SPECIFIC IONIZATION BY HIGH-ENERGY ELECTRONS

tron value of W is slightly higher than the other reported
values. The increase in W for H, beyond the minimum
has already been remarked, and it may be that the
change from a-particle energies to minimum ionizing
electrons is a part of this trend. The low value reported
for 340-Mev protons is surprising in that the primary
particle velocity is intermediate between the « particle
and electron velocities.

Rows 9 and 10 of Table II give the expected total
specific ionization for 1.7-Mev (minimum ionization)
and 34-Mev electrons, respectively. These values were
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computed by dividing the difference in energy loss
predicted by Egs. (1) and (2) by the value of W at the
minimum (Row 5 of Table II), and adding the result
to the measured probable ionization.
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Polarization effects in the elastic scattering of high-energy nucleons by complex nuclei are studied in
terms of the impulse approximation. The principal aim is to reconcile the large polarizations produced by
complex nuclei with the smaller effects found in nucleon-nucleon scattering. It is shown that these results are
not inconsistent and can indeed be understood in terms of simple physical arguments. While, in general,
our knowledge of nuclear structure is not adequate for explicit calculation of these effects even in the impulse
approximation, it can be shown that for a particular class of nuclei (the deuteron and the alpha-particle
nuclei) the polarization is independent of the nuclear wave function. Calculations for these nuclei have been
carried out in detail, using existing nucleon-nucleon phase shifts. The resulting polarization effects are
found to be large, in rough agreement with experiment, although their angular dependence is not satisfactory.
It is proposed that a study of polarization in elastic scattering by deuterium and helium be used as a tool for

investigation of the nucleon-nucleon interaction.

I. INTRODUCTION

XTENSIVE experiments have been reported
during the past few years concerning measure-
ments of the azimuthal asymmetry in the double scat-
tering of high-energy nucleons by various nuclei.'"¢
These measurements indicate the existence of quite
large polarization effects in the energy region 130 to
400 Mev. The peak polarization produced in proton-
proton scattering has been found to be about 40 percent
in this energy region, while comparable effects are
found in neutron-proton scattering. Protons of the
same energy when scattered by complex nuclei seem to
be polarized much more strongly, however, the major
effect coming from elastic processes.*” Experiments
* This work was performed under the auspices of the U. S.
Atomic Energy Commission.
T Present address: General Electric Company, Research Labo-
ratory, Schenectady, New York.
1Oxley, Cartwright, and Rouvina, Phys. Rev. 93, 806 (1954).
( 2M)arshall, Marshall, and deCarvalho, Phys. Rev. 93, 1431
1954).
3 deCarvalho, Heiberg, Marshall, and Marshall, Phys. Rev. 94,
1796 (1954).
4J. M. Dickson and D. C. Salter, Nature 173, 946 (1954).
5 Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis, Phys.
Rev. 93, 1430 (1954).
6 Chamberlain, Donaldson, Segre, Tripp, Wiegand, and Ypsi-
lantis, Phys. Rev. 95, 850 (1954).
7 Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis, Phys.
Rev. 95, 1105 (1954).

that discriminate against the inelastically scattered
protons have detected polarizations as large as 80
percent.

Theoretical investigations of polarization effects in
nucleon-nucleon collisions have been carried out by
Goldfarb and Feldman® and by Swanson.® These cal-
culations are based upon various assumed phenomeno-
logical potentials designed to fit existing scattering and
bound-state data. A reasonably good estimate of the
p-p polarization is provided by the singular tensor-force
interaction, while the hard core and L-S models give,
respectively, too small and too large an effect. The
tensor-force model of Christian and Hart gives roughly
comparable polarizations for the #-p case.

More recently, attention has been focused upon the
scattering of nucleons by complex nuclei. Numerous
calculations have been reported®'5 in which the
nucleon-nucleus interaction has been treated phe-
nomenologically. The common feature of all these
efforts has been the use of a complex central well con-

81.J. B. Goldfarb and D. Feldman, Phys. Rev. 88, 1099 (1952).

