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Polarization and Amplitudes in Nucleon-Nucleon Scattering*
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The effect of coupling of states of the same J but diferent I on the nucleon-nucleon scattering amplitudes
is investigated. Formulas for the polarization of nucleons in double scattering experiments are presented in a
form suitable for numerical computation. In the derivation, special attention is given to the scattering of
identical particles, and it is proved that a double scattering experiment involving identical nucleons does not
require the consideration of a wave function antisymmetrized in all three particles. The effect of the coupling
on polarization is also discussed. In particular, it turns out that the nondiagonal elements of the coupling
matrix give a contribution to the polarization in which the highest-order spherical harmonic drops out.

I. INTRODUCTION

HE present paper is written in conjunction with
the immediately preceding one. ' It makes use of

the same restrictions to elastic collisions and to a non-
relativistic approximation. It amplifies the results in
two respects. In the first place it includes in the calcula-
tion of the amplitudes the effect of coupling of states of
the same J but different I, such as is produced for, ex-
ample, by tensor coupling. These effects have been
considered before in different connections but formulas
for calculation are not available in the literature in a
systematic form. Secondly, the present paper gives
formulas for the calculation of polarization effects in
double-scattering experiments. The fundamental theory
of these is available in the papers of Schwinger, '
Wolfenstein, ' and Wolfenstein and Ashkin4 and other
publications. ' The extension to the case of identical
particles has been treated by Swanson. ' It was felt
desirable to complete the latter in some respects as a
matter of clarity of presentation and to present the
formulas for polarization in a general form including
coupling eGects between states with different J.

The paper starts out with the introduction of the
coupling effects in Eqs. (1) through (3.3). The effect of
the coupling on the scattering matrix in the magnetic
quantum number reference system is worked out leading
to Eq. (8). The equivalent form in the t representation
of the preceding paper is Eq. (9). The effect of anti-
symmetry of the wavefunction on the polarization is
treated in connection with Eqs. (12) through (13.3).
The more symmetric forms resulting from the $ repre-
sentation are discussed in connection with Eqs. (14) and
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Phys. Rev. 90, 1036 (1953).
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(15). Results for polarization. in a form suitable for
immediate numerical substitution are given in Eqs. (18)
and (20). These formulas can be used for numerical
work by evaluating the complex numbers n&,

or else terms can be collected so as to exhibit more
explicitly the angular dependence involved. In such
cases many of the terms collect themselves in the
Goldfarb-Feldman' symbols (8&, 8&) of Eq. (20.1). The
additions caused by nondiagonal terms of the coupling
matrix are studied in Eqs. (20.2) through (22). Terms
of highest order in cose, where 0 is the colatitude angle„
are seen to disappear.

II. NOTATION

U =unitary symmetric matrix transforming uncoupled
states to coupled states. First row and left-hand
column refer to orbital angular momentum /, second
row and right-hand column to i+2, where j=1+1 is
the common total angular momentum of the states
being coupled.

9"="coupling matrix" = (U—1)/(2i).
F&, Gl.——respectively, the regular and irregular solutions

of the diQ'erential equation for r Xradial function in a
Coulomb field, normalized so as to be asymptotic at
r= ~ to sin(p ——', Lor —r) 1n2p+o-r, ) and cos(p ——,'I.zr
—ri ln2p+o r), respectively.

Hr, Gr,+zFr, . ——
C= 9'—

Q where Q is a,two-dimensional diagonal matrix
with elements Q(8 ) and Q(8+), 8 and 8~ being
parameters of Thaler et ul. "

'll' &„=defined in Eq. (1) of I.
s„s„,s, =Pauli spin vector/2.
P= polarization. Superscripts 1, ~, a denote one-particle

state, state v, and antisymmetrized state, respectively.
Oil,'=matrix defined in Eqs. (7.2) of I.

III. COUPLING

In the present section the effect of coupling between
states of the same J but different I. will be considered.
The matrix transforming the two uncoupled states with
orbital angular momenta i, 1+2 to the coupled states
will be referred to as U, and the matrix

&=L(U') —1j/(») (1)
r Thaler, Bengston, and Breit, Phys. Rev. 94, 683 (1954).
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will also be used. In terms of V', the contribution to the
scattered wave arising from the presence of a term in P~
in the plane wave modified only by the Coulomb field is

