Masses of Light Nuclei

J. E. DRUMMOND

Department of Scientific and Industrial Research, Wellington, New Zealand* (Received April 19, 1954; revised manuscript received August 10, 1954)

Values for the atomic masses of 42 nuclei from n^1 to S³⁴ are derived from data on 110 nuclear reactions and mass spectrographic doublets. A variance-covariance matrix for the results is also derived and a further 32 masses in the same region are included. These results are found to be consistent with most of the data available.

HE atomic masses of 74 elements up to Cl³⁴ have been calculated by a least squares fitting of all the available data of nuclear reaction Q-values (see Table I) and mass spectroscopic doublets (see Table II). It has been found possible, after rejecting only a few results as seriously inconsistent, to obtain a set of masses consistent with both mass spectroscopic and nuclear reaction data (see Tables III and IV). Also, by using all the data available it is possible to quote lower probable errors for the final masses than previously.

For each reaction the weighted mean of the experimental results was taken as the most probable value

TABLE I. Nuclear reaction energies not listed by Li et al.^{a,b}

Reactions	Q-value (Mev)	Ref.	Reactions	Q-value (Mev)	Ref.
t(t,n) He ⁵	10.6	с	$F^{19}(p, \alpha)O^{16}$	8.113(30)	n
$He^{5}(\gamma,n)\alpha$	0.87	d	$O^{19}(\beta)F^{19}$	4.5(3)	k
	0.95(0.07)	e	$Na^{23}(p,n)Mg^{23}$	-4.88(1)	0
$Li^{7}(d,\alpha)He^{5}$	14.3	с	$Na^{25}(\beta)Mg^{25}$	3.7(3)	k
$Be^{9}(\alpha, 2\alpha)He^{5}$	-2.4	с	$Mg^{24}(d,n)Al^{25}$	0.07(6)	р
$Li^{6}(p,\alpha)He^{3}$	4.024(5)	f	$Al^{26}(\beta)Mg^{26}$	4.00	k
$Li^{7}(p,\alpha)\alpha$	17.344(13)	g	$Mg^{24}(\alpha,p)Al^{27}$	-1.613(10)	q
$Li^{7}(d,p)Li^{8}$	-0.192(1)	f	$Al^{27}(p,n)Si^{27}$	-5.610(10)	r
$Be^{8}(\gamma,\alpha)\alpha$	0.0945(14)	h	$Al^{28}(\beta)Si^{28}$	4.615 (35)	s
$Be^{9}(p,\alpha)Li^{6}$	2.130(10)	i		4.55(15)	k
	2.123(4)	f	${ m Si}^{28}(d,n){ m P}^{29}$	0.29(4)	t
$Be^{9}(d,\alpha)Li^{7}$	7.159(9)	f	$Al^{29}(\beta)Si^{29}$	2.5	k
$\operatorname{Be}^{9}(p,d)\operatorname{Be}^{8}$	0.558(2)	f	$P^{29}(\hat{\beta}^{+})Si^{29}$	4.64(7)	k
$B^{10}(p,\alpha)$ Be ⁷	1.1470(25)	j	$Si^{29}(d,n)P^{30}$	3.27(4)	t
B10 (p.He3) Be8	-0.536(3)	j	,	3.38	u
$B^{11}(p,\alpha)$ Be ⁸	8.579 (9)	ĥ	$A1^{27}(\alpha, n) P^{30}$	-2.93	u
C10(B) B10	4.37(10)	k	$P^{30}(\dot{\beta}^{+})Si^{30}$	4.0(1)	k
$C^{11}(\beta^{+})B^{11}$	1.989(5)	k	$Si^{30}(d,n)P^{31}$	4.92(4)	t
$Be^{9}(\alpha, p)B^{12}$	-6.92(5)	1	$P^{31}(\gamma,n)P^{30}$	-12.35	ù
$B^{11}(d, p) B^{12}$	1.140(8)	f	$S^{31}(\dot{\beta}^{+})P^{31}$	4.87(7)	k
$Be^{9}(\alpha,n)C^{12}$	5.76(4)	m	$S^{32}(\gamma, d) P^{30}$	-19.15	u
$C^{12}(d, p)C^{13}$	2.722(4)	g	$S^{32}(\gamma,n)S^{31}$	-14.8(4)	u.v
$O^{16}(d, \alpha) N^{14}$	3.119(5)	g	C133 (B+) S33	5.15(7)	k
- (3.1130(25)	ĭ	P ³⁴ (B)S ³⁴	5.1	k
$N^{16}(\beta)O^{16}$	10.3(3)	k	C134 (B+) S34	6.1(0.3)	k
$N^{17}(\beta, n)O^{16}$	2.7(4)	k			

Li, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512 (1951).

