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Geometrical Corrections in Angular Correlation Measurements*
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It is shown that given a point-point angular correlation of the form W(8) =Z~ a~P~(cos8), the experi-
mentally measured angular correlation using finite-sized detectors of arbitrary shape and e@ciency distri-
butions is given by W(8) =En ~~ urbe ct g "P~ (cos8), where b~ and c~ are the Legendre coeffrcients
describing the eRIIciency functions of the detectors, and g "are numerical coefficients. An extensive table
of these latter coeKcients, sufIicient for most applications, is included. The manner in which detector sym-
metries of various types affect the form of the measured angular correlation is discussed; in particular it is
shown that if the eKciency function of both counters is invariant to reQection about both horizontal and
vertical axes, the measured angular correlation will contain no P~ s of higher order than the P~ of highest
order appearing in the point-point correlation. The above formula for the measured angular correlation is
also shown to apply if an axially-extended source instead of a point source is used, the detector coeKcients
simply being replaced by a new set of suitably averaged coefficients. Tables of correction factors to fourth
order in detector and axial source size are included for the special cases of rectangular and circular detectors
of constant eKciency.

I. INTRODUCTION

"UCLEAR measurement techniques have in the
past few years increased in accuracy and as a

result the need for precise means of correcting angular
measurements for the finite size of both source and
detector has grown. In addition a knowledge of these
corrections allows the use of "poor geometry" experi-
ments with a resulting decrease in experiment time but
without an attendant loss in measurement accuracy.

The efficiency of detection, E, of the most general
detector is both a function of the coordinates (8, p),
which locate a point on the surface of the detector,
and (8,g) which specify the angle of incidence of the
radiation at this point. Gamma-ray detectors of arbi-
trary dimensions may be described in this manner. The
efficiency of charged particle detectors, however, can
usually be made to be independent of the angle of
incidence of the radiation and are therefore only func-
tions of (8,p). Such detectors we shall denote as inci-
dence independent detectors. If we choose to describe
a gamma ray detector with a point source of radiation
at the center of the coordinate system defining the
angles 0, q we will have 0= 0, q = g. Thus for incidence-
dependent detectors, with this restriction, and for all
incidence-independent detectors we may write

)21+1q —:

E(8,8)=P
i

—

i
at„Y'g"(8,9)&4s)

(arbitrary detector). (1)

For the special case where the eS.ciency does not depend
on the azimuthal angle, q,

The special case of an incidence independent detector
with constant efficiency over the detector surface we de-
note as the constant efficiency detector. Most charged-
particle detectors are of this type.

Walter et al. ' have treated the e8ects of certain con-
stant-efficiency detectors to a first approximation in the
detector solid angle. The q-symmetric detector has
been treated exactly by Frankep in terms of an arbitrary
eKciency function. Rose' has calculated theoretically
the efficiency function to be expected in the case of an
unshielded right circular scintillator exposed to gamma
rays. His efficiency function formula has been tested
experimentally by Klema and McGowan. ' In many
experimental arrangements, however, it is necessary to
obtain the efficiency functions of the detector by a
direct experimental measurement. Experimental prob-
lems that arise in determining E(8) for gamma rays
have been discussed by Church and Kraushaar, '
Steffen, ' and Lawson and Frauenfelder. "

In the present paper we shall assume that the effi-

ciency functions of the detectors are known and are of
the general form given by Eq. (1). In Sec. II the effect
of such detectors, when used with a centered point
source of radiation, is calculated exactly. The manner
in which detector symmetries of various types affect
the form of the measured angular correlation is dis-
cussed in Sec. III. In Sec. IV the case of an extended
line source of radiation used in conjunction with arbi-
trary detectors is solved by showing that it is equivalent
to the point source situation provided the e%ciency
function of the detectors are replaced by suitably
modified functions. The proper functions to use for the

f'2l+1y & 21+1
E(8)=g i i

uipI'P(8) =P ugPt(cos8)
4s J & 4s-

(p-symmetric detector). (2)
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two important cases of circular and rectangular de-
tectors of constant efficiency are then found explicitly.
These latter results are an extension of the results pre-
viously obtained by Walter et ul. ' and by Frauenfelder.

2l+1
W(8) =P htPt(cos8),

4x
(3)

when the true point-point correlation is

2l+1
W(8') =Q atPt(cos0').