&l, j&
i'[4zr(21+1)]i[exp(io l)]p-'I

KO, pi

X[«, l'g "„Hl+ V'l, l+2'g '+"„Hl+2), (1.1)

while that arising from the presence of a term in P~+2
gives

~l+2, jq
i'+'[4zr(2l+5))i[exp(io. l+2))p 'I

EOI J

X[«+2, l'JJ' ',Hl+ &l+2, l+2'JJ'+",Hl+2). (1.2)

the matrix (C) being expressible in terms of the 4
parameters b, b+, y, T as in their Eq. (1.4). The quanti-
ties IL, 6+ are phase shifts which would exist if the
coupling were removed by making the angle T=O.
While in the model used by TBB the phase shifts 8, 8+
enter in a natural manner; they are not needed for the
description of coupling by means of the three parameters
a, b, c or the equivalent set of parameters q „q b, c. The
parameters y, T, 6, 6+ of TBB will not be used in the
present discussion and the symbols Q for the coupled
states will be used in a dQFererzt sense as will be seen
presently. The parameters u, b, c can be expressed in
terms of y, T, tL, 8+. In doing so it will be useful to
rename (b, b+) as (bl, 52), some of the relations becoming
more obviously similar as a result. One has then

+S' cos(T—52+81))/(2CS sinT), (2.1)
where

Here Zl is the value of the sPin comPonent of the sPin 1/c=[cos(T+b, +b2)+C2 cos(T+b2 b,)
function x„ in the incident wave which gives rise to the
two expressions just written. The notation

H l Gl+i——I' l (1.3)
1C=cos6 =p') S=sinc= (1—y)l, (2.2)

is used above. The matrix U is unitary and symmetric.
It may be expressed' in terms of the reactance matrix X
by means of

a= —tan(82/2), b= —tan(O. ,/2),

with O~l, 0'2 being obtainable from

(2.3)

i —X (a, c)x=x*=
Ii+I 4c, bl

(1 4)
tan(-'20~+bz+b2+ T)

= sin(x, +28,)/[(1/61)+cos(x, +28;)), (2.4)

In terms of the matrix elements of X, one has (R = [1—sin2(2e) sin'T]l, (2 5)

t'1+ah c' i(b —a), 2—icq—

E2ic, 1+ah c'+i(b —a))— cosxl ——(C'+S' cos2T)/(R, sinful=S2 sin2T/(R, (2.6)

cosx2 ——(S'+C' cos2T)/8, , sinX2 ——C' sin2T/(R. (2.7)

(a z(ab c) c)r= [1—ab+c' —i(a+b))—'I
~c, b —i(ab —c')& a+b

!bi+82+ T= arctanI
(1—ab+ c2)

(3)
Setting

b= tang b,8= tang~,
(1.6) (1—y) sin2T

bl b2 T+arctan
y+ (1—y) cos2T

=exp (iy,), r b = exp (iy &),
one has

~ = [r+ r2 +c cosya, cosy2] =arctan, (3.1)
1+ab—c'(rb silly, +zc cosy, cosyz, c cosy~ cosy»)

X I !. (1.7)
(ccosy, cosyz, r, sinyl+ic2 cosy, cosy ) expressing therefore (a+b)/[1 —ab+c'] and (a—b)/

[1+ah —c'] in terms of b&, b2, T, y.
The employment of 'E as in Eqs. (1.1), (1.2) corre-

sponds to the production of the following modifications
by the nucleon-nucleon interaction:

If c=0 this matrix becomes diagonal with elements
r, siny„r z siny z which are of the form of Q(y,), Q(y 2).
In the notation of Thaler, Bengston, and Breit, 7 who
will be hereafter referred to as TBB,

~l'ul" ~~l'g" +«, 1'JJ" «
V—1 (Q(b ), Oq (C, , C +q

!+I
2i EO, Q(b~) j 4C+, , C~,„)

+ +l, l+2 Q
' wHl+'21)

(3 2)
(2)

~1+2 JJ
' p~~l+2 g ' p+ «+2, l J ' pHl

8 E. P. Wigner, Proc. Natl. Acad, Sci. U. S.32) 302 (1946);J.M.
Rlatt and V. F. Weisskopf, Theoretical Xuctear Physics {John
Wiley and Sons, Inc. ) New York, 1952), p. 530; J. M. Blatt and L.
C. Hiedenharn, Phys. Rev. 86, 399 (1952);Revs. Modern Phys. 24,
258 (1952).

+ «+2, z+2 g @Hi+2.

These modifications may be assumed to hold outside the

XL1 ab+c z(a+b)) & (1 ~) Another way of expressing a, b, c is to express c as previ-
2 ously mentior)ed and to use
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range of nuclear forces. At a large distance, r, the khS~ ~
———[(l+1)(l+2)]'

asymptotic forms are accordingly
X{[(l+3)(l+4)]lz'+',

[ —exp( i—o g)+UtIe, xp(iyg)]g'&„ +[(l—1)l]~Z' o'fe'PB', (6)
+Ui, tyo exp(italo)'JJ

U~2, l exp(i op)t9 la+[ exp( io &+o)

(3.3)

khSp, g
———[2(l+1)(l+2)]'

(6.1)

with
+U~+2, ~p exp(i«+o)]'JJ"".