- Li, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512 (1951).
 b See reference 1.
 e Hornyak, Lauritsen, Morrison, and Fowler, Revs. Modern Phys. 22, 364 (1950).
 d W. T. Leland and H. M. Agnew, Phys. Rev. 82, 559 (1951).
 c D. Moak, Phys. Rev. 92, 383 (1953).
 f Williamson, Browne, Craig, and Donahue, Phys. Rev. 84, 731 (1951).
 g K. F. Famularo and G. C. Phillips, Phys. Rev. 91, 1195 (1953).
 k K. W. Jones et al., Phys. Rev. 91, 879 (1953).
 k K. W. Jones et al., Phys. Rev. 91, 879 (1953).
 k Carlson, Phys. Rev. 84, 749 (1951).
 i Craig, Donahue, and Jones, Phys. Rev. 87, 206 (1952).
 k L. Rosenfeld, Nuclear Forces (North Holland Publishing Company, Amsterdam, 1948) p. 501 ff.
 ¹ McMinn, Sampson, and Rasmussen, Phys. Rev. 79, 108 (1950).
 ^a Uhad, Kingston, and Bair, Phys. Rev. 86, 259 (1952).
 ^b E. Goldberg, Phys. Rev. 89, 760 (1953).
 g Kaufmann, Goldberg, Koester, and Mooring, Phys. Rev. 88, 673 (1952).
 ^c Kaufmann, Goldberg, Kev. 83, 215 (1951).
 ^c Madeville, Swann, and Chatterjee, Phys. Rev. 86, 408 (1952).
 ^c Collins, Nier, and Johnson, Phys. Rev. 86, 408 (1952).

* The early part of this work was carried out at Canterbury University College, Christchurch, New Zealand.

and the error assigned to the mean was the larger of the two calculated from weighted deviations of the experimental results and from the quoted errors, i.e.,

$$\bar{x} = \sum w x / \sum w$$

where $w = 1/p^2$ and p is the probable error, and the probable error in \bar{x} is the larger of

$$0.6745 \left[\sum w(x-\bar{x})^2/(n-1) \sum w \right]^{\frac{1}{2}}$$
 and $\left\{ \sum (1/p^2) \right\}^{-\frac{1}{2}}$.

The first part of the calculation consisted in using the 110 equations with probable errors less than or equal to 0.040 Mev connecting the masses of 42 of the atoms which were involved in two or more of the equations. The equations were then multiplied by the integer that would bring the error of each nearest to 0.040 Mev, and then the sums of squares and products were calculated for the 42 simultaneous equations for the masses. In this way a set of final equations is obtained in which the coefficients are all integers, and such equations can be solved with a desk calculating machine by relaxation methods. The equations have in effect been weighted by the squares of integers closest to the inverse squares of their probable errors; the percentage difference caused by this change of weighting factors will be greatest for those reactions whose probable errors are near 0.050 Mev (weight 0 or 1)

TABLE II. Mass spectrographic doublets.

The following doublets were used in addition to those listed in recent work. $^{{\bf a},{\bf b}}$

($(O^{16})_2 - P^{31}H^1$	$= 82.45 \pm 0.12 \ (10^{-4} \text{ amu})^{\circ}$
ĺ	$(O^{16})_2 - S^{32}$	$=177.82\pm0.25^{d}$
($(C^{12})_4 H^1 - S^{33}O^{16}$	$=413.85\pm0.46^{\circ}$
($(C^{12})_4(H^1)_2 - S^{34}O^{10}$	$3 = 529.00 \pm 0.40^{\circ}$

After a preliminary check the following data were rejected as being inconsistent with the final results.

$$\begin{array}{rcl} \mathrm{H}^{1}\mathrm{C}^{12}-\mathrm{C}^{13} &=& 44.10\pm0.08 & \mathrm{Low \ by \ 8\frac{1}{2} \ times \ the \ probable} \\ \mathrm{error}^{\mathrm{f}} \\ \mathrm{(C}^{12})_{4}-\mathrm{S}^{32}\mathrm{O}^{16}=331.82\pm0.07 & \mathrm{High \ by \ 13 \ times \ the \ probable} \\ \mathrm{error}^{\mathrm{d}} \end{array}$$

The latter error was later altered to 0.28 but it was considered safer not to use this result.

