
STOP PI NG POWER OF WATER FILMS

The interesting question which remains is: Wherein
lies the discrepancy among the difFerent experiments
designed to study this problem P Yagoda and de
Carvalho' suggested that the experiments which show
an anomaly are those in which the alpha particles have
had to penetrate a gas-liquid interface, so that the
interface might be responsible. Since this experiment

requires the penetration of two interfaces, it would
seem that another explanation must be found.
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When scattering anomalies involving many phase shifts are to be studied, it appears desirable to treat
the amplitudes directly before combining them into differential cross sections. Amplitudes suitable for the
study of elastic collisions of charged and uncharged Fermi-Dirac particles of spin ~2 taking account of possible
identity are, therefore, given in forms convenient for computation. The case of coupling between states of
the same total but different orbital angular momentum is not discussed. Formulas using the spin functions
usually denoted by p are supplemented by forms based on spin functions which transform like the com-
ponents of an ordinary space vector, the latter allowing more compact expressions in some cases.

I. INTRODUCTION

'HE calculation of scattering of protons by protons
and neutrons by protons has been the subject of

many investigations. Recent experimental work in the
region of several hundred Mev has made it desirable to
be able to deal with scattering anomalies caused by
many phase shifts. The calculations have been system-
atized therefore to a greater extent than has been done
previously. The present paper is restricted to a non-
relativistic treatment and the introduction of coupling
between states with the same total angular momentum
Jfi but diGerent orbital angular momenta 1.5 is post-
poned to a succeeding and closely related one.

The treatment presupposes that either all collisions
are elastic or else that the cross sections for inelastic
collisions are so small that their damping effect may be
neglected. In the approximations of this paper, there-
fore, the phase shifts may be taken to be real. ' Some of
the mathematical forms worked with are very similar to
those of Ashkin and Wu' for complex phase shifts. Both
in the present as well as the succeeding paper it has been
found convenient to make use of the fact that the triplet
spin behaves under rotations like an ordinary space
vector. ' The corresponding spin functions are denoted
by P&, gs, f; Many formul. as are more convenient in
terms of amplitudes referred to these variables.
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The set of angular and spin functions used is presented
in Eqs. (1) to (1.4). The amplitudes are introduced in
Eqs. (2), (2.1). Formulas for amplitudes for non-
identical particles and referred to magnetic quantum
numbers are available in Eqs. (2.2) through (2.9).
Effects of antisymmetry are introduced in Eqs. (3)
through (3.3) and the modified results are collected in
Eqs. (4) through (4.2). The relation to difFerential cross
sections for unpolarized particles is as in Eqs. (5.1),
(6.1).The $&, $s, $s modifications start with Eq. (7) with
the scattering matrix S& as in Eq. (7.5), cross sections as
in Eqs. (8), (8.1).

II. NOTATION

n, p'=nucleon spin function for states with magnetic
quantum number —'„—2, respectively.

y1, Xo, y 1=triplet spin functions for two nucleons;
xl —nln2) 3(0—(nlp2+nspl)/2 y X—i pips.

Xs' ——(niPs —nsPi)/2' singlet sPin function for two
nucleons.

r= distance between nucleons.
v = relative velocity.
3f=nucleon mass.
k =3A/(2tt).

(—)" (2L,+1)(L,—nt)! &

I'L, =
2', ! 4m (I.+nt)!

) L+m

&(e' e sin~8~
~

(cos'8 —1)~

(d cos9)

0=colatitude angle in polar coordinates=scattering
angle.
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q =azimuthal angle with x-axis corresponding to @=0,
y-aziS tO pp or/2.

p= kr.
rl = e'/(Ao).
1Ii„'=unsymmetrized Coulomb wave arising from a

plane wave by adiabatic eRect of e.
s, c= sin(8/2), cos(0/2), respectively.
Q(5) = (e"'—1)/(2i).
o o——corgi' (1+i') .
o L, o

——o L—o.p ——tan —'(»I/L)+ tan —'[ll/(L —1)]+
+tan —'(ll/1).

eLO
——exp(2io zp).