(3.4)

The physical assumptions regarding the interactions are

sufficiently well summarized in the speciication of these
asymptotic forms for purposes of the present problem,
since the asymptotic forms are the only properties of the
interactions which acct scattering. Employing the
transformation coeKcients of Eqs. (1), (1.1), (1.2), and
(1.3) of the preceding paper' and taking the incident
wave to be

X{—[(l+1)(l+3)]'Z'+' i

+[i(1+2)]lz' g)e'~B', (6.2)

where use is made of the abbreviations:

B= (v'(, )+o/2) [(l+1)(l+2)] 'exp[io po+io ~o p], (7)

B'=B/[(2l+1) (2l+5)]l, (7.1)

and of a notation which can be applied to a given pair
of coupled states but not in general, vis. ,

the factors multiplying.

Z+ „=[4 (2i+1)]-:V,+, „,

Z'„= [4x(2l+5)]l7't, ,
(7.2)

(7 3)

i'[4~(21+1)]'p '[exp(i~i)]&l, l 2B+'1+2Vl+2, l MXM—

in the expression for the scattered wave are the

pl+2, j=l+1q (l, j=l+1y

p —MM )E Op

The diagonal elements of V" require no special considera-
tion because according to Eq. (2) they enter in the same
places as the Q's of the equations for uncoupled states.

Substituting the values of the I"
~ „, I'~2, „in terms of

Legendre functions through Eqs. (7.2) and (7.3) into Eqs.
(4) through (6.2), one obtains

while the factors multiplying

i'+'[4n. (21+5)]lp '[exp(ip ~+o)]K~+o ~H~F~ ~orx~

in the scattered wave are the

k~JIS„„J/ =Be'
—U —2~$'sin8e '~ —V sin'8e "~
—2&$' sin8e'&, 2 U, 2&8' sin8e '&

—V sin'8e"~ 2&5' scn8e'~ —U
(8)

~l, j=l+» (1+2, j=l+»
)kp —M, M)

The combined contribution of these terms to the ele-
ments of S„„is expressible as

khSg, g= —(l+1)(l+2) [Z'+'p+Z'p]e "~B'

kaS g, g
———[(l+1)(l+2)]'{[(l+3)(l+4)]lz'+'

+[(l—1)1)lz'o}e*~B' (4.1)

khSp, g= —[2(l+1)(l+2)]l

X{—[(1+1)(l+3)]'Z'"
+[1(i+2)]~Z'g)e'oB' (4.2)

kDSg, p
———{(l+1)[2(l+2) (i+3)]&Z'+' g

U = (l+1)(l+2)[P(+P (+o),

V=P~"+Pi+o",

W= (i+1)Pi+o'—(1+2)P('.

(8.1)

(8.2)

(8 3)

The argument of the I egendre functions is cos8 through-
out, while the prime and double prime denote single and
double differentiation with respect to the argument
cos8.

By means of OR and Eq. (7.4) of I, one calculates the
change in kS& caused by the nondiagonal element of V'

to be

the rows and columns of the matrix corresponding to
@=1,0, —1 in the above order, starting the labeling
with 1 for rows as well as columns in the upper left-hand
corner, with

khS g, p
———{(l+1)[2(l+2) (1+3)]'Z'+'g

&AS&= Be'~
+ + ] ') ' ( V sin'0 cos2op —U V sin'0 sin2q, 2W sine cosy

V sin'8sin2y, —Vsin'Hcos2p —U, 2Wsin9 sing . (9)
28' sin8 cosset, 28' sin8 sing, 2U—(l+2) [2l(i+1)]'Z'i)e'~B' (5.1)

Comparison with Eq. (7.5) of I shows considerable
k&So, o=2(l+1) (l+2) [Z'+'o+Z'o]e'oB', (5 2) similarity of structure between DS& and S&. The effect of
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f"=2(s' )=(~' &

=2l{ImLP„(Si,„—S i, „)*Sp,„]}/
{Isool'+Z, .IS"I'} (»)

It is to the discussion of this quantity in successive
scattering that the usual developments apply. Applying
Eq. (5.1) of I, we obtain

4eP'=2' Img„(Si, —S i, )*Sp,„. (12.1)

For identical particles one cannot observe the spin of
one of them. The physically meaningful quantity is

(p, b) changes to (b', w). It is seen that the only compli-
cation caused by dealing with three rather than two
particles consists in working with the cyclic sum

3 *2&(i)(a b)»»

rather than with one term of the sum and factor 3—'
removed. The factor 3 & takes care of the three ways of
scattering a particle in making the complete three-
particle description equivalent to considering the third
proton as though it were not identical with the two
protons that participate in the scattering process. It is
essential in the argument just presented that the state b

should not participate in the interaction giving the pair
of states (a', i») out of the states (e, a), and similarly
that the state a' should not be changed in the transition
from Pp to Pp.

