch, Kgl. Danske Videnskab. Selskab. Mat. -fys. Medg.
26„No. 1 (1950);27, No. 8 (1952}.