9 D. R. Swanson, Phys. Rev. 84, 1068 (1951); 89, 749 (1953).

0 E, Fermi, Nuovo cimento 11, 407 (1954).

1 Snow, Sternheimer, and Yang, Phys. Rev. 94, 1073 (1954).

12 W, Heckrotte, Phys. Rev. 94, 1797 (1954).

13 B, J. Malenka, Phys. Rev. 95, 522 (1954).

4R, Sternheimer, Phys. Rev. 95, 589 (1954).
15 W, Heckrotte and J. V. Lepore, Phys. Rev. 95, 1109 (1954).
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structed to fit the high-energy cross sections, together
with an L-S interaction whose strength must be chosen
more or less ad hoc. The spin-orbit potential generally
used is that obtained from the shell model, although
there is no e priori justification for extrapolation to such
a high energy. These calculations do predict quite large
polarization effects, with maxima of about 80 to 100
percent and angular distributions that are roughly in
agreement with experiment.

It is the purpose of this paper to examine the problem
from a somewhat different and less phenomenological
point of view. In the energy region of interest the col-
lision times are sufficiently short compared with nuclear
periods that the cooperative behavior of the entire
nucleus is less important than the individual-particle
aspects of the process. One is led, therefore, to attempt
to describe the scattering by complex nuclei in terms of
what is already known about the nucleon-nucleon
interaction. From this point of view, it seems difficult
to reconcile the very large polarizations produced by
complex nuclei with the relatively small effects in
nucleon-nucleon collisions.

We will see, however, that if one considers the scat-
tering of a nucleon by another nucleon bound in a
nucleus, the requirement that the process be elastic
imposes a constraint (in the form of a spin correlation)
whose effect is to increase the resulting polarization.
Section II is devoted to an exposition of this point in
terms of rather simple physical arguments. In Sec. III
the scattering problem is formulated in terms of the
impulse approximation to make possible explicit cal-
culations in terms of nucleon-nucleon phase shifts.
These phase shifts are assumed to be known, but as far
as possible no assumptions are made concerning the
detailed structure of the target nucleus. In particular
we find, with the aid of a few reasonable approxima-
tions, that there exists a class of nuclei for which no
detailed knowledge of the nuclear wave function is
required:

II. POLARIZATION BY A BOUND NUCLEON

Before proceeding to a detailed formulation of the
problem of scattering of nucleons by a bound system,
we find it instructive to see what may be learned from
a few physical considerations. We assume, in the spirit
of the impulse approximation,'® that the total scattered
wave may be obtained by summing the waves scat-
tered by the various constituent nucleons. When the
nucleon spin is ignored, the contribution from each
nucleon to the transition between specified initial and
final states is given by the amplitude for a free-particle
collision with the same momentum transfer, multiplied
by a numerical factor (the square root of the sticking
factor) which is simply a measure of the probability

16 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952). Here
we use the term “impulse approximation’ in its loose sense,
mez;lning use of all three of the approximations defined by these
authors,
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that the nucleus finds itself in the required final state.
The effect of nucleon spin can be understood in a very
simple way. To describe the scattering by a particular
nucleon, consider the target nucleus to be decomposed
into that nucleon and a residual nucleus. Specification
of the nuclear state then determines the relative orien-
tation of the spins of these two subsystems. Although,
for an unpolarized nucleus, the target nucleon presents
all possible spin orientations to the incident beam, the
residual nucleus provides a “memory”’ of the initial spin
orientation of the struck particle. If we require the
scattering to be elastic, the relative spin direction of
the two particles must be preserved, which is impos-
sible if the spin orientation of the struck nucleon has
been changed. Such “spin-flip” events are thus sup-
pressed in elastic scattering. We may therefore conclude
that the requirement of elastic scattering is in part
equivalent to the imposition of a constraint that dis-
criminates against spin-flip scattering. The strength of
this constraint depends, of course, in a rather compli-
cated way upon the details of the nuclear state.