In the first scattering chamber there is produced the
cyclic sum

3 «E b(i)(a' i') ~=A,

each term of which arises from a corresponding term in

3—«P b(i)(N, a);i=Pi.

It is seen that the expectation value of the y projection
of the sum of spins for two particles, s„, has a definite
value for the two-particle function

(a', ~)»~,

this value being independent of the particular pair jk.
Similarly, in the second chamber the change from the
two-particle state (p, b) to (b', w) produces a change in

(s„). It is seen therefore that the calculation of (s„) for
pairs of particle states (oi, a) to (a', i») to (b', w) can be
made by solving separate two-particle problems. From
here on, one can fall back on existing theoretical treat-
ments which give explicit formulas for the calculation of
(s„&.It is desirable, however, to have a clear distinction
between the cases of identical and nonidentical particles.
For the latter case there is a definite meaning to the
identification of a particle, for instance, a proton in
distinction to a neutron. Referring to the particle
scattered through the system as number 1, one has, '
after scattering of unpolarized by unpolarized particles,

(s.&= (a'i, s'. a'i)+ (», s'. »)

2(p, »
sipi», )=2(s~p)» (123)

as follows from a calculation with an antisymmetric
wave function. The equality of the two parts in the
intermediate step in Eq. (12.3) is a consequence of the
occurrence of the same normalization of factors multi-
plying the y„ in a' and i». The quantity (s"„) is the
expectation value of the spin of a particle in state v. It
does not matter, of course, which of the two particles
one is talking about since ~ is a one-particle state. One
may define now

P"=2( ".&=( .) (12.4)

with (s„) given by Eq. (12.2). According to Eq. (6.1)
of I)

2c'J'"=2«ImLP~(S'i —S~ i, )*S~p j. (12.5)

The mean spin of the scattered state v which enters P'
replaces the mean spin of a particle in the considerations
regarding the e6'ect of successive scatterings, as may be
seen from the discussion of Eqs. (11) to (11.3).The spin
of the state e determines the angular dependence of the
(p, b) scattering. It is obvious, first of all, that if the

(p, b) scattering is changed to be scattering between
nonidentical particles, then P" plays the role of P' since
it does not matter how the proton beam has been
produced for incidence on neutrons b. If next, in the
(p, b) scattering, both particles are protons, it proves
useful to supplement the considerations of Wolfenstein
and Ashkin4 by the following.

The statistical mixture and the scattering matrix of
the nonidentical-particle problem may be referred to the
functions xo', yi, yo, X i instead of the set ~io.p (x]pQ Qppi,

PiPp. The scattering matrix then has 6 vanishing non-

diagonal elements and breaks up into the single element
soo and the three-row square matrix for the triplet state.
The mathematical statement of the absence of polariza-
tion of target particle 2 is simpler for the strong-held
spin functions (decoupled spins) but is not very involved
for the weak-held functions, the form of the density
matrix being derivable for one case in terms of the
other. One can write down therefore the formula for the
scattered intensity in an assigned direction. With the
usual reference system of Pauli's 0-'s, the expression for

s„=s'„+s'„.One obtains, in this case,

($„&=2«{Imp (S i —S i )*S p }/

{I'ooI'+~" IS.„.( }. (12.2)

Presupposing, for the sake of definiteness, a clean
separation of the states a', v which result after the first
scattering, one has
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Here e, e p, etc. , are matrix elements of the spin
density matrix of the incident polarized particle. One
has

(13.1)2(+») 2 (8«e88) I

where subscript I refers to the polarized incident par-
ticle. Also, for an unpolarized beam scattered from a
target,

(o(~~*+~o ))=Z.l: I S., ~ I'—
I S., -~ I'j (13.2)