4x
(4)

We assume the efficiency functions of the detectors to
their respective radiations are expressed in a series of
I'& s in a coordinate system whose origin is a point
source of radiation. This origin and a fixed point on
each detector determine the Zi and Z2 axes as shown
in Fig, 1. Ke let

f 2l'+1y -*

&bi(0i, 9i)= Z ) ~
&t - I't (0i, vi),

tm' 4 4or )
~2l"+11 '

+@2(02y'P2) = 2 ~ ~
ct"m"y l" (021%2) (3)i" "E 4~

The experimental correlation will then be

W(8), Ebl(81) Pl)W(0 )Ees(02qtt'2)dQld02. (6)
J

II. ARBITRARY DETECTORS WITH POINT SOURCE

We consider two finite arbitrary detectors 1 and 2
where detector 1 is sensitive to radiation b and detector 2

is sensitive to radiation c. (The requirement that each
counter be sensitive to only one radiation is easily
removed by proper weighting. r)

We wish to 6nd the experimental angular correlation,

We may express Pt(cos0') via the addition theorem' in
terms of 8i, ioi and 8s', qs' (see Fig. 1):

Pi(cos8') =P i' t"*(8i,q i) Vt" (8,', q s'). (7)
o 2l+1

We may also express Ft" "(8s,los) in terms of 0&', q»' by
a rotation of the coordinate system through the angle 0:

Ft"" (0s, ys)=Q D, "' (0,8,0)Ft-" (0s, qs)

=Ed---' (0)i't-" (0s 9s) (g)
n, i

[(2l'y 1)(2l"y 1)]'*
W(0)= Z

l'm' l"771" lrin'

X Eii
~&~ it'm, '&l"m" ~n'rib"

X &t' (0i)9i)i't

(01)gati)d(li

X " i' t"" (0s', v s') 1't" (0s', ps')d(ls'. (9)

The I"& used here satisfy the orthonormality relation:

I (Ft")*Ft"'dQ=btt 5„„. (10)

Also
i't =(—1)"(y't ")*.

Thus (9) becomes

2l+1
W(0)= P (—1) atb, c,„,d „„,'(0). (12)

lcm' 4m.

where the D's are the representation coeKcients" of the
rotation group corresponding to the rotation through
the Eulerian angles 0, 8, 0 which rotates the coordinate
frame of detector 1 into coincidence with the coordinate
frame of detector 2. From 6, 7, and 8 we obtain

The remaining problem is to resolve the d .'(8) into
Pt(cos8). We let

so that

2l'+1
d '(8) =Q g„„"Pt(cos8),

2l+1
(13)

= Zp

FIG. 1. Angular correlation geometry.

e H. Frauenfelder, Ann. Rev. Nuc Sci. 2, 129 (.1953).

2l+1 t
+'

d ~'(0)Pt (cos0)d(cos8). (14)
4w

'We shall use throughout the normalization and phase con-
vention as given by E. U. Condon and G. Shortley, Theory
of Atomic Spectra (Cambridge University Press, London, 1935)."E.Wigner, Grttppeltheoree (Friedrich Vieweg lit Sohn, Braun-
schweig, Germany, 1931);G. Goertzel, Phys. Rev. 70, 897 (1946);
G. Racah, Phys Rev. .84, 910 (1951). The definition of D used
here follows Goertzel and Racah and divers from Wigner's S in
that D .= S, . For the definition and properties of D see
the Appendix.



ANGULAR CORRELATION MEASUREMENTS

TABLE I. g "for /&6; m, m' even. from (16) we obtain the well-known result'

ll'mm'

0000 1
1100 1
2020 5/6
2022 5/8
2200 1
2220 —1/Q6
2222 1/6
3022 —7/6
3120 7/+30
3122 7/15
3222 14/15
3300 1
8820 -Q(8/10)
8822 8/10
4020 3/+10
4022 9/10
4040 8+{7/10)
4042 (9+7)/10
4044 9/5
4122 —3/5
5544 5/126
6020 18/2~i105
6022 13/21
6040 (13/5)Q(2/7)
6042 (26/7)Q(2/15)
6044 26/21
6060 (18/10)Q(88/7)
6062 (13/7)~(11/5)
6064 (13/7)Q(11/6)
6066 18/7
6122 —221/420
6142 -13/14+80
6144 —18/42
6162 (18/28)Q(11/5)
6164 (13/14)Q(11/6)
6166 89/28
6220 13/2+105
6222 143/420
6240 (18/10)&(2/7)

ll'mm' g, tl u'mm'

