ISOTOPE SHIFT IN Hf I

4. It is impossible to confirm this from the structure
observed in any line.

Further work is being done on samples enriched in the
isotopes 174 and 176 in order to determine the shifts
174-176 and 176-178. The interference systems on hand
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at this writing do not warrant even qualitative con-
clusions, however.

Professor W. W. Watson provided assistance and
encouragement throughout this work, and this is
gratefully acknowledged.
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Electronic Polarizabilities of Ions from the Hartree-Fock Wave Functions*f
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The electronic polarizability o has been calculated for several ions by obtaining the perturbation of the
wave functions by an external field from a numerical solution of the differential equation satisfied by the
perturbation. For the helium-like ions an analytic solution was obtained by using the wave functions of
Lowdin. The calculated values of « are, in general, between 1 and 1.5 times the observed values. For several
ions values have been calculated for the quadrupole polarizability which measures the quadrupole moment
induced in the ion by an external charge. The effect of the dipole moment induced in the ion on the electric

field at the nucleus is discussed.

I. INTRODUCTION

HE electronic polarizability of ions has been
determined by a number of different methods.
The polarizability can be obtained from the index of
refraction of the ion in solutions or in crystals. An inde-
pendent method consists in a consideration of the
Rydberg-Ritz correction for the spectral series of atoms.
Following Born and Heisenberg,! the deviation of the
spectral terms of the alkalis from hydrogenic levels is
attributed to the polarization of the core by the valence
electron. This procedure to obtain the polarizability
was also used by Mayer and Mayer.? The determination
of the polarizability from the index of refraction of
solutions was first carried out by Heydweiller® and by
Fajans and Joos.* While the present work was in
progress, there appeared a paper by Tessman, Kahn,
and Shockley® who made a determination of the ionic
polarizabilities from the experimental refraction data
of crystals containing the ions considered.®
In contrast to the variety of experimental deter-
minations of the polarizability o, there exist compara-
tively few theoretical treatments which attempt to
explain the values of o in terms of the electronic

* Work done under the auspices of the U. S. Atomic Energy
Commission.

t A preliminary account of this work was presented at the
April 29-May 1, 1954 Meeting of the American Physical Society
in Washington, D. C. [Phys. Rev. 95, 594 (1954)7.

1 M. Born and W. Heisenberg, Z. Physik 23, 388 (1924).

2 J. E. Mayer and M. G. Mayer, Phys. Rev. 43, 605 (1933).

3 A. Heydweiller, Physik. Z. 26, 526 (1925).

4+XK. Fajans and G. Joos, Z. Physik. 23, 1 (1924).

5 Tessman, Kahn, and Shockley, Phys. Rev. 92, 890 (1953).

6 An extensive discussion of the work on polarizabilities is given
by J. H. Van Vleck, Tke Theory of Electric and Magnetic Suscepti-
bilities (Oxford University Press, London, 1932), first edition,
Chap. VIIL

structure of the ion. Pauling’ derived-an analytic ex-
pression for « for electrons which move in a pure
Coulomb field (hydrogenic wave functions). He used
this expression with appropriate screening constants
for the helium-like ions and obtained good agreement
with the observed values of a. This method is not
expected to give accurate results for medium and heavy
ions since the electronic wave functions are very dif-
ferent from hydrogenic wave functions in this case.
Buckingham? obtained an expression relating o to the
average values of 7 for the various electron shells,
where 7 is the distance between the nucleus and an
electron of the core. This expression was derived from a
variational calculation in which the perturbed wave
function for each shell was taken as a preassigned func-
tion times a parameter which was varied to minimize
the energy. Although different parameters were used
for the different subshells, this procedure probably does
not always give a good approximation to the actual
perturbed function, because only a single parameter for
each subshell is available in the variational calculation.

In the present paper, values of a are obtained for
nine ions from F— to-Cst by means of a numerical
solution of the differential equation for the perturbation
of the electronic wave functions for the various shells.
For the unperturbed wave functions, the Hartree-Fock
functions of the ions are used. For the helium-like ions
an approximate analytic solution for the perturbation
based on the wave functions of Lowdin® will be em-
ployed. The calculated values of « lie, in general,
between 1 and 1.5 times the experimental values. Thus
the calculations are in reasonable agreement with ex-

7 L. Pauling, Proc. Roy. Soc. (London) A114, 181 (1927).
8 R. A. Buckingham, Proc. Roy. Soc. (London) A160, 94 (1935).
s P. O. Lowdin, Phys. Rev. 90, 120 (1953).
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periment. The tendency for the calculated values to be
somewhat too large is probably due to the fact that
the Hartree-Fock wave functions give less binding and
are more external than the actual wave functions. An
increase of the binding would be accompanied by a
decrease of a. The agreement of the present values of «
with experiment is on the whole better than that ob-
tained by Buckingham.?