It is seen therefore that Eq. (7) of Wolfenstein and
Ashkin (Wo-Ash),

I= ,' Tr(MtM-)+-,'(d~); Tr(M"Md~), I
Wo-Ash (7)g

can be stated also in terms of (d~+ do)/2 in both places
where di enters their formula. The values of the mean
spin of the first particle are seen to enter the formula for
the intensity in an assigned direction only through the
triplet scattering and may be replaced therefore by an
expression involving the symmetric operator d&+d, .
The breakup of the scattering matrix into a singlet and
triplet part secures the absence of eQ'ects of elements of
d~ between singlets and triplets. Equation (7) of
Wolfenstein and Ashkin can accordingly be stated in
terms of the symmetric combinations which are the only
meaningful combinations in the case of p —p scattering.
This statement is seen to be a consequence of the simple
algebraic rearrangement mentioned in connection with
Eqs. (13), (13.1), and (13.2) and need not even be based
on their more elegant procedure, The parts of the
matrices representing d~ and (d~+do)/2 with rows and
columns belonging to the triplet system are readily seen
to be the same. In fact (y„, (d~ —do)x„) is zero as a
consequence of the symmetry of the y„ to particle
interchanges. The relation between the (-,' (dq+ oo)) after
scattering of unpolarized particles represented by the
last factor in Eq. (7) of Wolfenstein and Ashkin has been
gone into in the discussion which led to Eq. (12.3),
while the term in (dq); after being replaced by ((0&+do)/2),
can be evaluated as the expectation value of d for state
o as follows from (12.3). The simple manipulations
which express the intensity in terms of the mean spin
of the incident beam and of the mean spin which would.
be produced in a scattering experiment are practically
independent of whether one is dealing with identical or
nonidentical particles. The polarization of the state v

replaces the'polarization of an, identifiable particle and
states with T=O drop out, but the form of the expres-

the intensity is of the form

(I o
I')"'coo+T (S'~S')

=
I8ool "noo+k Z, (o(8 +&88)

&& L I s., ~ I'+ I s., o I'+ I s.,-~ I'1

+r'(8- —888) I I S;~I'—IS., -~I'j

+terms in e 8, 88 }. (13)

sions remains the same since the manipulations take
place for submatrices referring to the triplet system. It
is clear therefore that one may use the formula for non-
identical particles, substituting the word "state" for the
word "particle" and expressing the scattering in terms
of mean spin vectors, and employing the antisym-
metrized scattering matrix 5' applying to identical
particles. The argument just presented is very similar to
that given by Swanson in connection with his Eq. (2),
who points out that the singlet scattering does not con-
tribute to the "polarization term. " It was nevertheless
felt necessary to return to the question once more be-
cause the way in which identity of particles aGects the
treatment for the observed angular distribution does not
appear to be contained in his paper. The "exchange
nature of the interaction" might have been meant to
cover the case of identical particles but the simple actual
situation does not appear to have been covered.

One may liow return to the calculation of P. For non-
identical particles there are Eqs. (12) and (12.1); for
identical particles, Eqs. (12.2) and (12.5). Employing
the same normalization of the wave function as in I and
comparing formulas for e and e in Eqs. (5.1), (6.1) of
I, one notes that in expressing P in terms of o or e there
is an extra factor of 2 entering the expression for P~~.
It is connected with counting recoils in o . There is,
besides, another factor 2 occurring because with the
normalizations used the triplet part of S is 2/W2 times
the triplet part of 5 and. because the 5 and 5 are con-
tained quadratically in the numerators of formulas for
P and P, where P is the polarization for the anti-
symmetrized state. When one expresses P =P~„ in
terms ofe and Sin P„„in terms of rand 5, there isa
net extra factor of 4 present in the formula for P~~.
This factor gives therefore the ratio

(&e) ./9'e) (13.3)

if one neglects the Coulomb eB'ects in p —p scattering
and. arbitrarily disregards the presence of 7=0 states in
the p —n case.

Another way of seeiog the relationship between
(Pe)~„and (Pe)~„for vanishing Coulomb interaction
is to note that in principle one can tag the two protons
so that one of them is red and the other black. This
identification can be made even though one uses an
antisymmetric function to describe the protons. The
YVolfenstein-Ashkin result can then be applied to the red
protons. Since

Q S o, „(S'&,„—S'
&, „)*=2Q So, „(S),„S&,„)*, —

there is a factor 2 in favor of (aI')~„.On the other hand,
the expression for o on the basis of the red proton is —,

' of
the usual e, the latter presupposing that both black and
red protons are counted. The Wolfenstein-Ashkin for-
mula applies however to the red protons alone, i.e., to
(Pe/2)~~. There is therefore a second factor 2 for
(Pe)~~, resulting in a net factor 4. The way just
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resulting in

(2 '.)=(l( '.+ '.))= —2 I 2 (S', )*S, /

[[ spp [
'+Tr (S&tS&)], (14.1)

the suKciency of considerations with the triplet system
being used. The simplicity of the. form on the right side
of Eq. (14) suggests that a direct derivation should lead
to the answer more readily. In fact one may first note
that the matrix for 2s'„ in the gi, $p, $p representation is

0 0 i
(s)&=2(s' )&= 0 0 0.—i 0 0.