It now remains to be seen how the presence of such a
constraint affects the polarizing power of the target
nucleon. For convenience in the following discussion let
us introduce the three orthogonal vectors constructed
from the initial and final relative momenta k; and ky;

n=ki><k,-, K=kf’—'ki, V=IIXK

Furthermore, let us choose our axis of spin quantization
along n, the normal to the plane of scattering. By a spin-
flip scattering we mean an event in which the magnetic
quantum number of the incoming nucleon changes sign.

We will first show that in a collision between two
spin-3 particles if one particle flips its spin the other
must do so also. This follows immediately from the
requirement of invariance of the scattering matrix
under rotations and reflections. If, for example, particle
2 flips its spin and particle 1 does not, the most general
operator causing such a transition that is rotationally
invariant is of the form

(A "|—BO'1 . n) (C0'2 . K+DO‘2' V)

But this operator is not invariant under reflections and
must be excluded.

Consider, now, a collision in which the two nucleons
are specified initially by magnetic quantum numbers
my and me, and finally s, and m,’. Invariance under
time reversal further requires that the transition matrix
satisfy (except for a phase factor)

M (my, me, ki—my, m'ky)
=M (—m, —my, —k;—>—mi, —ms, —k;).

Since for nucleon-nucleon scattering |k:|=|%,|, in-
variance under rotations requires that this also be
equal to

M(ml', mz', k,——->m1, M2, kf)
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Restricting our attention to spin-flip scattering, we have

M (my, mo, ki——my, —ms, k)
=M(—m1, — Mg, k.—->m1, Mo, kf)-

We now see immediately that, for random initial
states, spin-flip events lead to no polarization in the
final state. Because the polarization is the ratio of spin
density to particle density in the final state, and because
spin-flip and no-spin-flip scatterings do not interfere,
suppression of spin-flip processes simply decreases the
cross section while leaving the spin density unchanged,
thereby increasing the polarization.

The above somewhat heuristic argument should not
be considered as a rigorous proof, even granting the
impulse approximation, that a system of bound nucleons
always causes larger polarizations than those obtained
in nucleon-nucleon scattering. Because nuclei consist of
two different types of particles, the interference terms
could very well drastically alter the binding effect.
However, even if interference effects are ignored, there
is a more fundamental gap in the argument. A complete
description of the spin state of two nucleons requires
not only a specification of the relative orientation of
the spins, but also a relative phase. Processes in which
the relative phase is changed (transitions between the
singlet and triplet =0 states) are inelastic and must
be excluded in spite of the fact that no spins have
actually been flipped. This considerably complicates
the effect of binding, so that no broad assertions can be
made.

A more rigorous treatment of the binding effect is
given in Appendix A. It is shown there that there
exists an upper bound on the polarization, which
depends only upon the ratio of the spin-flip to the no-
spin-flip scattering cross sections. The requirement of
elastic scattering has the effect of depressing the spin-
flip cross section, thereby increasing the maximum
attainable polarization.

What we have shown, therefore, is not that the effect
of binding is to enhance all polarization effects, but to
show that it does provide a mechanism by which ap-
parently anomalously large polarizations may be ob-
tained.

III. CALCULATIONS AND RESULTS

To make tractable the problem of scattering by a
complex nucleus, a number of simplifying assumptions
are invoked. We assume the energy to be sufficiently
high that the impulse approximation is valid, and that
the nucleus is sufficiently light that multiple scattering
may be neglected. Furthermore the internal momenta
in the nucleus are neglected compared with the mo-
mentum of the incoming particle, so that the nucleon-
nucleon phase shifts may be taken to be those appro-
priate to free-particle scattering.