Besides the dipole polarizability e, it is of interest to
consider the quadrupole polarizability which will be
defined as the ratio of the quadrupole moment induced
in the ion by the field of an external charge to the field
gradient at the nucleus produced by the charge. The
quadrupole polarizability «, was first introduced by
Mayer and Mayer.? In the present paper, values of g
have been calculated analytically for the helium-like
ions and numerically for the Na* and Cs* ions. The
last section of this paper gives a discussion of the electric
field at the nucleus due to the dipole moment induced
in the ion by the field of an external charge.

II. EXPRESSION FOR THE POLARIZABILITY

Assume that the electric field is produced by a unit
charge +e at a large distance R from the nucleus along
the positive X axis. If R is in units of the Bohr radius ex,
the dipole part of the potential energy (in Rydberg
units) is given by

Hi=—(2/R®r cosb, (1)

where 6 is the angle between the X axis and the radius
vector (of length 7) from the nucleus to an electron in
the core. The unperturbed wave function times 7 for a
core electron will be denoted by #o. Let #; denote 7
times the perturbation of the wave function due to Hj,
and let E; by the first-order perturbation of the energy.
H, and E, will denote the unperturbed Hamiltonian and
energy, respectively. The Schrodinger equation to the
first order in H; is given by

(Ho+ H1) (mot21) = (Eo+E1) (uotuy). 2
E, is given by
J,

s ),

where ¢ is the azimuthal angle. Since H, is linear in
cosf while u¢? is an even function of cosf, the integral
over 6 vanishes, so that E,=0. By subtracting from
Eq. (2) the unperturbed Schrodinger equation,

27

Hyugdr sinfdfde, - 3)

H o= Eqgto, 4
one obtains the equation for u;:
(Ho—Eo)u1= ——H1u0. (5)

In the following, %, will be normalized according to

L] T a7
f f f ug%dr sinfdfd p=1. 6)
o Yo Yo
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%o will be written
o= (2m) "4’ o@,™ exp(im ), (7

where #/q is the radial wave function (times 7), I=azi-
muthal quantum number, m=magnetic quantum
number, ©;™ is the angular eigenfunction with the
choice of phases as given in Condon and Shortley.!®
o’ and ©,;™ are normalized according to

J

The first-order perturbation of the density [ (o4 u1)?]
is given by 2wueu, for each core electron. Hence, the
induced dipole moment which will be called ping, x is
given by

© T 27
Dind, x=—2¢ > f f f (t401) nim?
nlm J 0 0

X cosfdr sinfdbd e, (9)

0

o ?dr= f | ©,m|2 sinfdf=1. (8)
0

where # is the principal quantum number, and the
sum extends over all electrons of the core. Since the
density 2uqu; depends on #, I, and m, it has been labeled
2(#o%1) nim. The field Ex is —e/R?, so that the polariza-

bility is given by
0 T 27
a= Pind, X/EX= 2R2 Z f f f (uoul)nlmr
nim Jo Jo Vo

X cosfdr sinfdfde. (10)
We will now obtain an expression for « in terms of
the radial functions by integrating over 6 and ¢, and
performing the sum over the magnetic quantum
numbers m for each shell.
The contribution of the s shells will be considered
first. Since ®"=2"%, %, can be written

(11)
Thus the right hand side of (5) becomes in view of (1),

Ug= (2#)_%2_%’%,0.

— Hyuo= (2m)~#2}R~2u’ o cosf. (12)
If Rydberg units are used, H, is given by
Ho=—V+V,, (13)

where V, is the unperturbed potential in which the
electron moves. Equation (12) shows that % is a p
wave. %; can be written

U= (2#)‘*2*1{_2%'1, 01 COSB, (14)

where #1051 1s the radial function which is determined
by
az 2
(——+——+ Vo—Eo)%lL 0-1=12%¢7. (15)

ar* r?