(15)

the usual reference system for Pauli's 0-'s being pre-
supposed. The rows and columns of this matrix are
labeled in the order 1, 2, 3 starting in the upper left-hand
corner. The absence of the $p, b element in this matrix is
the result of s„Pp ——0, which expresses the fact that $p is
a state for which the spin is definitely perpendicular to
y. An infinitesimal rotation around y can produce only
an admixture of a spin function for which the spin is
perpendicular to 2 if the initial spin condition is defi-
nitely perpendicular to x. This means that out of pi the
operator s„can produce only pp. Similarly an admixture
of Pi is all that can result from b. The presence of the
five zeros among the elements of (s,)& is thus clear
geometrically. The number i has to be worked out as is
readily done. Equatiori (14.1) follows directly from
Eq. (15).

Another way of exhibiting the relationship is to
employ

S'I, I= —2 '* E.(SI,.—S-i,.)(~ ')., I,
15.1

S p, ;——Q„Sp, „(olT
—')„,;,

which lead directly to (14) on noting the unitary
character of 5K.

V. FORMS FOR POLARIZATION

Substitution of the amplitudes obtained in Eqs. (2.2)
to (2.9) and (4) to (5) of I, together with additions

presented tacitly assumes the identity of form in the
formula for Pe whether one deals with unsymmetrized
or antisymmetric functions. The justification for doing
so has been given in connection with Eqs. (13), (13.1),
and (13.2).

Since the case of identical particles is reducible to that
of nonidentical ones as just brought out, it suffices to
deal with nonidentical particles. The formula for I'e can
then be put in a more symmetric form -by means of the
pi, b, $p spin representation of Eqs. (7) to (8.1) of I. The
transformation of the sum occurring in the numerator of
Eq. (12) involves only the substitution of the S„„in
terms of the 5&;; and yields

P So, „(Si,,—S i, „) = —V2 P, (S&i, ;)*S&o,„(14)

(Q4, 4+4 Qb+o, t+i)=(Q(&-) Q(~+)) (17)

for which there is a nonvanishing B~+~, there is under-
stood to be a modification of these Q's by replacing them
as follows:

Q(~ )-Q(5 )+C, Q(8 )~(5„)+C„, (17.1)

the Q's being in fact meaningless in the case of coupling.
The modification is conveniently represented by means
of Eq. (1.7) according to which

Q(li )~[Q(y.)+ir gTbc cosya cosyb7/

[1+r ~t bc cosy ~ cosy b]. (17.2)

In this form q, is a kind of unmodified 8 . The above
mentioned replacements mean that the Q(8 ), Q(b+) are
replaced by corresponding diagonal elements of K

There is a chance of misunderstanding regarding the
meaning of the ni, ~, nb as introduced in Eqs. (2.2)
through (2.6) of I. They are meant to be defined in
terms of the S„„and the S' rather than in terms of the
Q's and Pz. For this reason the modifications for
coupling are applied in Eqs. (16) through (16.4) to the
expressions involving the Q's and Pz.

In evaluating (P4r)~„, one may set S'=0 and one

caused by coupling of states with diferent L but same J
as in Eqs. (4) to (6.2) or in alternative form in Eqs. (8)
and (9), results in forms of the 4zi, nb corrected for
coupling as follows:

i ———Qz er,o[I.(L+2)Qz, z+i—(2L+1)Qz, z

—(L'—1)Qz, ~ih-Pz'/[L(L+1) j
—2 Q B [(l+1)P '—(l+2)P '$, (16)

zip= Pz —',er o[(L+2)Qz, z+I+ (2L+1)Qz, z

+(L—1)Qr., r i)~Pz
—Z 4(1+1)(l+2)Bi+i(P~o+Pi), (16 1)

zio=gz, oezo[LQz„z4. i (2L+—1)Qr., I,

+ (L+1)Qz.~i3-Pz"/[L(L+ 1)3
—P 4 Bi+i(P4+p"+Pi"), (16.2)

&4 Ez ezo(Qz, I+i QI, I i) PI
—2 Qi B 4. t[(ii+1)P4+o' (l+2)P4—'$, (16.3)

~b=Qz ezp[(L+1)Qr. , zii+LQz, z iJ Pz,

+2 Qi Bi+i(1+1)(l+2)(PI+p+Pi), (16.4)

with Bi+I being as in Eq. (7), the subscript l+1 indi-

cating that the value of 8 is taken for coupling between
states of angular momentum j7I= (l+1)Ib. The specifica-
tion of j suffices for the identification of the pair of
levels being coupled. In the foregoing equations, the
subscript m stands for "modified" and indicates that,
for any pair
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with
Ag 0!g)

n, =4g[ s' e—xp( —
21I lns')+c ' exp( 2q inc')—7. (19)