4142 (8~7)/10 5122
4144 6/5 5140
422O 8/~&O 5142
4222 0 5144
4240 —3&(2/85) 5222
4242 —9/10+7 5242
4244 18/85 5244
4322 9/10 5320
4842 —9/10+7 5322
4344 9/70 5840
4400 1 5342
4420 —Q(2/5) 5844
4422 2/5 5422
4440 1/+70 5442
4442 —1/5+7 5444
4444 1/70 5500
5022 —11/15 5520
5042 —11+3/15 5522
5044 —22/15 5540
5120 11/+210 5542
6242 18/7+30 6464
6244: —13/21 6466
6260 (-18/10)Q(11/21) 6522
6262 (—13/28)+(11/5) 6542
6264 0 6544
6266 65/84 6562
6822 —18/210 6564
6842 (221/84)Q(2/15) 6566
6844 2/9 6600
6362 (—18/42)Q(11/5) 6620
6864 {—13/42)/(11/6) 6622
6366 18/42 6640
6420 (13/6~+(8/85) 6642
6422 —13/42 6644
6440 (—26/15)Q(2/7) 6660
6442 —18/42+30 6662
6444 52/68 6664
6460 (18/10)Q(8 ~77) 6666
6462 13/42~i55

121/210
11/+70
121/70+3—11/105—11/42
121/70+8
187/210
11/+210—22/105—(11/8)Q(2/85)—11/30+8
242/315
88/105—SS/105+8
88/815
1—Q(10/21)
10/21
(1/8)v'(5 /14)
-5/21+8—13/6+66
18/154
65/84—65/21+30
26/63
(13/S4)~{5/ii)
(—i3/i26)~{6/11)
13/924
1
(-1/2) Q(15/7)
15/28
1/+14—(1/28)%/30
1/14
-1/2~281
(1/28) &(5/11)
1/14+66
I/924

kl= GlblCl.

If there is p-symmetric scattering present in the source
and the scattering distributions have the coeKcients kl
and j& the point-point correlation will be u& =a&k&j&.
The experimental angular correlation will therefore be
given by

b&
——Q (—1)'+'+"+ 'apk&j&b& c& .g „".(19)

Church and Kraushaar' have shown that if one uses a
source of annihilation radiation and p-symmetric de-
tectors the angular correlation that results is just
hi ——b~ci. This follows from (18) if one makes use of the
fact that the coefhcients al in the expansion of the
annihilation distribution, 8g, are unity. This method
is useful provided the energies of the gamma rays in
the angular correlation measurement are close to that
of annihilation quanta. It is clear from the mixing of
coeflicients in (15) that the annihilation method of
determining correction factors experimentally cannot
be used with arbitrary detectors.

III. EFFECTS OF SPECIAL DETECTOR SYMMETRIES

Thus the 6nal coe%cient in the experimentally obtained
angular correlation will be

hl P ( 1) +vbvmcvm'g mm'

We first consider how special detector symmetries
are evidenced in the bl . We may then determine the
eGect of special detector symmetries on the angular
correlations, We define the following types of detector
characteristics:

( 1)m+m'+i+i'a, b, c, ,g, vi (15)
l'tnm' (A) Horizontal symmetry. —The detector is invari-

ant to a reQection about the q =0', 180' line, i.e.,
E(8,o) =E(8, —~).

(B) Vertical symmetry. —The detector is invariant
to a reQection about the q =90, 270' line, i.e.,
E(8,p) =E(8, m

—p).
(C) Inversion symmetry. —The detector is invariant

to inversion through the origin, i.e., E(8,oo) =E(8, m.+q).
(D) Double symmetry. —The detector satisfies both

('A) and (8); this is a special case of (C).
(E) y-symmetry. —The detector is invariant to an

arbitrary rotation about the Z axis.

The latter form is obtained by the use of (16). The
problem of correction therefore reduces to evaluating
the g ".Below are listed some of the more important
properties of the g ",and a useful recursion relation-
ship. The derivation of these formulas appears in the
Appendix.