4=p —iI ln2p+2op.
fiI.=orbital angular momentum.
AJ= total angular momentum.

$1, gp, go= triplet spin functions for two nucleons which
form the components of a vector in ordinary space;
81 2 (X—1 Xl)1 82 12 (Xl+X—1)y $8 Xp

S„,S„=components of the triplet scattering matrix
referred to the functions x, corresponding to un-

symmetrized and antisymmetrized wave functions, re-
spectively. The incident state is labeled by the second
subscript, the final by the first.

S', S"=triplet Coulomb amplitudes.
S&, S'&= triplet scattering matrix referred to the func-

tions $;.
spp spp = singlet scattering matrix elements.

e, a =elastic diGerential scattering cross section for
nonidentical and identical unpolarized particles, re-

spectively.

III. REAL PHASE SHIFTS FOR DEFINITE I.

Compounding spin and orbital angular momenta for
the two nucleons, one obtains spin-angular functions

'JJ' '.=Z
I

II'L, ,—.X-,
(lz —m m)

with values of transformation coeKcients

L, I+1
(2L+1)'(2L+2)'I

Elz —m, m&

={[(L+l)(L+l+1)]',
2'[(L+p+ 1)(L—

l +1)]'*
L(L—p) (L—p+1))'}, (1 1)

L, L
[2L(L+1))'I

&li—m, mi

={[(L+l )(L—l+I))'
—2'l, —[(L—

l ) (L+l +1)]'} (1 2)

L, L 1y-
[ZL(2Ly1)):I

Ep m, m3—
={L(L-.)(L-.+1)]-:,

—2'[(L+l )(L—p))'* [(L+l)(L+l +1))'} (13)

the three numbers on the right corresponding to ns=1,
0, —1, respectively. While these transformation coeK-
cients are well known and have been given by many
authors, the freedom of the choice of phase for each of
the angular-spin functions makes it necessary to list the
coefficients explicitly, as above, so as to avoid mis-
understandings. The unsymmetrized Coulomb wave P '
becomes modified by the presence of real phase shifts
51„+so that the scattered wave is given by

p(P'„X )e. exp{—i[p —rl ln2p+2op)}
(L, J)= —[iI/(2s'))x exp f ir—l lns'}+ P I,, z, L EO, m)

pL~q
x I Ie(SL, J)I L, „x„exp(2io'z, p). (1.4)

1m li) li)

The employment of the transformation coefficients as in
(1.1), (1.2), (1.3) gives now after a straightforward
calculation the scattered wave which results if the inci-
dent wave is the coulombian modification of

l.e.,
$0 Q iz X eikz

8'=Z~ X 0'
(2)

(2')

where, asymptotically at large distances,

f 1+pl /[iok (r z))+— }
Xexp{i[kz+rl ink(r —z))}
—f~/I k( —))}{I+(I+'n)'/['k( —)]+" }

Xexpfi[kr —
rl ink(r —z)+2oo)}. (2")

The triplet scattered wave is then

Ve.=Z, , -X,S., ~ /», (2.1)

where the S„are as follows:

k(S1, 1
—S')=k(S 1, 1

—S')=zzpe'~
=e' pL peLO[(L+2)QL, L+1

+(2L+1)QL„L+(L—1)QL L,]PL, (2.2)

—kSp, ie '~=kSp, —ze'~= —2 &o, ~ single'

=2 Ie' pL eLO[L(L+2)QL, L.t.l

-(2L+1)e..-(L -1)e..-)
Xsin8EL'/[L(I +1)7,

g Je '+=PS( ye '&=o,'3 sin ge'@

(2 3)

=-',e"Pz. ez p[LQz. , ~1
—(2L+1)QL, L+(L+1)QL, r 1]

X»n'&&L"/[L(L+1)), (2.4)