The same result can be obtained by calculating 5
directly and substituting in Eq. (12.2) or Eq. (12.5). It
is thus found that

k2(PII) ~„=2 sin8 cosy Im {n&(a2+n.)*
—nin2* sin'8+ (n2+n, )n4*}. (20)

In these equations, the quantity Po is defined in terms
of s„ in a scattering experiment from unpolarized
particles, the direction of incidence being the positive s
axis and the direction of scattering corresponding to
colatitude angle 0, azimuthal angle y with x axis
corresponding to y=0 and y axis to y=2r/2.

Employment of Eqs. (18) and (20) is appreciably
simpler than that of the forms in Eqs. (12) and (12.5),
the only algebraic manipulations consisting in grouping
terms with diGerent L, J and taking the imaginary part.
A helpful formula in these manipulations is

Im{Q(82)Q (81)} sin82»n81»n(&2 81)= (82 81) (20 1)

the symbol on the right being the abbreviation of
Goldfarb and Feldman except for the substitution of
( ) for the [ 7. The latter are easily confused with
brackets indicating commutators while Poisson brackets
of classical dynamics are not likely to occur in the same
context. If the values of Pe at a few angles are the only
object the amplitudes can be evaluated numerically
without the expansion in terms of the (82, 81).

finds then:

k (Pa') ~„=2 s1118 cosy Im{nin2
—nin2~ sin28+n2n4*}. (18)

For p —p scattering it is necessary to return briefly to
the comparison of Eq. (12) with Eq. (12.2). In the
quantities determining (Pe)~„, there enters S rather
than S. It has already been brought out that with
neglect of Coulomb scattering one should insert a
factor 4 on the right of Eq. (18).This occurred through
a combination of two factors 2. The same result can be
obtained working with the antisymmetrized wave func-
tion without the factor 1/W2. The thus modified S, S"
is 2: times the original one. The relation between o and 5
is the same as between e and the modified S . For odd
L it reproduces the terms of 5 except that they
are multiplied by 2. The quantity to be used with
4+(51,„—5 1, „)*SO,„ in place of 5'(12) of the non-
identical particle calculation is 5'(12)—S'(21). Since S'
occurs with only one of the 5„„, the modification for
antisymmetry needed on 5' consists therefore in re-
placing in Eqs. (2.2), (2.6) of I the combinations 5»—5'
by 2[S '» —5'(12)+5'(21)7, which means that the
combination occurring in the formulas for 5 '» are
n2+-2'e '~[5'(12)—S'(21)7k and similarly for n2. The
above combination is

=
2 S1118 COSy III1 Bi-t-1 U QL QL, I+1

L

2I.+1
+ QI„ I.

I.(I,+1)

L+1
QL, L 1PI—

2L+1
2lf QL QL, L+1 QI, I.

L+1 L (L+1)

+~L L 1 COS8PL

L+2 2L+1—(»n'8) V gL QL, 1+1 QL, I
I.+1 L(L+1)

L —1
QL, L 1PI-

L

=sin8 cosyP1+I' 1m{BI+1* }, (20.2)
where

2L+3 2L+1
~—gL QI, L+1+ QI, L

I.+1 L (L+1)

2L—1
Q. . . „P,', (20.3)

and where the total angular momentum of the coupled
state is 1+1, while II, V, W are as in Eqs. (8.1), (8.2),
(8.3). The second of the two forms in Eq. (20.2) is
obtained by employing recurrence relations so as to
express the derivatives of PE, Pg+~ in terms of P~+2, P~,
PI, 2, The highest-order terms then cancel out and
the remaining terms form the Pi+1' in Eq. (20.2). The
cancellation of the highest-order terms is a helpful
simplification. Specializing to 'SI, 'D~ coupling reduces
the expression to

611[k'(Pe)~„7= sin8 cosy Im {Bi*"}, ('si, 'Di). (21)

Specializing further to the case of '5&, 'D& being the only
important phase shifts,

~,[k2(P~) „7
= (9/2) sin8 cos8 cosy Im{B1*Q2,1}. (21.1)

The dependence of these terms on 0 and q is seen to be

The evaluation of the right side of Eqs. (18) and (20)
is thus quite mechanical for the terms which do not
involve coupling between states of the same J but
diGerent L. If such is the case the contributions caused
by the diagonal elements of V' do not introduce much
complication, involving no more than the replacement
of the Q by the diagonal elements of V' as in Eqs. (1.7),
(2) above. The contribution to k2(Pe) ~„caused by the
nondiagonal element of 9" for one coupled state is