With these assumptions in mind we now proceed to
develop a treatment of the nucleon-deuteron scattering

IN SCATTERING BY COMPLEX NUCLEI
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problem, and then generalize it to more complex targets.
Let the subscript 1 denote the incident nucleon, while
2 and 3 represent the nucleons in the deuteron. For
spinless particles the scattered amplitude, ¢, may be
written'? ’

qg= 112912+113Q13, (1)

where ¢;2 and ¢;3 are the appropriate free-particle scat-
tering amplitudes and

Il,‘= fll/f*(1'11‘21'3)1//7;(1'11'21'3)5(1'1— l’,()dl'],drzdl's. (2)

When the nucleon spin is included, it is also necessary
to specify the initial and final spin states of the target
system. If these are denoted by Sy; and Se3’, we must
select from the free-particle scattering matrix that part
which couples these two states. To enable explicit
calculation of the scattered wave it is convenient to
make use of the S-matrix and Racah formalisms. In
reference 17, it is shown that the transition matrix for
proton-deuteron scattering may be obtained by a
unitary transformation upon the p-p and #-p matrices.
In particular, for elastic scattering (Sas=S23"),

e
ql"(S'M',Szg;SM,st)=’— Z (21—[—1)%1:1—1'
ks
X (ISOM |ISTM)(U'S'M — M’ M'|I'S'J M)
XRIKJ(S,ZIS%; Slst) (3)

The R matrix Ry’ is defined in terms of the free particle
R by

R12J S'l’stl; Sngg)‘—' Z Q(s) (Sm’Sgs’jl’; S/])

812812’ 7
X Q) (S12S2858; ST)R127(S12' 5 S1al),  (4)

and similarly for R;s7. Here we have introduced the
notation

Q) (S12S235; ST)
=[(2S12+1) (2S03+1) 25+ 1) (241 !
XW (51525533 S12525) W (S3S 415 SwJ). (5)

The spins of particles 1, 2, and 3 are here collectively
denoted by the subscript (s). The symbol Ris? refers to
the scattering amplitude for the free-free collision
between particles 1 and 2 in the state j. It can readily
be shown that the Q coefficients satisfy

2 Q) (812823515 ST)Q ey (S12S25' 51 S'T) = b55:8 52350,

iS12

178, Tamor, Phys. Rev. 93, 227 (1953). The notation in this
paper differs from that in the above reference in that the overlap
integral I is now no longer included in the definition of ¢12 and g13.
The reason for this change will become apparent.
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and

> Qo) (S12523515 ST)Q () (S12"S237l; ST) =8 5125126557

8823

The wave scattered by each nucleon may now be
expressed in terms of ¢ as defined in Eq. (3) with the
aid of BB(3.12)!® or SW(2.2).° If the waves scattered
by 2 and 3 are ¥, and ys3, respectively, the polarization
of the scattered nucleon is

B 1 (Do t-T1as| Si| Tiae+Tigds)
|S1| (Lo t-Tisys| Iipot-T139s) '

(6)

We now observe that if the initial and final states of
the (23) system have definite parity, then I13==4=113 so
that the overlap integrals cancel from Eq. (6). For
elastic scattering Iis=1I15. But since all information
concerning the spatial part of the deuteron wave func-
tion is contained in the factor 7, we may conclude that,
in the impulse approximation, the polarization is inde-
pendent of the deuteron wave function. This means that
that accuracy of our calculation depends only upon the
validity of the impulse approximation (assuming the
nucleon-nucleon phase shifts to be known), and not
upon our choice of a deuteron wave function, for which
the high-momentum components are quite uncertain.

In view of this cancellation we may inquire whether
there are other nuclei which possess such a symmetry
property. Consider a nucleus of spin St and fix at-
tention upon the wave scattered by the 7th nucleon.
Let us factor the total nuclear wave function into the
spin coordinate of the ith nucleon times a residual
function of all the remaining coordinates including the
spatial coordinates of particle 7. These two factors then
transform according to spins 3 and |Sis+3|. In
general, the residual nuclear wave function contains a
coherent mixture of these two spin states whose relative
amplitudes and phases are determinable only from a
nuclear model. However, for the special case Si;=0,
this ambiguity is removed so that we may again con-
sider the nucleus as if it were a system of two spin-}
particles, and the transformation of Eq. (4) can be
carried out.