, tl' —g, ii' ( 1)m+m'g, lt'

—( 1)i+V+mg, lv

goo" =&«; g o" =go " =0 for (f+t'+m) odd,

g
"'=0 for l')1 and (m+m') even,

In Table II we list the general properties of these
16 detectors. In all cases E(8,y) real requires

2l+1
g "=g (lPm0

~
Lm) (Ll'm'0

~
Lm') g

zo (17).
z 2L+1

bi =(—1)"bi, „*.
TABLE II. Characteristics of detectors of various symmetries.

Table I gives exact values of g
"'

up to l=6 for m
and m' even. (The case m and m' even is the only case
of practical importance. )

The final expression (15) for arbitrary detectors
shows that q-dependent detectors mix the al which
appear in the point-point angular correlation. If one
uses p-symmetric detectors, m and ns' are zero, and

Detector

Horizontal symmetry
Vertical symmetry
Inversion symmetry
Double symmetry
q symmetry

Conditions on him

bi~=km', h~= (—&1"h,-m
b) =b),
b~ =0 for m odd
b~~=0 for m odd; bgm=b~m~

=0 for m/0
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TABLE III. Characteristics of experimental angular correlations. '

Horizontal symmetry
Vertical symmetry
Inversion symmetry
Double symmetry
y-symmetry

Hori-
zontal Vertical
sym- sym-

metry metry

P

P&v
P, v

Inversion
sym-

metry

P
P, v
P, v

Double
sym- c -sym-
metry metry

P, v
P, v

a Legend: a denotes no l's in experimental correlation other than those
appearing in true point-point correlation. P denotes no t's in experimental
correlation higher' than those appearing in true point-point correlation.
y denotes no odd l in experimental correlation if none appear in true corre-
lation. 5 denotes no special properties such as n, P, y.

IV. ARBITRARY DETECTOR WITH AXIAL SOURCE

In many angular correlation measurements source
dimensions are not many orders of magnitude smaller
than detector dimensions and it becomes necessary to
introduce additional corrections to the data. The

In Table III the eGect of various detector symmetries
on experimental correlations is tabulated. These results
follow immediately from the special form of the br, „

for
special detector symmetries as given in Table II to-
gether with the symmetry properties of the g

" as
given in Eq. (16). Note that the bottom row of
Table III, relating to one detector being cp-symmetric,
can also be used for the case of an angular

distribution

measurement where one scatters a narrow collimated
beam oG a target into a detector. In this case the initial
source of the beam acts like a point detector (p-sym-
metric with b~ 1) of an a——ngular correlation experiment.

parameters specifying the corrections are ep/2rp and
a/2rp, where ep is the source size and a the detector size,
rp being the source-detector separation. Source and de-
tector correctiorls are independent to second order in
these parameters but mixing occurs in the fourth order
terms.

By the use of the results of Sec. II, however, it is
possible to calculate an exact correction for an "axial"
source. An axial source is a line source located at the
origin and oriented perpendicular to the plane of rota-
tion employed in the angular correlation measurement.
awhile this source geometry is not a practical one, the
fact that the correction is exact is quite valuable. Source
geometry is usually at one's disposal. By making the
source a long thin cylinder the oG-axis corrections can
be reduced at the expense of the axial correction. Since
oG-axis corrections are available to second order' and
since to this order the oG-axis, axial, and detector cor-
rections are independent, corrections to almost any
desired accuracy can be obtained by the procedure of
suitably choosing the diameter of the cylindrical source.

To calculate the axial source correction we need only
note that a displacement of the source above the plane
of rotation is equivalent to an equal displacement of the
detector below the plane of rotation. If the center of
the detector is now defined as the original point in the
plane of rotation it is clear that the b~ 's of the detector
have changed. The angle 0 employed in Sec. II has not
changed. The new b~ resulting from this displacement,
e', of the center of the detector we call b~ (e'). If the
source is placed symmetrically about the plane of
rotation, "is of length 6p, and has the density of activity
~(e'), we have

0

Q p %c~

)Y
I

I

b
X

7i

+ep(2

bi„(ep)=
~-ept2

p+co/2

(e )'B(c )de
"—ep/2

e(e')de'. (20)

The new bq (ep) contain both source and counter
corrections and are to be used in Eq. (17).

The determination of b~ (e') for an incidence de-
pendent detector is in general a difficult problem. It can
of course be done experimentally by two dimensional
scanning of the detector with a narrow collimated beam
for various displacements e' of the detector. Alternately
one might consider applying the analytical method of
Rose to the displaced right circular scintillator. How-
ever, the analysis would be complicated since the dis-
placed scintillator and consequently its edge effects
would be no longer p-symmetric.