~,[k2(P~)„.7



NUCLEON-NUCLEON SCATTERING 1059

the same as though there were only p term effects
present. The effect of the diagonal terms in case 'S~, 'Dl
are the only phase shifts has the same angular depend-
ence. Combining its effect with that of Eq. (21.1) one
has

L&'P' ) -7('S, 'D )
= (9/4) sin0 cos0 cosy Im(Q, , iQo,*+28,*Q,, ,}. (21.2)

The presence of coupling between 'S~ and 'Di does not
affect the type of angular distribution which exists in
the presence of sSi, 'Di phase shifts. In Eq. (21.2), it is
understood that the terms Qs, i, Qs i may be modified by
coupling in the sense of Eqs. (1.5), (1.7), and (2). It may
be noted that the first form of Eq. (20.2) contains terms
in sin0Es(cos0)Pr, '(cos0) which all cancel, so that only
terms in sin0Pr, '(cos0) survive in Eq. (21), or the
equivalent second form.

Taking 'P2, 'F2 as the only states with coupling and
again starting with Eq. (20.2), one obtains

l) aL&'(~~) ~-7
=3 sin0 cos0 cosy Im(Bs* l, ('Ps, Fs). (22)

Here the cos0 in front of the Im sign arose as Pi(cos0)
which occurred alongside with terms in Ps(cos0). The
latter canceled out similarly to the disappearance of
terms in I's in Eq. (21). In both cases the coupling to
terms of a higher L, /+2, does not introduce in the cross
terms with the Qt t an angular dependence not contained
in the terms involving the Qt, ; alone. The first-order
effects of the nondiagonal elements of the coupling
matrix are thus not introducing higher orders of
Legendre functions, except through combinations with

Q s which arise in addition to the Qt, ;, as is the case for
example for Qt+2 t+1 Qt+2 t+2.
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A study of the nucleon polarization to be expected when nucleons are elastically scattered from nuclei is
presented. The polarization eRect is a consequence of the fact that the nucleon-nucleus interaction may be
represented as a complex spin-dependent potential. The existence of such a potential is suggested by the
nuclear shell model and the spin dependence of the nucleon-nucleon interaction. Qualitative arguments are
advanced to determine this potential in terms of the nucleon-nucleon interaction. Although the polarization
eRect is by no means con6ned to elastic scattering, it is in this case particularly useful, since the large dif-
fraction cross sections observed experimentally insure relatively high yields of polarized particles. A number
of theoretical studies have been carried out, for both neutron and proton scattering, which show that almost
full polarization can occur. The calculations have been carried out by using the W.K.B. approximation as
usually applied to the nuclear optical model. The method has been checked by carrying out an exact phase
shift analysis for a particular case. The results show that studies of nucleon polarization can illuminate
some aspects of nuclear structure, since the polarization depends on the particular nucleus used as a target
as well as upon the form of the interaction.

I. INTRODUCTION

'HE existence of a nucleon-nucleus spin-dependent
interaction is suggested by the fact that the

nucleon-nucleon potential is itself spin-dependent',
moreover, such an interaction is an essential feature of
the nuclear shell model.

Such an interaction should manifest itself in a
polarization of nucleons scattered by nuclei. ' Although
the polarization effect is by no means confined to the
case of elastic scattering, this process is particularly
interesting and useful since the large diffraction cross
sections found experimentally insure a relatively high
yield of polarized particles.

' N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
s E. Fermi, Nnovo cimento 11, 407 (1954); W. Heckrotte and

J.V. Lepore, Phys. Rev. 94, 500 (1954);B.J.Malenka, Phys. Rev.
95, 620 (1954); Snow, Sternheimer, and Yang, Phys. Rev. 94,
].073 (1954); R. H. Sternheimer, Phys. Rev. 95, 587 (1954).

The elastic scattering of nucleons by nuclei can be
described by treating the nucleon-nucleus interaction
as a complex potential. ' The imaginary part of the
complex potential represents the effect of all processes
not leading to elastic scattering. If, in addition to a
complex central potential, there exists a spin-dependent
potential, the elastically scattered nucleons will be
polarized.

For low-energy nucleon scattering one may expect
that the polarization will reflect the characteristics of
the spin-orbit potential of the shell model, but at high
energies it is certainly more sensible to expect that the
nucleon-nucleon potential is directly effective4 since the
incident particle can then "see" individual nucleons in

the nucleus.

' Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).' R. Serber, Phys. Rev. 72, 1114 (1947).