- ^a See reference 1.
 ^b K. Ogata and H. Matsuda, Phys. Rev. 89, 27 (1953).
 ^c K. Ogata and H. Matsuda, Phys. Rev. 89, 333 (1953).
 ^d A. O. Nier, Phys. Rev. 81, 624 (1951).
 ^e Collins, Nier, and Johnson, Phys. Rev. 84, 717 (1951).
 ^t H. Ewald, Z. Naturforsch. 1, 131 (1946).

Element	M - A Mev	10 ⁻⁴ amu	Li et al.ª Mev	Ogata <i>et al.</i> ^b 10 ⁻⁴ amu			
n H 1 2	8.3653(11) 7.5833(7) 13.7231(12)	89.838 81.440 147.378	8.3638(29) 7.5815(27) 13.7203(60)	81.45(2) 147.41(3)			
He 3 4	15.8300(26) 15.8115(26) 3.6075(13)	170.004 169.806 38.742	15.8271 (100) 15.8086 (100) 3.6066 (140)	38.79(9)			
5 6 Li 6	12.92(7) 19.40(3)* 15.8563(28) 16.9694(35)	138.8 208.3 170.28	19.399(36) 15.850(21) 16.969(24)				
8 Be 7 8	10.9094(33) 23.3011(37)* 17.8323(35) 7.3096(26)	250.24 191.51 78.50	23.296 (28) 17.832 (24) 7.309 (27)				
9 10 B 9	14.0082 (29) 15.5614 (42) 15.0782 (36)	$150.44 \\ 167.12 \\ 161.93 \\ 161.93$	14.007 (28) 15.560 (26) 15.076 (29)	161 10/10			
$10 \\ 11 \\ 12 \\ C \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	15.0038(35) 11.9178(34) 16.9216(61) 10.37(10)*	161.13 127.99 181.73 208.0	15.004 (26) 11.909 (220) 16.912 (20)	128.11 (9)			
10 11 12 13	13.9003 (46) 3.5640 (22) 6.9776 (26)	149.28 38.275 74.935	13.889(22) 3.542(15) 6.958(13)	38.44(6) 75.05(12)			
N 13 14	7.1644 (22) 9.2007 (32) 7.0088 (21)	76.941 98.810 75.270	7.153(10) 9.179(13) 6.998(10)	75.50(5)			
15 16 17	4.5404(48) 10.3(3)* 11.1(4)* 7.251(7)	48.83 111 119 77.87	4.5 28(11)	49.02 (9)			
16 17 18	Zero standard 4.217 (5) 4.539 (8)	45.29 48.74	4.221 (6) 4.522 (22)	48.83(20)			
19 F 17 18	8.64 (30)* 6.987 (4) 6.208 (9)	92.8 75.04 66.67	6.988(5) 6.193(21) 4.149(14)	44 44 (22)			
20 Ne 19 20	4.137(0) 5.903(8) 7.393(8) -1.142(5)	63.39 79.40 -12.27	5.913(16) 7.405(14) -1.139(19)	-12.28(13)			
21 22 23	$0.461(6) \\ -1.536(9) \\ 1.640(11)* \\ 0.000($	$4.95 \\ -16.49 \\ 17.61 \\ 40.72$	$0.469(21) \\ -1.529(23) \\ 1.646(23) \\ 2.991(27)$	-16.18(24)			
Na 21 22 23	3.983(31)* 1.305(11) -2.743(7) -1.329(8)	42.78 14.01 -29.46 -14.28	3.991(37) 1.312(23) -2.742(23) -1.333(24)				
25 Mg 23 24	$-2.1(3)^{*}$ $-2.353(11)^{*}$ -6.850(8)	-23 14.53 -73.56	1.353(24) -6.864(24)				
25 26 27	-5.828(9) -8.554(12) -6.621(14)	-62.59 -91.86 -71.11	-5.824(25) -8.565(27) -8.633(28)				
A1 25 26 27 28	$-1.50(6)^{+}$ -4.0(6) -9.221(8) -8.578(9)	-43 -99.03 -92.12	-9.245(28) -8.603(30)	-98.91 (23)			
Si 29 27 28	$-10.8(5)^{*}$ -4.393(13)* -13.218(8)	-116 -47.18 -141.95	-13.253(30)	-141.75(16)			
29 30 31 P 29	-13.328(8) -15.577(10) -13.804(8) -8.28(16)	-143.13 -167.29 -148.24 -88.9	-15.609(34) -13.837(36)	-166.93(31)			
30 31 P 32	-11.29(6) -15.280(7) -14.841(7)	-121.2 -164.10 -159.38	-15.317(36) -14.883(38)				
33 34 S 31 32	$-16.558(19)^{*}$ -14.8^{*} -10.400(70) -16.547(7)	-177.82 -159 -111.69 -177.70	-16.606(42) -16.590(39)	177.26(8)			
33 34 Cl 33 34	-16.823(12) -19.864(15) -11.67(7)* -13.80(30)*	-180.67 -213.33 -125.3 -148.2	-16.871 (41)	180.59 (37) 212.91 (19)			

TABLE III. Atomic masses. (The values marked with an asterisk are unconfirmed.)