The polarization is now given by Eq. (6), where we
must sum over waves scattered by all nucleons. If
nuclei contained only one type of nucleon all the ¢’s
would be equal and a factor |X_ /1|? would be common
to both numerator and denominator. If we restrict our
attention to nuclei with equal numbers of neutrons and
protons, the nuclear wave function is symmetric with
respect to interchange of neutron and proton coordinates
if Coulomb effects are neglected. Then for every proton
there is a neutron with the same sticking factor, and
the overlap integrals again cancel from Eq. (6).

18 J. M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952). References to this paper are designated by BB.

¥ A. Simon and T. A. Welton, Phys. Rev. 90, 1036 (1953).
References to this paper are designated by SW.
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What this result amounts to is that for the purpose
of polarization calculations all spin-zero self-mirror
nuclei may be considered as deuterons of spin zero.
Such nuclei are the alpha-particle nuclei. Note that in
this approximation all these nuclei should polarize
equally, which is what one would expect on the basis
of the qualitative consideration of Sec. II.

Given the R matrices for nucleon-nucleon scattering,
we may now calculate the polarization directly. A
closed expression for the denominator of Eq. (6) is
given by BB(4.5, 4.6), while the numerator is obtainable
from SW(3.2). Explicit calculations were carried out
for 240 Mev, using nucleon-nucleon phase shifts
already used in published work. In particular, the p-p
scattering phases are taken from reference 8, assuming
a singular tensor force cutoff at 1.4 #/Mc. The n-p
singlet phases were taken equal to the p-p, while the
triplet phases are those calculated by Swanson.?
Actually the n-p phases were calculated at 40, 90, 200,
and 285 Mev and were interpolated to 240 Mev. As a
check on the concistency of the interpolated phases, the
resulting S-matrix was checked for unitarity. Polariza-
tions in scattering of protons by deuterons and by
alpha-particle nuclei were calculated using all phase
shifts up to /=3. Results are plotted in Fig. 1 together
with the corresponding 7-p and p-p polarizations.

Exchange terms (corresponding to pickup events in
p-d scattering) have been neglected throughout. These
terms are important, however, for angles larger than
about 40°. Furthermore, in the p-o calculation, an
accidental cancellation causes the polarization in the
neighborhood of 45° to be extremely sensitive to the
I=4 phase shifts, which have not been kept. Results
are therefore plotted only for angles less than 40° in
the laboratory system.

The enhancement of the polarization due to spin-flip
suppression stands out clearly when the p-d and p-o
curves are compared. These nuclei both are symmetric
in neutrons and protons so that the interference terms
enter in the same way, and the only relevent difference
is the nuclear spin. The prohibition against spin-flip
collisions is rather weak for spin-1 nuclei, while for spin
zero it is absolute.

IV. DISCUSSION AND SUMMARY
Comparison with the Optical Model

The most important result of this calculation is that
a nucleon-nucleon interaction that gives rise to small
polarization effects can cause very large polarizations
when the target consists of several nucleons bound
together. IF'urthermore, this result is obtained without
reference to any nuclear model. In spite of this, a com-
parison of the calculated angular dependence of the
polarization with that predicted by the optical model

2 D. R. Swanson, Phys. Rev. 89, 740 (1953) and (private com-
munication). The author is indebted to Dr. Swanson, who provided
a complete tabulation of his #-p phase shifts.
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reveals some striking differences. Most calculations
based upon an optical model predict rather violet oscil-
lations of the polarization in the immediate neighbor-
hood of the diffraction minima.!*1%-15 The absence of
such effects in the present calculation is entirely due
to the failure of the impulse approximation. In the
impulse approximation the angular dependence of the
scattering: cross section is governed primarily by the
sticking factor, which is essentially the square of the
Fourier transform of the nuclear wave function. Dif-
fraction effects appear through the rapid variation of
the sticking factor, which will in general have zeros for
sufficiently short-tailed nuclear wave functions. Because
of the cancellation of the sticking factor from our ex-
pression for the polarization our results pass smoothly
through these zeros. At the diffraction minima, how-
ever, the corrections to the impulse approximation, in
particular those arising from multiple scattering, may
be expected to play a dominant role. Our results there-
fore apply only away from the diffraction minima and
in this sense the p-a curve of Fig. 1 should be considered
as an “envelope” of the correct polarization.