The symbols in the formula are as in the list of notation.
The quantity

Ol., p=ol, —Op,

where a I, is the inherent Coulomb phase shift so that

o.L, O
——tan '(ll/L)+tan '[ll/(L —1)]+ +tan 'll.
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and
eL2 e——xp(2ia L2),

41=p —
2l ln2p+20 o,

(2.7)

(2 g)

with rp, the Coulomb phase shift for L=0, defined in the
list of notation. The quantity S' represents Rutherford
scattering and may be expressed as

S'= —[g/(2ks2)] exp[i(C —
21 lns')], (2.9)

the superscript c standing for Coulomb. Equation (2.1)
is directly applicable to 22 —P scattering by setting g =0.
For p —p scattering the wave function must be anti-
symmetric in the two particles. This requirement can be
satisfied in the usual manner by interchanging space as
well as spin coordinates in the wave function, subtracting
from the original and dividing by V2. The normalization
of particle density of the incident wave is, unaltered by
this change in the wave function provided one deals with
the probability of finding u proton rather than the first
or the second proton. A precise visualization of the
conditions can be obtained by the construction of wave
packets. For noninteracting particles the wave function

[pz(rl $1)pzz(r2 $2) 0'I (r2 $2)fzz(rl $1)] (3)

represents two particles moving toward each other in
coordinate space provided the regions of space occupied

by pz and fzz move toward each other and do not
overlap. Making

~p. )1p (r,s) ~2dr= "p, (y (r,s) ~'dr=1

secures this normalization, provided one adds the proba-
bilities of finding particles 1 and 2 in the regions of
configuration space I, II occupied by 1' and pzz, re-

spectively. For nonidentical particles the wave function

kSg, pe'&= —kS g, pe
—'&

=2 &n4 singe'~=2 &e'~

XQL SLO(QL, L+I QL, L-l)»ne&L,

l'z(Sp, 2
—S') =a2$'~= e'~ PL eL2

X[(~+1)QL,L+I+IQL, I I]I'L, (2.6)
where

111 (ri,si., r2, s2). (3 2)

The replacement of each term in the Fourier analysis by
an antisymmetric combination including the factor 2 &,

as in Eq. (3), gives the corresponding

'II (1'I,SI', f2,S2)

=2 '[4 (ri,si, r2, s2) —4' (r2,s2, ri,si)]. (3.3)

The scattered parts of 4' and N give rise to wave

packets of correlated probability for which protons 1

and 2 move in correlated directions determined by the
conservation of energy and momentum. In making use
of the scattered part of (3.3) it is natural and customary
to calculate for any given direction and spin orientation
the chance that proton 1 is moving in that direction,
while 2 is moving in the correlated direction, and to add
to this probability that obtained by interchanging the
roles of protons 1 and'~2. This procedure thus auto-
matically includes particles which in the case of (3.2)
would be called recoils. The cross section for scattering
may then be pictured as the sum of a direct scattering
term, a term representing recoils, and a Mott-type
interference term. The modifications in the scattering
matrix corresponding to the change from +„to + are
now, for the triplet amplitudes,

\

S"=2 ~(g/2k)[ —s exp( —iq lns2)

+c exp( —iq inc')]$'~, (4)

S'„,„=2~S„„, (ZIP I ) (4.1)

as factors. Each of these can be rearranged by means of

kirz+k2r2= (ki+k2) [(ri+r2)/2]+ [(ki—k2)/2] (ri—r2)

so as to contain either the coordinates of the center of
mass or the relative coordinates, r~—r2. The usual con-
sideration of the scattering problem is concerned with
the relative coordinates factor because it secures the
formation of the wave packets of I and II receding from
each other. The outgoing wave modification of each
Fourier term, when substituted into the Fourier integral,
gives the unsymmetrized function

=i/I(rl, sz)fzz(12 $2) (3.1) S „„-S-=2l(S„„-S), (4.2)

describes the condition of having particle 1 in I and
particle 2 in II, so that the intensities of the two beams
are the same for Eq. (3) and for Eq. (3.1).The functions
in (3) and (3.1) are distinguished by subscripts a and 2z

so as to indicate antisymmetric and unsymmetrized
functions respectively. If the +„' is modified by the
inclusion of sects of an interaction between the
particles one can follow the scattering of the wave
packets I and II by each other. The Fourier analysis of
+„' in terms of plane waves gives terms, involving

exp{i[kil'1+k21'2])

an extra factor 2 in Eqs. (4.1), (4.2) arising from the
fact that since all the L's are odd in this case the space
functions are of negative parity.