TABLE IV. Isobaric differences. (The values marked with an asterisk are unconfirmed.)

Difference (Mev)

-0.7820(9) $He^{3}-H^{3}$ $Be^{7}-Li^{7}$ -0.0185(1.5) 0.8629(16) B⁹-Be⁹ 1.0700(23) C¹⁰-Be¹⁰ 3.8120(1050)* $C^{ii} - B^{ii}$ 1.9825(29) N13-C13 2.2231(23) Q15-N15 2.705(5 F17-O17 2.770(6)Ne¹⁹-F¹⁹ 3.255(6) $Na^{21} - Ne^{21}$ 3.522(30) $Mg^{23} - Na^{23}$ 4.096(8) $Al^{25} - Mg^{4}$ 4.240(60)* $\overline{\mathrm{Si}^{27}} - \overline{\mathrm{Al}^{27}}$ 4.828(10) P29-Si29 5.05(16)S³¹-P³¹ 4.88(7) C133-S33 5.15(7)mated probable error was 0.043 ± 0.003 Mev. This

Elements

H-n

value is in very satisfactory agreement with the original assigned value of 0.040 Mev for the probable error in each equation.

The probable errors are found by inverting the (42×42) matrix of coefficients in the least-squares equations. This was done approximately (Table V) and in the result as quoted, the diagonal elements should be accurate within 1 or 2 in the last digit quoted; however, some of the smaller and less important offdiagonal terms may be seriously in error. The errors quoted in the final result are probable errors obtained by multiplying the square root of the corresponding diagonal term by 0.043 Mev. The variance-covariance matrix is obtained by multiplying each term by 0.00409 (Mev)². Furthermore, the probable error in any relationship involving these 42 elements may be obtained by adding the appropriate variance and covariance terms and multiplying the square root of the result by 0.043 Mev.

The remaining 32 masses are calculated from additional reaction data by using the 42 first calculated as a basis on which to work. The masses which have not been confirmed by results from a second different type of experiment are marked with an asterisk and in the meantime these may be regarded as unreliable. The He⁶ mass is such a case as it is in conflict with a result for the energy of the $He^{6}(\beta)Li^{6}$ reaction. Here it was decided to accept the later data quoted by Li¹ as more reliable.

The ratio of the three sulfur masses,

 $(S^{33}-S^{32})/(S^{34}-S^{32})=0.500744(6),$

is in conflict with a value 0.500714(3) derived from frequency measurements² but as our value is derived from 11 independent and consistent equations it appears that

² S. Geschwind and R. Gunther-Mohr, Phys. Rev. 82, 346 (1951).

^a Li, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512 (1951); and C. W. Li, Phys. Rev. 88, 1038 (1952). ^b K. Ogata and H. Matsuda, Phys. Rev. 89, 27, 333 (1953).

and 0.030 Mev (weight 1 or 4), and these reactions contribute least to the final result.

As a check on the reliability of the experimentalists' estimates of their errors, the final 42 masses were substituted back in the original 110 equations and the residual errors found. The sum of squares of these was then divided by the degrees of freedom (68) to give an estimate of the variance, 0.004093, and hence the esti-