Since the entire approach is based upon the use of
the impulse approximation and the neglect of multiple
scattering, a criterion for the range of nuclei for which
it is valid is easily obtained. If one calculates by this
method the total scattering cross section of complex
nuclei and invokes the closure approximation to sum
over final states, one finds that the total cross section is
equal to the sum of the cross sections of the constituent
nucleons. This means that the total cross section at a
given energy should vary linearly with 4. For suffi-
ciently heavy nuclei, however, multiple scattering
becomes important, and the total cross section may be
expected to vary more nearly as A% A study of the
total cross sections for high-energy neutrons as a func-
tion of A% indicates that the data can be fitted by a
linear dependence on A for light nuclei and an A°78
law for heavy nuclei. The transition between the two
occurs at about 4=10. The total carbon cross section
at 280 Mev is found to differ from six times the deu-
terium cross section by less than 15 percent, so that
even for 4 =12 multiple-scattering effects are not too
important. For heavier nuclei, however, the neglect of
multiple scattering may be a serious error,

While the spirit of this calculation differs from that
of the optical model, there should be an intimate con-
nection between the two approaches. In particular it
is possible, at least in principle, to use the impulse ap-
proximation as a starting point for the construction of
an equivalent nuclear potential which, in turn, can be
used as the basis for scattering and polarization calcu-
lations with the optical model. Fernbach, Heckrotte,

% Fox, Leith, Wouters, and MacKenzie, Phys. Rev. 80, 23

(1950).
2 J. DeJuren, Phys. Rev. 80, 27 (1950).
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Fic. 1. Calculated polarization as a function of laboratory
scattering angle. Curve 4 is for p-p scattering, based on reference
8, and Curve B is for n-p scattering obtained from reference 20
and interpolated to 240 Mev. Curves C and D are for $-d and p-o
scattering calculated in the impulse approximation with the aid
of the same phase shifts as those used for 4 and B.

and Lepore® have investigated the general problem of
the construction of nuclear potentials and have given
a formal expression for the equivalent nuclear potential
in terms of the nucleon-nucleon scattering amplitudes.
It is very interesting to note that they are able, with
the aid of an approximation quite analogous to the
impulse approximation, to obtain a very simple form
for the scattered wave which leads to polarizations de-
pending only upon the nucleon-nucleon scattering
amplitudes, and independent of the structure of the
target nucleus. This establishes a direct correspondence
between the impulse approximation and the optical
model. :

Comparison with Experiment

Although the maximum polarization obtained by this
model is in reasonably good agreement with experi-
ment, the check of predicted angular distribution is
much less satisfactory. In general the observed polari-
zations reach their maxima and start to fall off at con-
siderably smaller angles than indicated in Fig. 1. It is
the author’s belief that this discrepancy is primarily a
reflection of the poor state of our knowledge concerning
the nucleon-nucleon interaction. This is particularly
true for the neutron-proton interaction for which the
Serber even-state interaction works at 90 Mev but is
known to fail at higher energies, both for scattering
cross sections and polarization effects.?s It seems,
therefore, that further work along the lines indicated
here will have to await an improved analysis of the #-p
scattering data.