WE. U. Condon and G. H. Shortley, The Theory of Afomic
Spectra (Macmillan Company, New York, 1935), p. 52.
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Here and in the following the notation #'y,;:» denotes
the radial function for the excitation of a state with
azimuthal quantum number / into states with azimuthal
quantum number /. Upon inserting Eqgs. (11) and (14)
into Eq. (10) one obtains for the contribution of both
ns electrons to a:

0 T 2T
a(ns—p)=4R? f f f ugthrr cosfdr sinddfd o
0 0 0 (16)

= (8/3)f M'o’M/IL 0_,1rdr.
0

The procedure of the numerical solution of Eq. (15)
will be described in Sec. ITI. Here we note that for the 1s
shell, if #/¢ is assumed to be a hydrogenic wave function,
Eq. (15) has an exact solution, as was shown previously.!
Thus if the unperturbed function is taken as

w'o=27Z% exp(—Zr) 17

with an appropriate value of the effective atomic
number Z (including screening), then %y, -1 is given by

w1, 01=27% exp(— Zr)[14(Z/2)r], (18)

as can be verified by substitution in Eq. (15). Upon
inserting (17) and (18) into (16), one obtains

a(ls—p)=(9/Z9ax (19)
This is a well-known result which has been derived
previously by Pauling” and others.®

The contribution of the p shells to a will now be
obtained. The electrons with m=0 will be considered
first. The unperturbed function is given by

1@ = (2rr)~*(3/2)* o'y cosh. (20)

Here and in the following the superscript of o™
indicates the magnetic quantum number. In view of
Egs. (1) and (20), — H%0® is given by

— Huia® = (2m)~4(2/3))R /o[ (3 cos¥9—1)+1], (21)

where the square bracket is written as the sum of a d
function and an s function; these terms give rise to
excited d waves and s waves, respectively. The np—d
excitation will be considered first. In view of (5) and
(13), the excited wave function is given by

U1, 152 ©0) = (2‘7!')—% (2/3) "‘R“Zu'l, 12 (3 cos?0— 1), (22)
where the radial function %'y, 1.2 is determined by
@? 6
(——‘|‘—+ VO—EO) “'1, 1s2=2%'or. (23)
ar* r

In Eq. (22) and in the following, %, ;™ denotes 7
times the wave function for the excitation of an electron

1 Foley, Sternheimer, and Tycko, Phys. Rev. 93, 734 (1954).
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with azimuthal quantum number ! and magnetic
quantum number m into states with azimuthal quantum
number /. The details of the numerical solution of Eq.
(23) are given in Sec. III. Upon inserting Egs. (20) and
(22) into (10), one obtains for the contribution of both
m=0 electrons to a,

) T 27
a(‘” (%P——)d) = 4R2f f f Uy (°)u1_ 1.,2(0)7‘
0 0 0

. X cosfdr sinfdfde (24)
= (32/ 15)f w o'y, 15ordr.
0
The np states with m =21 will now be considered. The
unperturbed function is given by ,
oD =F (2m)~4(3/2) 4’ sinf exp(kip).
We have
— Hyuy@ = (27)~#35R 24/, sinf cosh exp(=i¢p). (26)

(25)

Since the right hand side of (26) is a pure & function,
the m==1 electrons do not contribute to the np—s
excitation. The perturbation is given by

%1, 12 ED = F (2m)13R2/ 1, 152 sinf cosd exp(Eig).

Upon inserting (26) and (27) into (10), one obtains for
the contribution of the four m=41 electrons to «,

0 T 2T
a(ﬂ:l) (np—)d) e Ssz f f uO(il)ul, 1_’2(:!:1)7’
0 0 0
X cosfdr sinfdéde  (28)

= (16/5)f M'oull, 1_,21’df.
0

In view of (24) and (28), the np—d contribution of the
complete p shell to « is given by

a(np—d)=(16/ 3)f w' o'y 150rdr. (29)
0

The np—s term due to the m=0 electrons is obtained
in the same manner as #p—d. From (21) one finds for
the perturbation,

U1, 1.,0(0) = (27!')_%(2/3) %Rﬂz'u"l, 10y (30)

where the radial function %'y, 1—0 is determined by

d2
(——+ Vo—'Eo)u,L 1.;0'—‘-%'0’)’. (31)

dr?

Upon inserting (20) and (31) into (10) one obtains for
both m=0 electrons,

a(np—ss) = (8/3) f W'y, oordr. (32)
0
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Here and in the following, a(#l—1?’) denotes the con-
tribution to a of the complete subshell 7l.