For nonidentical particles the scattering matrix for
singlet states is

k (S«—S ) = 8 p L(2I+1)ejpPLQL.

For unpolarized nonidentical particles the differential

col].ision cross section o is obtained from

4 = ls«I'+Z. . IS"I'
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For identical particles the scattering matrix for
singlet states is obtainable from

s pp 5 =2~(spp 5 ),

sent states in which the total spin is perpendicular to
the x and y axes. In terms of the f; the incident wave
may be rewritten as

S"=2 *'(q/2k)L —s ' exp( i—g Ins')
where—c—' exp( i—g inc') je'~ (6)

and the diGerential cross section for unpolarized protons
is obtainable from

P'=Z 5 (ORa) 4"

—1/v2, 0, 1/~2
f[OR,„[f

= i/V2, —0,
0, I, 0

(7.1)

(7.2)

2cr'= [s' I'+2 (6.1)

The three quantities ((&, $p, $-.) transform under rota-
tions like an ordinary vector. The functions (&, $p repre-

This cross section includes the eGect of recoils as has
been mentioned in connection with Eq. (3.3). The
factor on the left of (6.1) is 2 rather than the 4 in the
corresponding place in Eq. (5.1) because according to
the convention used one needs the probability of finding
both protons 1 and 2 rather than just proton 1.

The triplet spin functions gy, xp, x y can be trans-
formed by

the rows in (OR) being labeled in the order j=1, 2, 3
going down and the columns in the order p=1, 0, —1
from left to right. The scattered wave for nonidentical
particles, referred to in Eq. (2.1), becomes

with
'Ps. =Q;, ; $;(ORSOR

—')gu&;/r,

a&;= (ORa);.

(7.3)

(7 4)

The incident amplitudes a„are thus replaced by the
amplitudes g&, which are the coeKcients of the t; in the
expression for the incident wave. The matrix f[$„„[f is
replaced by the matrix ff (ORSOR ');, ff as in Eq. (7.3).
Substitution of Eqs. (2.2) through (2.6) gives for this
matrix:

5"+np Qp cos2pp sin'8, —ap sin2q sin'8, —n4 cosy sin8
5&=

ff (ORSOR ');;ff = (e'~/k) —np sin2p sin'0, 5"+np+np cos2y sin'8, —np sing sine
—n~ cosy sin8, —n~ sing sin9, 5"+np

I

(7.5)

with
5"=pg '~5'= —(g/2s') exp( —ig lns'); (7.5')

The formulas for the cross section in terms of the S& type
matrix elements are

S ~=@DES-mr-i. (7.6)

According to Eqs. (4), (4.1), (4.2) this replacement is

accomplished by the replacements in (7.5) of the
quantities S', Q&, ~ ~, Q5 by 5 ' and

1
Q~ =2'Q] Q 2=2'Q2 ' Q~5=2~Qg. (7.7)

the order p~, $,, tp applying in the labeling of rows
downward and in that of columns from left to right. The
matrix (7.5) contains the angular dependence in real
expressions and is convenient for numerical work. The
eGect of antisymmetrizing the wave function is to
replace the above matrix by

(8)

(8.1)

similarly to Eqs. (5.1), (6.1).In all of these formulas the
expressions for the matrix elements of S contain sums
over I. which are taken over all I in the case of non-
identical particles; for identical particles as is well

known triplet states occur only with odd, singlet states
only with even I.. The sums of squares of matrix
elements can be expressed as a trace of the square of the
unitary matrix S.