There is, however, one important qualitative feature

2 Fernbach, Heckrotte, and Lepore, this issue [Phys. Rev. 97,
1059 (1955)].

2 J, De Pangher, Phys. Rev. 95, 578 (1954).

2 Compare references 6 and 9.
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Fic. 2. Experimental results of Chamberlain et al. for polariza-
tion by helium and carbon. Errors are not indicated. For details
consult reference 26.

of this theory that is suceptible to experimental veri-
fication and provides a crucial test of the model. This
is the prediction that all nuclei of the alpha-particle
type should polarize equally. The recently published
data of Chamberlain ef al.?® on the polarization by
helium and carbon bear directly upon this point. The
observed polarizations for these nuclei are plotted in
Fig. 2. The similarity between the helium and carbon
data up to about 20° is quite striking. At angles larger
than 20° the inelastic contamination in the carbon scat-
tering increases rapidly so that detailed comparison in
this region is impossible.

This encouraging check of the model lends weight to
the more quantitative predictions of the theory. The
very great simplicity of the polarization phenomenon
suggests that experiments on polarization of nucleons
in elastic scattering by nuclei may be used as a tool for
investigation of the nucleon-nucleon interaction. Since
we have seen that the polarizations in p-d and p-a
scattering are expressible in terms of the nucleon-
nucleon phase shifts alone, information regarding these
processes may be considered as additional data to be
fitted by any proposed model of nuclear forces. Such
data are now available for the polarization by helium,
while a measurement of the effect in elastic proton-
deuteron scattering has been attempted at Chicago.?’
The possibility of large polarization in deuterium is
indicated, but the data are too crude to permit detailed
analysis.

26 Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis, Phys.
Rev. 96, 807 (1954).

( 27 l\garshall, Marshall, Nagle, and Skolnik, Phys. Rev. 95, 1020
1954).
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APPENDIX A
Rigorous Treatment of the Spin-Correlation Effect

Let us consider a collision between an incident
nucleon (1) and a target nucleon (2), which is con-
sidered free except insofar as its spin is coupled to that
of a third nucleon (3) so that the spin .Sz3 is determined.
For this purpose it is convenient to describe the col-
lision between particles 1 and 2 in terms of the transition
matrix,?8

M=A4 +B (0‘1'11) (0‘2‘ Il)-l-C((l’rl-o‘z) . n+D(01°— 0'2) ‘n
+E(G1'K)(02'K)+F(01'V) (0‘2‘V). (A-l)

When spins 2 and 3 are uncorrelated the cross section is
given simply by # Tr M+M, while the expectation value
of the spin of the emerging nucleon is § Tr M*e, M.
Imposing the spin correlation between particles 2 and 3
is accomplished by insertion of the appropriate pro-
jection operators (34 02- a3) for Syz=1and 1 (1—0,- 03)
for S23=0. The polarization for the various cases is
given by

Case 1: No Spin Correlation
2 Re{A*(C+D)+n2B*(C— D)}
|4 42| B*+207(|C P+ [DP)+ K4 EP+ V4| F [?

(A-2)
Case 2: 523=1
2 Re{A*(C+D)+2nB*(C— D)}
=n ; (A-3)
|4 |2+3n*| B|*+(5/3)*(|C|*+ | D|?)
+ 212 ReC*D+2K*| E|*+2V*| F|?
Case 3: S23=0
2 Re{4*(C+D)}
P=n—«—— (A-4)

VIS

Choosing, as in Sec. II, the axis of spin quantization
along #, we see that only the terms E and F in (A-1)
contribute to spin flip while the others are diagonal in
o1,. We see, as stated in Sec. II, that the E and F terms

28 This form of the transition matrix is seen to be equivalent to
that used by L. Wolfenstein and J. Ashkin [Phys. Rev. 85, 947

(1952)7 if one notes that @,- @ is expressible as a linear combina-
tion of (0’1 -n)((rz -n), ((h -K) (0'2' K), and (0'1 . V) (0’2‘ V).
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do not contribute to the spin density [numerators in
Eq. (A-2) to (A-4)] and that the spin correlation tends
to decrease their contribution to the cross section
[denominators in (A-2) to (A-4)]. The term B, how-
ever, while not contributing to spin flip, does cause a
phase change and is suppressed by the spin correlation,
thereby partly invalidating the argument of Sec. IL.
However, if we let the no-spin-flip cross section be
and the spin-flip cross section be o (given respectively
by the 4, B, C, and D terms and the E and F terms in
the denominator), we see that polarization always
satisfied '

R S— (A-5)

14-(04/a0)

Therefore, although the spin correlation effect cannot
guarantee large polarization effects, it does at least
increase the maximum obtainable value of |P| by
means of the spin-flip suppression.