The contributions of the d shells to @ can be found
in the same manner as for np. The d electrons are
excited into p and f states. The complete derivation
will not be given here, but the various excited wave
functions will be listed together with the final results.
The nd—f waves will be considered presently. The
excited wave functions are given by

U1, 253 ©) = (21!')_; (3/ 10’2‘)R‘2u’1, 253 (5 cos®0—3 COS@), (33)
U1, 2_,3(:}:1) = (27!')—% (3/5)%]{_2%’1, 253

X (5 sinf cos?§—sinf) exp(ip), (34)
%1, 253 FD = (2m)3(153/2) R4, 2.5 sin%0
Xcosf exp(==2ip), (35)

for the m=0, &1, and X2 electrons, respectively.
Similarly to Egs. (15), (23), and (31), the radial func-
tion %y, 253 is determined by

@ UV{l+1)
(-=+
dr? 72

-+ Vo—EO) Wy ise=u'or, (36)

in which /=2, /=3, and #¢ is the unperturbed radial
nd function. Upon inserting Egs. (7) and (33)-(35) into
(10), one obtains

o (nd——)f) = 8f M’o’M;’L 2.,37’d1’. (37)
0
The nd—p excited wave functions are given by
%1, 251 0= (271')—% (8/5) %R—%&,L 2-»1 COSO, (38)
U1, 251 E==F (21!')_% (3/5) *R“Zu'l, 251
Xsing exp(&iep), (39)

and #; 21 *=0. The radial function %'y 5,1 is deter-
mined by Eq. (36) with /=2 and /=1. From Egs. (10),
(38), and (39), one obtains

a(nd—p)=(16/3) f o on'y, os17dr. (40)
0

The f electrons are excited into d and g states. The
excited wave functions for #f—g are given by

UL, 354 0) = (271')—%14—*R_2u'1, 34

X (35 cos'0—30 cos®+3), (41)
U, 3_,4(:H) = (27!‘)—* (75/56) %R—zu’l, 34
: X (7 sinf cos’d— 3 sinf cosf) exp(£ip), (42)
U, 3_,4(:&2) = (21)—%(15/28) *R—zu’l, 324
X (7 sin?0 cos?—sin%) exp(2i¢), (43)
%1, 354 =T (27)3(35/8)IR~2u"1, 34
Xsin®d cosf exp(£3ip), (44)

STERNHEIMER

where %'1,34 is determined by Eq. (36) with =3, I'=4,
and #/o taken as the unperturbed f function. From
Egs. (10) and (41)—(44), one obtains

a(nf—g)=(32/3) f w o'y, sardr. (45)

The excited wave functions for #f—d are as follows,

U, 3_,2(0) = (27!')_}(3/14’})1{—2%’1, 352 (3 cos?— 1), (46)
U, 3opE ="F (27[‘)—% (24/7)§R_ZM,L 352
Xsinf cosf exp(=ip), (47)
U1, 3_,2(:‘:2) = (21!')—%(15/28)%13_2%’1_ 352
Xsin%f exp(2:i¢), (48)

where %'y, 3.2 is determined by Eq. (36) with [=3, '=2.
From Egs. (10) and (46)—(48), one finds

a(nf—d)=8 f w o'y 3ordr. 49)
0

From Egs. (16), (29), (32), (37), (40), (45), and (49),
one obtains the following expression for «,

8 8 16
O!=Z (_IO—»I) +Z ("'Il—>0+—Il—)2)
n \3 s \3 3

16 32
+Z (—12—>l+8I2—>3) +Z (8I3—>2+_IS—»4) )
2 \3 nd 7™ 3

nf

(50)

where the sums extend over the occupied s, p, d, and f
shells, and I,y is defined as

Iv Ef o' 'y, 1srdr, (51)
0

where %, 11 1s the perturbation considered. It may be
noted that the coefficients of I;,» and I;.,; in Eq. (50)
are equal. This was expected because the transition
from nlm to n'Vm (n'=principal quantum number of
excited state) has the same matrix element as the
transition from #''m to nlm. Since the angular factors
do not depend on # and #’, the equality of the coeffi-
cients of the I;,p follows. We note that Eq. (50) gives
o in units ex® and must be multiplied by a factor
0.5293=0.148 to obtain « in units A3,

III. CALCULATIONS OF THE POLARIZABILITY

In this section the calculation of the radial functions
11,151 is described and the resulting values of «, as
obtained from Eq. (50), are compared with experiment.