For an incidence independent detector the analysis is
much simpler, in principle, since the change in its effi-

ciency distribution is simply due to the change in

B.

Fro. 2. (a) Geometry for transformation 8, ~x', y', rp.
(b) Geometry for transformation 8, ~p, co, rp.

"It is important to point out that where sources having re-
Qection symmetries are employed the first order terms in the
source correction are zero. Displacements of the source from its
true origin, however, introduce erst order corrections (see refer-
ence 1).Thus a point source displaced a distance d from the origin
results in larger errors than a source of dimensions fE properly
located.
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aspect of its surface as seen from the centered point
source. Thus bl (0') is determined completely by the
undisplaced values of the b~ and the shape of the de-
tector surface (which will be assumed to be ffat in
what follows). Two cases of practical interest where
bl (00) can be readily calculated are the rectangular and
circular detectors of constant e%ciency. The values of
bl (00) for these two cases are calculated below under
the assumption that the axial source has a uniform
density of activity, n(c') = constant, though other situa-
tions may be handled with equal ease [see Eqs. (28),
(29), and (30)j.

A. Axial Source Corrections for Rectangular
Detectors

From (5),
( 42r

bl
l

——
l

Yl" (f/, q)E(8, pp)dQ.
(2l+1 I

We transform (21) to Cartesian coordinates at the
center of the detector to obtain

(42r y'*1
b,.(p)=l l

— dy, dx
E2l+1) r02 ~ —

//

Yl"(x, y
—p)E(x,y)X, (22)

L1+x'+ (y —0) ']'

where x=x'/rp, y=y'/rp, 0= 0 /rp, P=b/2rp, and n=a/2rp.
The pertinent quantities are shown in Fig. 2(a). Thus

( 42, l * 1 „+(//+.

0 2l+1) prr 0200 (//+, )

Yl (x,y")E(x, y"+0)
(23)

L1+x'+y"'j'

with y"=y —e. For the constant efficiency detector,
E(x,y) = 1; and defining y= pp/2rp, we obtain

ab
bio = (1+f1[~'+P—'+v' j

fP
+f2///24+P4+'Y4+ (10/3)P2723

TABLE IV. Rectangular detector correlation coe%cients.

boo

bio
b2p

beo

b4o

beo

beo
b44

be4
be4

—1/2—2/3—1—3/2—13/6—3—4

3/8
5/8
9/8
21/10
30/8
51!8
207/20
(1/80) +70
(3/80) +70
(3/16)+14

5/12
8/12
15/12
42/12
50/12
85/12
23/2—(1/24) &70—(1/80)%/70—(5/8)+14

b22 (1/12)+6 —(1/8) Q6
be2 {1/12)+30 —(3/20) +30
b42 (3/12)+10 —{11/20)+10
be2 (1/12)+210 —{9/40)+210
beg (1/6) +105 —(11/20)+105

choice the coefficient of b2 becomes (4/3)P2y2. Note that
the bl (n,P,y) are obtainable from the bl (n,P,O) by
replacing P' by (P'+y') and P by [$4+&4+(10/3)P'y'].

Yl (r,pp, p)E(r, lp)X, (25)
[1+r'+0'+2rp sinlp)l

where n=a/2rp, r=p/rp 0= 0'/rp, and y=op/2rp Foi'.
the special case E(r,pp) =1 it is easy to show that
blp (n y) can be obtained from the blp(n, 0) by replacing n2

by (422+22y2) and n4 by (n4+ ppy4+2422y2) The exa.ct
blp(n, 0) is just

~80

bio(42, 0) = 22r
~

Pl(cost/) sinHd|/

P

Pl+1(f/0) Pl—1(00)= 22r . (26)
21+1

This expression has been expanded in powers of n' to
obtain b/p(42 y) using the above replacements. Since
bl (n,0) =0, Eq. (25) must be used to obtain bl (n,y).
For the circular detector

blp
—pr422{ 1+Fll 422+ 2y j+p2t p24+ pop +242 y $}

(27)
bl ——pr422 f H ly2+ Jipp+ J2422y2}.

3'. Axial Source Corrections for Circular
Detectors

We transform to polar coordinates on the face of the
detector as shown in Fig. 2(b).