If both particles 2 and 3 scatter, it is readily shown
that for processes in which Ss; does not change we need
merely replace the coefficients in (A-1) by the sums of
the corresponding coefficients for the (12) and (13)
interactions.

The above formulas are simplified if one observes that
D=0 for identical nucleons, as is required in general if
charge independence is assumed. The condition that
the equality hold in (A-5) is that A=B=C for Cases
1 and 2 while for Case 3 it is true if A=C.

APPENDIX B
Notations for the Coupled Phase Shifts

The partial wave analysis of nucleon-nucleon scat-
tering in the presence of tensor forces is greatly com-
plicated by the fact that orbital angular momentum is
no longer a good quantum number. In particular, for
triplet states of given J, the states L=J=1 are coupled
together and the state L=/J is uncoupled. There seems,
however, to be no general agreement on the precise
method of describing the scattering in these coupled
states. In particular, Ashkin and Wu® classify the
states according to the quantum numbers J, /, and M ;,
in which notation the phase shifts are complex because
1 is not a constant of the motion. Christian and Noyes*
introduce a somewhat different set of parameters to
describe the scattering, which arise quite naturally out
of their method of solution of the coupled equations.
Perhaps the most natural description is in the so-called
“Parity Representation” of Rohrlich and Eisenstein,

2 J. Ashkin and T. Y. Wu, Phys. Rev. 73, 973 (1948).

% R. S. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950).
3L F, Rohrlich and J. Eisenstein, Phys. Rev. 75, 705 (1949).
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which is used by Goldfarb and Feldman?® and is closely
related to the S-matrix formalism used here.

While all these descriptions are, of course, equivalent,
to the author’s knowledge the relations between them
have never been set down in one place. It seemed worth
while, therefore, simply to present a set of rules for
transforming among these representations. These rules
are given without proof, their derivation being simply
an exercise in the recoupling of angular momenta, and
not very illuminating. :

The coupled phase shifts of Ashkin and Wu, denoted
by 6,7¥, are related to our S matrix by

Sy =iV ¥ (STM— M| STI0)
M
X (STM —M|STV0)S, ™,

ST M =exp(2i6,7M).

where

The inverse transformation is
(SJM —M|STi0)
SypIM=3 -V Sv
l (STM —M|STI0)

Christian and Noyes introduce the set of parameters
ou’, 6ie’, and @, where /4-L=2J. It was shown by
Christian® that these are related to the Ashkin and Wu
phase shifts by

o’ | 2087 (2LH1 )% (SLMO|SLTIM)
v w? Nt/ (sio| s

S =
where
ar’ =exp[i(6u’ —b6rr) 1—ai’an’ exp[i(6:n’—d1:7)],
B =a;’ sin(6y —8,1.7),
v/ =exp[—i(0u’+02.7) J— il ar’

Xexp[—1 (81,7 487)].

These coefficients satisfy c;=ar*, vi=v1, B1=8c. It
is interesting to note that these quantities are related
in a very simple way to the .S matrix. In particular,

) ar’ 287
VSl =—bn+

S1v,20-
7! v’

Thus the diagonal elements of .S are given by a;//v;’
while the nonzero off-diagonal elements are —2i8;7 /7,
since 8,7 =0 when I=J.

Finally, the explicit connection between the parity
representation and the .S matrix is given in BB(4.19).18

# R. S. Christian (thesis, 1950) University of California Radi-
ation Laboratory Report UCRL-1011 (unpublished).