The #'y,1,r are determined by Eq. (36), of which
Egs. (15) for ns—p, (23) for np—d, and (31) for np—s
are special cases. The calculations of « for the helium-
like ions, which were done analytically, will be discussed
below. In the numerical calculations for the medium
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and heavy ions, the unperturbed functions #'y, were
taken as the Hartree-Fock or Hartree wave functions.
For Na*, CI~, K*, Catt, and Cut, the Hartree-Fock
functions®¢ (including exchange) were used, while for
F-, AB* Rb* and Cs* only Hartree functions'”18
(without exchange) are available. The function on the
left hand side of Eq. (36) was obtained directly from
the tabulated Hartree-Fock functions, in the manner
shown previously.!! Thus, let P(r) be defined as

P(r)=[1(+1)/r*]+Vo(r)— E,,

where / is the azimuthal quantum number for the un-
perturbed state. If 7, is a selected radius and § is the
interval at which #/ is tabulated, P(r,) is given by

P(rn)=[o(rnt0)—2uo(ra)+o'o(rn—8) 1/ [6u's(ra) ).
(53)

(52)

The function which appears on the left hand side of
Eq. (36) is

P (n=P@)+U+1)—-10+1)]/r

If I denotes the inhomogeneity I=u'¢r, the equation
used for the numerical integration with the same interval
é is given by

W1 (rnt8) ='s(ra) (2+F[P' (ra) — I (rn) /01 (rn) 1}

—u'1(r,—9).

(54)

(55)

Equation (55) is appropriate for outward integration
starting near »=0. The equation for inward integration
is obtained from (55) by reversing the sign of 4.

For ns—p and np—s, Eq. (36) was integrated out-
ward with starting values obtained as follows. Near
r=0, the ns—p function %'y, 051(ns) is approximately
proportional to the unperturbed #p function #¢(%p)
for the same #», as will now be shown. Here and in the
following #/¢(nl) denotes the unperturbed function for
nl, and %'4, 151 (nl) denotes the perturbation of the state
nl. From Eq. (15) it is seen that the inhomogeneity #’or
acts in the same manner as an additional potential
8V=—uor/t'1,0-1. Near r=0, u'o(ns) <7, u'y,01(ns)
« 72, so that 8V is constant and therefore much smaller
than the terms 2/72 and V. Thus the right hand side
of (15) can be neglected near =0 and the equation for
#'1,01(ns) is the same as the equation for #'o(np),
except for the small difference between the unperturbed
energies Ey for ns and for np. However, the term Eq
plays a negligible role near =0, so that #’y ¢1(ns)

12V, Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368
(1?33%).' R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A156, 45 (1936).

¥ D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).

15D, R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
Al164, 167 (1938).

16 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).

17D, R. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935).
18D, R. Hartree, Proc. Roy. Soc. (London) A143, 506 (1934).
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F1c. 1. 3s function #'o and 3s—p perturbation
%'1,051 for Cl—.

is approximately proportional to #'¢(zp). The integra-
gration [Eq. (55)] was started at two values of 7 near
r=0.050m; the starting values #'1(r,) and #'1(r,+9)
were taken proportional to the values of #/o(np) at
these radii. Thus #'1=81%'o(np), where B, is a propor-
tionality constant to be determined. The integrations
were carried out with several values of 8;. The correct
B11s that for which the resulting #'4, 01 is well behaved
(i.e., exponentially decreasing) at infinity. In practice,
B:1 and #'y,051 were found by interpolation. For two
choices of 8; which enclose the correct value, the func-
tions diverge slowly, the one to positive values, the
other to negative values as »—o . However, they agree
quite well (in general within ~15 percent) in the region
of importance for , between r~1ag and r~3ax, where
the outermost maximum of #'¢ occurs. Figure 1 shows
the 3s—p function #'y, o1 for Cl—; together with twice
the unperturbed 3s function 2u/,.

For the np—s excitation essentially the same pro-
cedure was used as for ns—p. Near r=0, the pertur-
bation %'y, 150(np) is proportional to #/¢(ns) since the
extra potential 8§V =—u'o(np)r/u'1,150(np) which cor-
responds to the inhomogeneity of Eq. (31) is negligible
near the nucleus. This follows from the fact that
wo(np) <1 4y, 150(np) <7, so that 6V « 72 near r=0, in
contrast to Vo which goes as 1/7. The difference between
the values of E, for #s and for #p can also be neglected,
so that Eq. (31) is approximately the same as the equa-
tion for #'o(ns). The numerical integration [Eq. (55)]
was started near r=0.05ax, using for #’y, 1.0 the values of
Ba1t’o(ns) where B is a proportionality constant. Simi-
larly to ns—p, the integrations were carried out for
several values of 82 until a value was found by inter-
polation for which the resulting #'y,1-0 is well behaved
at r= . Figure 2 shows the 3p—s perturbation %'y, 10
for CI~, together with twice the unperturbed 3p function
2%'0.