4~ ) p (pp/2 pa (2~
bl„(n,p)=

l l
dc ~ rdr

~

do/

42k+ 1 ~ 'I/ —pp/2 L
p Ij 0

86
bl. =—1h. l

- - (P'+v )j
fp

+hpl:~' —(P'+7'+ (10/3)P'y') 3}

The pertinent coe%cients are listed in Table V.
It is not necessary to restrict these calculations to

constant efficiency detectors provided they are p-sym-

TABLE V. Circular detector correction coeKcients.
ab

bl4= (f2[~'+P4+—v'+ (10/3)P'y']
Fp

+g.-'6 '+y'3} (24)

The values of the coe%cients of the above expansion
are given in Table IV. By judicious choice of p' the
second order term in 5&2 may be made zero. With this

boo

b1p
bm
beo
b4o

beo
beo

—3/4—1—3/2—9/4—13/4—9/2—6

5/8
1
15/8
7/2
25/4
85/8
69/4

H1 J1 J2

b22 —(I/12)+6 (1/8)+6 (5/16)+6
be2 —(1/12)+30 (1/4)+30 (3/8)+30
b42 —(1/4) +10 (11/20)+10 (11/8)+10
b44 0 (1/8)%/70 0
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metric. If E(r) is the detector efficiency for a circular
detector, we make the following replacements. In the
2rn2-COeffiCient in (27),

We also have the relations (Racah):"

doo'(8) =Pl (cosg),

2' f
2m'= —! E(r)rdr. (28)

) 42r y
& (AS)d„,(g)=(—1)-d, (8)=i I
I',-(8,0).

&2t+1J

In the power series we make the replacements. '

Qo 00

n'= —t r'E(r)rdr E(r)rdr,
y 2

0

3 )co CLO

n4= — r4E(r)rdr !! E(r)rdr.„2J, 0

gmm' g—m', —m ( 1) gm'm
—( 1)m+m'g, ll' (A6)(30)

The relation
, LL' —( 1)l+l'+mg, ll' (A7)

Properties of g
From the definition of g

" [Eq. (14)] and the
aforementioned symmetry properties of d „'(8),it fol-

(29) lows that

Note that for a circular gamma-ray detector
follows from (A4) and the definition of g .Ll' upon=J t'r, coj, i.e., it is incident-angle dependent and the
noting that Pl(cos8) is an even or odd function of cos8
when / is even or odd respectively. The relationbe of fourth order in eo.

ACKNOWLEDGMENTS
g„o"——go

"'——0 for (t+t'+m) odd (A8)

follows from (AS) and the even or odd character of

for his aid in computing the tables of g„"'and tLL„.
To prove

APPENDIX g„."'=0 if t,') t, (m+m') even, (A9)

Properties of D„„'(0,6,0)

According to Wigner, "page 180, we have

D„'(0,8,0) =d „'(8)=P (—1)'

[(t+m)!(t—m)!(t+m')! (t—m')!]'
X

(t+m —k)!(t—m' —k)!k!(k—m+m')!

)([CoS(g/2)]2l —m+m —
22[sin(g/2)]2lt.

—m+m' (A1)

we note that if m+m' is even, then d '(8) will con-
sist of a sum of integral positive powers of cos8, the
highest power occurring being cos'8. Therefore the ex-
pansion of d '(8) into Pl (cosg)'s will contain t'=t as
the largest possible value of l'.

The recursion relation

2t+1
g..LL'=p (tt'mO~Lm)(tt'm'O~Lm')g ~o (A10)

r 2L+1

may be derived as follows. We have
where the integral summation index k runs from the
la,rger of the values 0 and (m —m') to the smaller of
the values (t+m) and (t—m'). We restrict ourselves to g , ll'

the case /, m, nz' integral.
From the form of the definition of d it follows immedi-

of Wigner, "page 204, we have

21+1 L.+L

'(8)doo' (8)d (cosg), (A11)
2

d--, --'(8) =d-, -'(8)
) ~l')

Also by the substitution k=k'+m —m', it follows that d„„,l(g)doo'(g)= p (tt'mO~Lm)

, l ( 1)m' —md, l (g) —d, l (g) ~ (A3)
X (tt' 0m~ Lm') d ~ (8), (A12)

and by the substitution k= 1+m—k',

, l(g) ( 1)i+md, l (~ g)

where (tt'm0~ Lm) is a Clebsch-Gordan (Wigner) coeffi-

(A4) cient. Substituting (A12) into (A11), we obtain (A10).