C. W. Li, Phys. Rev. 88, 1038 (1952)

J. E. DRUMMOND

		n-p	Þ	d	-	α	t	Li ⁶	· Li	7 _	Be ⁷ -Li ⁷	Be ⁸	Be	Be	10	B10	B11	011 B11	C12	C ¹³ C ¹²	N ¹³ -C ¹²	C	214 N ¹⁴	N ¹
$\begin{array}{l} n-p \\ \sigma \\ \alpha \\ t \\ \text{Lif} \\ r-Be^{8} \\ Be^{9} \\ 0 \\ BB1 \\ -CC13 \\ B-r \\ 0 \\ 10 \\ -C13 \\ \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	Li ⁷ Bu C ¹² C ¹³ N ¹⁴	$\begin{array}{c} 44\\ -3\\ -1\\ -1\\ 12\\ 2\\ -43\\ -115\\ 2\\ -2\\ -33\\ -34\\ -34\\ -30\\ -3\\ -34\\ -30\\ -3\\ -3\\ -3\\ -3\\ -3\\ -3\\ -3\\ -3\\ -3\\ -3$	$\begin{array}{c} -3\\ -3\\ 22\\ 35\\ 15\\ 42\\ 33\\ 37\\ 2\\ 18\\ 31\\ 34\\ 32\\ 11\\ 11\\ 34\\ 32\\ 11\\ 11\\ 34\\ 32\\ 12\\ 22\\ 20\\ 12\\ 23\\ 39\\ 37\\ 62\\ 23\\ 39\\ 37\\ 62\\ 21\\ 20\\ 20\\ 5\\ 5\\ 13\\ -3\\ 99\\ -13\\ -8\\ -8\\ -27\\ -111\\ -11\\ -17\\ \end{array}$	3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 1\\ 1\\ 5\\ 5\\ 2\\ 2\\ 3\\ 3\\ 4\\ 4\\ 4\\ 4\\ 8\\ 8\\ 2\\ 3\\ 3\\ 4\\ 4\\ 4\\ 4\\ 8\\ 8\\ 2\\ 3\\ 3\\ 4\\ 4\\ 4\\ 4\\ 6\\ 8\\ 2\\ 3\\ 3\\ 6\\ 6\\ 1\\ 1\\ 3\\ 3\\ 4\\ 4\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$\begin{array}{c} -1\\ 15\\ 23\\ 87\\ 18\\ 84\\ -4\\ 152\\ 157\\ 150\\ 157\\ 150\\ 157\\ 150\\ 157\\ 150\\ 157\\ 150\\ 157\\ 150\\ 25\\ 27\\ 25\\ 27\\ 25\\ 27\\ 25\\ 27\\ 25\\ 27\\ 25\\ 27\\ 25\\ 27\\ 25\\ 27\\ 25\\ 27\\ 25\\ 27\\ 25\\ 21\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	$\begin{array}{c} 4\\ 7\\ 2\\ 36\\ 15\\ 1\\ 1\\ 1\\ 8\\ 18\\ 21\\ 6\\ -21\\ 1\\ -2\\ 6\\ 3\\ 5\\ 5\\ 1\\ 1\\ 5\\ 8\\ 7\\ 14\\ 1\\ 4\\ 2\\ 4\\ 3\\ -2\\ -1\\ -4\\ 1\\ -2\\ 1\\ -2\\ 1\\ -3\\ 3\\ 5\\ 5\\ 1\\ 1\\ 1\\ -2\\ 1\\ $	$\begin{array}{c} 1 \\ 3 \\ 4 \\ 8 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		3 3 4 6 8 1 3 5 8 7 4 1 9 7 2 3 7 3 3 5 9 6 1 2 2 8 7 4 4 6 1 2 2 6 3 7 1 1 4 4	-4 -1 -1 -1 14 -12 13 1 3 3 3	$\begin{array}{c} -1\\ 2\\ 2\\ 15\\ 1\\ 18\\ -1\\ 35\\ 34\\ 31\\ 0\\ 19\\ 1\\ 3\\ 2\\ -5\\ 10\\ 1\\ 2\\ 1\\ 1\\ 2\\ 3\\ 4\\ 9\\ 5\\ 4\\ -5\\ 5\\ 2\\ 4\\ 12\\ 7\\ 6\\ 6\\ 7\\ 8\end{array}$	$\begin{array}{c} 2 \\ 3 \\ 5 \\ 16 \\ 8 \\ 26 \\ 24 \\ 43 \\ 37 \\ 43 \\ 37 \\ 43 \\ 42 \\ -2 \\ 10 \\ 2 \\ 3 \\ -1 \\ 1 \\ 2 \\ 5 \\ 6 \\ 6 \\ 8 \\ 7 \\ 4 \\ 6 \\ 6 \\ 6 \\ 9 \\ 9 \\ 9 \\ 9 \\ \end{array}$	3 3 19 1 13 3 32 22 22 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3655851111772663114499900682244777117366777199	