For np—d, an inward method of integration was used
in most cases, starting at a large radius r;. For this
purpose, Eq. (23) was written as follows,

i ’
'y, 150/ dr*=Nu'y, 15,

(56)
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FiG. 2. 3p function %/, 3p—s perturbation #'y,1..0, and
3p—d perturbation #'y,1.2 for Cl™.

where IV is given by [see Egs. (52) and (54)]:

N=P,'— [u/()f/%’l, 1_,2]. (57)
Note that for large 7, V is constant and given by — Ej.
Several integrations were carried out with different
starting values %'y, 152(r1). It was assumed that N is
constant for #>7;; for a given %'y, 152(71), N (r1) is cal-
culated from (57), and %'y, 1,2(7148) is obtained from

1, 150(r1+08) =11, 152(r1) exp{—[N (r1) ]%}. (58)

The numerical integration is then started with the
values %'y 152(r1) and %'y, 152(71+8). The correct value
of #'1,152(r1) is that for which the resulting 'y, 152 is
zero at r=0. This requirement is appropriate since the
actual perturbation goes as #° near r=0. In practice,
the actual #';152(r1) and the solution were found by
interpolation. For two choices of #'y,152(r1) which
enclose the correct value, the solutions %'y, 1,2(7) diverge
slowly, the one to positive values, the other to negative
values, near r=0. However, they agree closely (in
general within 15 percent) in the region of importance
for a(r~lau—3an). Figure 2 shows the 3p—d per-
turbation #'11.2 for ClI=. The contribution to « is
determined by (16/3)#’'1, 127 [see Eq. (29)]. Since
#'1,152 and #’¢ have the same sign for r>0.55¢x, the
contribution to a(3p—d) from this region is positive.
For r<0.55am, #'1,1~2 and %' have opposite sign because
of the node of %y, so that the region inside 0.55¢n
makes a negative contribution to a(3p—d). However,
this contribution is negligible compared to that made
by 7>0.55¢m, because the values of #'o, %1, 152, and 7
are considerably smaller than in the region'® >0.55¢x.

1 While the contribution of 7<0.55¢m is negligible for the
polarizability, it may be important for properties which depend
strongly on the region of the electron cloud near the nucleus. Thus
as shown below (Sec. V) the induced charge distribution con-
tributes to the electric field at the nucleus. The term in the electric
field due to 3p—d is given by (16¢/3R?) fo™u'ow's, 1..2r2dr. The fact
that the dependence on 7 is 7~ rather than 7 as for the polariza-
bility results in a strong dependence on the values of #/o%'y 1.2
near the nucleus. It may also be noted that the antishielding cor-

rection to the nuclear quadrupole coupling (reference 11) is an
effect similar to the one discussed here. In this case, the perturbed
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The sign of the terms of a due to 3s—p and 3p—s is
discussed below.

For Cu*, 3d—f, and inward method of integration
was used, similar to that for np—d, while the 3d—p
wave of Cut was obtained by outward integration,
similar to ns—p and np—s.

After the #'y ;1 are obtained, the integrals I,y
[Eq. (51)] are evaluated and « is calculated from Eq.
(50). It is estimated that the inaccuracy of the values
of o due to the interpolation procedure to obtain the
%'y, 15r 1s less than =4-20 percent. In many cases the
values of a(nl—1') are probably accurate to 4=10-15
percent.

It was found that the polarizability « is almost en-
tirely due to the outermost shell whose principal
quantum number will be called 7z,. The contribution
of the shells with 7z <, is negligible in all cases. This
result was already obtained by Pauling” from the hydro-
genic wave functions and by Buckingham.® The results
of the calculations are presented in Table I. The first
five rows list the term a(no—!’) due to the various
modes of excitation of the outermost shell. The last
two rows give the resulting calculated value of @ and
the experimental values. The fact that the inner shells
(n<no) make a negligible contribution to a was estab-
lished by calculating a(2p—d) for Cl~, a(3d—f) for
Rbt, and a(4d—f) for Cs*. These represent the largest
terms for the shell with #=#n,—1, and were found to be
0.01A3, 0.03A3, and 0.16A3 respectively. Even for Cs*,
this term represents only 3 percent of the contribution
due to me=35, and is therefore appreciably smaller
than the uncertainty of the calculations. The reason
why the inner shells make only a negligible contribution
is that both the right hand side of Eq. (36) for %'y, 10
and the integrand of I, [Eq. (51)] contain a factor
7, so that the contribution to a depends essentially on
the average value of 7? for the shell considered.® Since
()1 decreases very considerably as # is decreased by
1, only the outermost shell contributes effectively to a.