$\begin{array}{c} -1 \\ -1 \\ 3 \\ 6 \\ 121 \\ 259 \\ 303 \\ 304 \\ 566 \\ 241 \\ 4 \\ 8 \\ -1 \\ 110 \\ 101 \\ 1-1 \\ 510 \\ 101 \\ 121 \\ 6 \\ 9 \\ -2 \\ 5 \\ 8 \\ 8 \\ 18 \\ 16 \\ 8 \\ 7 \\ 210 \\ \times 10^4 \\ \end{array}$	$\begin{array}{c}1\\1\\3\\5\\6\\14\\1\\1\\2\\2\\3\\4\\6\\1\\1\\2\\2\\4\\4\\5\\-1\\1\\4\\4\\3\\3\\3\\1\\6\\8\\8\\8\\1\\3\\1\\6\\2\\2\end{array}$	$ \begin{array}{c} -3 \\ -1 \\ -2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 45 \\ 2 \\ 1 \\ -1 \\ -1 \\ -1 \\ \end{array} $	$\begin{array}{c} -1 \\ -2 \\ -2 \\ -2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 12 \\ 24 \\ 22 \\ 8 \\ 80 \\ 17 \\ 16 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19$	$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 4\\ 7\\ 8\\ 5\\ -4\\ 2\\ 0\\ -7\\ -7\\ 2\\ 1\\ 1\\ 2\\ 3\\ 3\\ 5\\ 5\\ 1\\ 2\\ 1\\ 1\\ -3\\ 1\\ -5\\ -66\\ -66\\ -69\\ -9\end{array}$	$\begin{array}{c} -3 \\ -3 \\ 1 \\ -2 \\ -3 \\ -3 \\ 3 \\ 3 \\ -2 \\ -1 \\ 1 \\ -1 \\ 1 \\ 2 \\ 2 \\ -7 \\ 28 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -$	_	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$\begin{array}{c} 2\\ 2\\ 4\\ -4\\ 6\\ 6\\ 2\\ 2\\ 3\\ 3\\ -5\\ -2\\ -1\\ 1\\ 4\\ 8\\ 2\\ 2\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 4\\ 4\\ 4\\ 4\\ 8\\ 2\\ 2\\ 1\\ 1\\ 1\\ 1\\ 0\\ 8\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 1\\ 1\\ 3\\ 1\\ 6\\ 1\\ 2\\ 0\\ 2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
 N ¹⁵	O17	O18	F18 	F19	F ²⁰	 Ne ²⁰	Ne ²¹	Ne ²²	Na ²³	Na ²⁴	Mg ²⁴	Mg ²⁵	A127	A128	Si ²⁸	Si ²⁹	Si ³⁰	P31	P ³²	S ³²	S ³³	S ³⁴		
$\begin{array}{c} 1\\ 1\\ 2\\ 5\\ 3\\ 4\\ 6\\ 0\\ 10\\ 10\\ 11\\ 1\\ 11\\ 14\\ 20\\ 11\\ 1\\ 1\\ 1\\ 10\\ 111\\ 3\\ 6\\ 4\\ 7\\ 6\\ 8\\ 12\\ 9\\ 12\\ 14\\ 16\\ 18\\ 21\\ 125\\ 24\\ 4\\ 24\\ 24\\ 24\\ 24\\ 38\\ 8\\ 0\end{array}$	2 3 5 4 9 1 2 6 6 6 3 2 2 1 1 1 3 3 3 1 9 6 6 2 5 8 8 6 3 3 3 9 9 8 8 8 1 4 9 9 1 2 5 1 9 1 2 1 2 1 1 2 1 5 1 9 1 1 2 1	$\begin{array}{c}1\\1\\4\\4\\5\\2\\6\\6\\10\\3\\5\\1\\1\\1\\3\\6\\6\\310\\-5\\310\\-5\\30\\30\\30\\30\\30\\30\\30\\20\\20\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10$	-3 -1 -1 -1 1 1 1 2 -5 67 2 2 $\times 10^{-5}$	$\begin{array}{c}1\\1\\3\\2\\1\\-1\\-1\\-1\\1\\2\\-1\\1\\2\\5\\13\\1\\3\\1\\3\\1\\3\\0\\30\\0\\30\\0\\30\\0\\30\\0\\$	$\begin{array}{c} 2\\ 2\\ 7\\ 