The experimental values a(exp) given in the last row
of Table I correspond to the values obtained by Born
and Heisenberg,! Mayer and Mayer,? Fajans and Joos,*
Pauling,” and Tessman, Kahn, and Shockley.® The
range of a(exp) is due to the fact that different experi-
mental methods give appreciably different values of «
in some instances. These discrepancies can probably
be attributed to uncertainties in corrections which enter
into the determination of a from the experimental data.
As an example of these corrections, the quadrupole
polarizability and the effect of penetration of the core
enter into the spectral level method.? Similarly, the
values of a obtained from the index of refraction of

wave functions are such as to shield the atom from the electric
field gradient of the external charge in the vicinity of that charge,
i.e., in the region of the outermost maximum of the atomic wave
functions. However, near the nucleus, the effect is in some cases an
antishielding because of nodes and changes of sign of the unper-
turbed and perturbed wave functions.
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crystals'®* may be affected by distortion of the ion by
interatomic forces.®

Table I shows that a(#os—p) and a(ngp—s) cancel
each other approximately, so that a(n.p—d) makes the
major contribution to « for the cases where ngp is the
outermost subshell. A similar near-cancellation takes
place for 3p—d and 3d—p of Cu, so that the 3d sub-
shell through a(3d—f) makes the largest contribution
to a for Cut. This cancellation will now be explained
for the case of #os—p and nop—s. For this purpose, Eq.
(15) for #'4, 051 and Eq. (31) for 4’4, 10 will be solved in
terms of eigenfunctions. We expand #'y,0-1 in terms of
the np eigenfunctions for the potential V. Thus
(59)

W1, 001=2 n @ntto (”P)y

where ¢, is a coefficient and %/¢(%p) is the normalized
solution of

a2
[‘-—+~+V0—Eo(np>]“’o(np)=0, (60)

arr

where Eo(np) is the energy eigen value for #p. In (59)
the sum extends over all of the discrete states allowed
by (60) and over the continuum states with Eq(np)>0.
In Eq. (15) E, will be written more explicitly as Eq(#0s)
and #'o will be written as #'o(#os5). Upon inserting (59)
into (15), one obtains

@ 2
[ ——+—+Vo— Eo(n5) ]Z antt o(np) =1"o(nos)r. (61)
arr  r? n
In view of (60), Eq. (61) becomes
2L Eo(np)— Eo(nos) Janud (np) = 1o’ (nos)r.

Upon multiplying both sides of (62) by #'o(np) and
integrating over 7, one obtains

(62)

An= [ f ) o (mos)ru’ g (np)dr] / LEo(np)— Eo(mos)].
° (63)

Since the energy denominator is smallest for n=m,, the
largest a, is expected to be ano, so that #1051 is ap-
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proximately given by anow'o(n0p). As a result,

Io_,lNdnof M’g (nos)m’o (’ﬂop) dr. (64)
' 0

In a similar manner, the #p—s perturbation #y,1-0
will be expanded in terms of the ms eigenfunctions
#o(ns) which are the normalized solutions of

[~ v mo Jug=0. @9
ar?

Thus,

14/1. 1—>0=Zn bnu'o(m‘), (66)

where b, is a coefficient. In Eq. (31) E, will be written
more explicitly as Eo(npo) and 4’y as #'¢(#0p). Upon in-
serting (66) into (31) and using (65), one obtains

2 nLEo(ns)— Eo(nop) Jout' o (ns) =u'o(nop)r.  (67)
Upon multiplying both sides of (67) by #'o(ns) and

-integrating over 7, one finds

ba= [ j; ) o (nop)ru’y (ns)dr] / [Eo(ns)— Eo(nop)].
(68)

Again the smallest energy denominator is obtained for
n=mn,, and a comparison of (63) and (68) shows that
bro= —ano. In the approximation in which the terms
n#ng are neglected, we have

I~~~ dnof ' o(nos)rat’ o (nop)dr, (69)
0

so that Io,; and 10 would exactly cancel each other.

These results have a simple physical interpretation.
In the absence of the Pauli principle, the major part of
the nos—p excitation would be #¢p, and the major part
of the nop—s excitation would be #,s. However, since
both the #n¢s and #nop shells are filled, the two terms
just cancel each other, so that only excitations of #s
into higher p states (#>#n,) and excitations of #¢p into
higher s states (©#>#n0) are possible. This leaves nop—d

TasLE I. Calculated and experimental values of the polarizability «. The rows above a(calc) list the contributions to « of the various
modes of excitation of the (outermost) shell with highest principal quantum number 7o. All values are in units A3,