3\\ 5\\ 1\\ 2\\ 2\\ 2\\ 4\\ 5\\ 2\\ 2\\ 2\\ 2\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 0\\ 0\\ 3\\ 0\\ 0\\ 3\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 4\\ 7\\ 7\\ 2\\ 8\\ 4\\ 4\\ 8\\ 3\\ 3\\ 1\\ 1\\ 4\\ 4\\ 6\\ 5\\ 72\\ 2\\ 2\\ 2\\ 34\\ 4\\ 134\\ 83\\ 83\\ 83\\ 43\\ 226\\ 61\\ 355\\ 81\\ 12\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c}1\\1\\1\\1\\1\\1\\2\\2\\2\\2\\5\\10\\4\\4\\4\\4\\3\\2\\2\\2\\1\\1\\1\\1\\1\\1\\1\end{array}$	$ \begin{array}{c} 1\\1\\1\\1\\6\\33\\9\\10\\5\\27\\17\\18\\15\\12\\6\\8\\9\\4\\3\\3\\3\\3\\3\\3\\3\\3\end{array}\right\} $	$\begin{array}{c}1\\1\\1\\1\\1\\5\\33\\8\\9\\5\\25\\32\\21\\21\\17\\14\\4\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\3\\$	$\begin{array}{c} 2\\ 1\\ 1\\ 3\\ 3\\ 3\\ 6\\ 7\\ 7\\ 4\\ 17\\ 21\\ 35\\ 31\\ 135\\ 31\\ 135\\ 31\\ 12\\ 12\\ 4\\ 18\\ 8\\ 7\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\end{array}$	2 1 21 3 3 3 6 7 4 4 8 21 131 45 29 233 124 18 8 7 7 7 7 7 7 7 7	1 1 1 1 2 1 3 3 5 6 4 157 130 29 34 26 20 8 7 7 7 7 7 7	$1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 3 \\ 4 \\ 5 \\ 3 \\ 12 \\ 14 \\ 23 \\ 3 \\ 4 \\ 5 \\ 3 \\ 12 \\ 12 \\ 14 \\ 23 \\ 26 \\ 43 \\ 17 \\ 17 \\ 29 \\ 9 \\ 8 \\ 8 \\ 8 \\ 7 \\ 7 \\ 7 \\ 7 \\ 9 \\ 9 \\ 8 \\ 8 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 9 \\ 9 \\ 8 \\ 8 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	2 1 2 2 1 1 2 3 2 2 1 1 2 3 2 2 6 7 12 13 17 13 19 17 13 11 11 11 19 7 10	1 1 1 2 2 2 2 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 3 3 2 2 8 8 8 8	1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{c} 1\\1\\1\\1\\3\\1\\1\\1\\1\\1\\4\\4\\7\\8\\8\\9\\22\\1\\8\\8\\9\\22\\1\\1\\7\\17\\1\\1\\3\end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$ \begin{array}{c} 1\\1\\1\\1\\-1\\1\\3\\1\\1\\1\\1\\1\\1\\0\\8\\17\\23\\25\\25\\18\end{array}\right) $	$ \begin{array}{c} 1\\1\\1\\1\\2\\4\\1\\1\\1\\1\\1\\3\\3\\6\\7\\7\\8\\11\\10\\8\\17\\225\\70\\225\end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 3 \\ 3 \\ 6 \\ 7 \\ 7 \\ 7 \\ 9 \\ 8 \\ 7 \\ 1 \\ 3 \\ 1 \\ 8 \\ 1 \\ 2 \\ 5 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} n-1 \\ p \\ d \\ \alpha \\ t \\ Life \\ 16 \\ 16 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	p - Li ⁷ - B ¹¹ - Cl ² - Cl ² - N ¹⁴ - O ¹⁸ 0 1 2 3 3 4 4 2 4 2 5

TABLE V. Inverse matrix. The scale changes across the table and terms must be multiplied by 0.00409 (Mev)² to obtain the variance terms. (The scale factor for columns is given at the bottom.^a)

* The mathematical techniques used with the above matrix are described by S. S. Wilks, *Mathematical Statistics* (Princeton University Press, Princeton, 1943), especially sections 2.74 and 2.94, or any other book on multivariate analysis.

the error in the frequency value may have been underquoted.

A pleasant feature of this calculation is that so few of the experimental results examined are in conflict with the final values. It has been necessary to reject only a few results as being seriously inconsistent.

The corrections to experimental results were further classified according to type of experiment and it was found that the numerical values for the d-p and $d-\alpha$ reaction Q values were in general slightly low and the probable errors in the $d-\alpha$ and mass spectrographic results appeared to be underquoted, but in no case were these deviations significant. Furthermore, a crude statistical test on Li's and Ogata's results seems to indicate that the agreement between these values is better than can normally be expected, so there is little point in using these results separately. It would however be useful for individual experimenters to compare their own results with the values guoted in Table III.

PHYSICAL REVIEW

VOLUME 97, NUMBER 4

FEBRUARY 15, 1955

Decays of Ta¹⁸² and Ta¹⁸³^{†*}

J. J. MURRAY, F. BOEHM, P. MARMIER, AND J. W. M. DUMOND California Institute of Technology, Pasadena, California (Received November 15, 1954)

The β^- decays of Ta¹⁸² and Ta¹⁸³ into excited states of W¹⁸² and W183 have been studied using a curved crystal gamma-ray diffraction spectrometer and a homogeneous field, ring focusing beta-ray spectrometer. In each case de-excitation of the daughter nucleus gives rise to complex gamma-ray and conversion electron spectra. Energies and relative intensities of gamma rays and conversion lines arising from 27 transitions in W¹⁸² and 29 transitions in W¹⁸³ are presented. Internal conversion coefficients and multipolarities have been deduced for most of the transitions and together with the gamma-ray energies form the basis of decay schemes proposed for both W^{182} and W^{183} . The two decays are reported together be-

INTRODUCTION

I N regard to the decay of Ta¹⁸² this work is comple-mentary to several earlier investigations,^{1,2} its principal contributions being the investigation of a number of new gamma lines and the multipole assignments for most of the transitions, making possible the establishment of an energy level diagram for W¹⁸². For Ta¹⁸³ the results presented here provide the first detailed study of the decay of this isotope. They are in essential agreement with preliminary results³ obtained earlier in this laboratory.

cause of the close experimental relationship which existed between them as a consequence of the method used for their production, namely, simultaneous production of Ta¹⁸² by single neutron capture and Ta¹⁸³ by double neutron capture from stable Ta¹⁸¹. A corollary result is the value 1.3×10^4 barns for the thermal neutron cross section of Ta¹⁸².

An interpretation of these results on W¹⁸² in terms of collective rotational motion has been given by A. Bohr and collaborators [Kgl. Danske Videnscab. Selskab, Mat.-fys. Medd. 29, No. 9 (1955)].

The Ta¹⁸³ used in this experiment was produced from stable Ta¹⁸¹ by double neutron capture. This process was practical because of the unusually large thermal neutron cross section⁴ of Ta¹⁸² together with the high neutron flux available in the Materials Testing Reactor at Arco where the irradiation was performed.⁵ At the same time, of course, Ta¹⁸² was produced. The ratio of the populations, N_3 and N_2 of Ta¹³³ and Ta¹⁸² which results after irradiation in a neutron flux, ψ , for a time, t, is (assuming the Ta¹⁸¹ population to be constant):

$$\frac{N_{3}}{N_{2}} = \frac{\sigma_{2}\psi}{\lambda_{3}} \left\{ \frac{1 - e^{-\lambda_{3}t} - \lambda_{3}t e^{-\frac{1}{2}(\lambda_{3} + \lambda_{2} + \sigma_{2}\psi)t} \left[\frac{\sinh\frac{1}{2}(\lambda_{3} - \lambda_{2} - \sigma_{2}\psi)t}{\frac{1}{2}(\lambda_{3} - \lambda_{2} - \sigma_{2}\psi)t}\right]}{1 - e^{-(\lambda_{2} + \sigma_{2}\psi)t}} \right\} \rightarrow \sigma_{2}\psi/\lambda_{3} \quad \text{as} \quad t \to \infty,$$
(1)

[†] Work supported by Office of Ordnance Research (U. S. Army), and the U. S. Atomic Energy Commission, and performed in part with equipment built with funds granted by the Research Corporation of America. *A portion of this work was submitted by Joseph J. Murray as a Ph.D. thesis, California Institute of Technology, 1954 (un-

¹ Present address: Radiation Laboratory, University of California, Berkeley, California.
¹ Muller, Hoyt, Klein, and DuMond, Phys. Rev. 88, 775 (1952).
² Cork, Childs, Branyan, Rutledge, and Stoddard, Phys. Rev. 81, 642 (1951); J. W. Mihelich, Phys. Rev. 95, 626 (1954).
Fowler, Kruse, Keshishian, Klotz, and Mellor, Phys. Rev. 94, 1082 (1954).
⁸ DuMond, Hoyt, Marmier, and Murray, Phys. Rev. 92, 202 (1953).

⁴ See Appendix I.

⁵ We gratefully acknowledge the efforts of Dr. W. B. Lewis in arranging for irradiations in the Materials Testing Reactor, Arco, Idaho, under the auspices of the Phillips Petroleum Company.

published).