Ion F- Nat ALt C1- K+ Cat+ Cu* Rb+ Cs*
a(nos—p) 0.39 0.125 0.061 1.33 0.57 0.40 0.077 0.98 2.15
a(nop—s) —0.30 —0.101 —0.054 —0.97 —0.44 —0.36 —0.069 —0.89 —-1.71
a(nop—d) 3.11 0.121 0.043 5.28 1.13 0.69 0.096 2.61 4.43
a(nd—p) —0.084
a(nd—f) 0.450
a(calc) 3.20 0.145 0.050 5.652 1.26 0.73 0.470 2.73> 5.03¢
a(exp) 0.76-1.04 0.17-0.26 0.052-0.067 2.97-3.66 0.80-1.20 047-1.1 1.6 1.4-1.8 2.35-3.14

a Includes a term 0.01A3 due to 2p —d.
b Includes a term 0.03A3 due to 3d —f.
¢ Includes a term 0.16A3 due to 4d—f.
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as the major contribution to «, since the energy differ-
ence between ngp and nod is fairly small and the nod
states are unoccupied. A similar explanation applies to
the approximate cancellation of the 3p—d and 3d—p
terms for Cut and the predominance of the 3d— f term,
involving the excitation into the unoccupied f states.

The preceding results are illustrated by Figs. 1 and 2.
Figure 1 shows that the 3s—p excitation #'y,0-1 of Cl~
and the 3s function #'¢(3s) have the same sign through-
out most of the range of 7 (for r>0.12ax), resulting in
a positive contribution to « since #'gu’y,051>0 [see Eq.
(16)]. By contrast the 3p—s wave #'1,150 and the 3p
function have in general opposite sign (see Fig. 2) so
that a(3p—s) is negative. It is also seen that %'y, ¢-1 for
3s—p has the same node as #'(3p) at r=0.55ax and is
approximately proportional to #'4(3p) inside r=2¢g.
Similarly, #'1,150(3p—s) and #/¢(3s) have the same
nodes and are approximately proportional for »<2am.

From Table I it is seen that the calculated values of
a are, in general, between 1 and 1.5 times the experi-
mental values. As mentioned above, a discrepancy in
this direction is expected because the Hartree-Fock
functions provide less binding than the actual wave
functions and should, therefore, tend to give values of
a which are too large. For Cl-, Rb*, and Cst, the dis-
agreement is a factor of ~1.5. However, for K+, the
calculated a is barely above the experimental range, and
for Nat, AI*+, and Ca™t, the calculated « is either within
the experimental range or slightly below the experi-
mental values. This agreement can be understood by
virtue of the fact that for small positive ions or ions
with net charge greater than 1, the wave functions of
the outermost electrons have a relatively strong binding,
and the calculated polarizability should be insensitive
to small inaccuracies of the potential for the external
electrons and of the zero-order wave functions. The
fact that for Nat, a(calc) =0.145A3 is below the experi-
mental values is somewhat disturbing. A difference in
this direction has already been noted by Buckingham.?
However, it should be pointed out that the experimental
values are subject to uncertainties, and the discrepancy
(0.17—0.145=0.025A3) is smaller than the difference
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between the experimental values (0.26—0.17=0.09A3).
We also note that the value of a derived in Sec. IV
from the spectral term defect including the quadrupole
polarizability is 0.138A% which is smaller than a(calc).
For F, a(calc) is larger than a(exp) by a factor of 3.
This disagreement is probably due to the fact that only
Hartree functions!” were available for the calculation.
Since F~is a negative ion, the binding of the 2p electrons
is very sensitive to small changes of the potential in
which these electrons move. Since the wave function
was obtained from the Hartree equations,” the exchange
correlation which would provide additional binding is

. not included. Thus, the rather large discrepancy is not

surprising. The fact that there is better agreement for
CI™ than for F~ is probably due to the use of Hartree-
Fock functions® for ClI~. For Cut*, Table I shows that
a(calc)=0.47A°% is appreciably smaller than «(exp)
=1.6A3%. The experimental value was obtained by
Tessman, Kahn, and Shockley® from the index of
refraction of CuCl, CuBr, and Cul for the wavelength
Ap of the sodium D line. While the values of a obtained
from the 3 compounds agree quite well (1.47,.1.67, and
1.71A3) it is likely that « for infinite wavelength A=
is appreciably smaller than « for A=\p. This trend is
shown by all of the positive ions investigated by
Tessman et al.® However, it seems unlikely that it can
account for all of the discrepancy. Thus for Rbt,
a(\p)—a(w) is 0.182A3. For Catt and Ba*+ the dif-
ference between a(\p) determined by Tessman et al.5
and the largest value of a obtained by the other
authors'™ is 0.59A% and 0.82A% Hence it cannot be
excluded that the difference a(exp)—a(calc) is due to
the inaccuracy of the experimental determination and
the fact that a(exp) pertains to Ap rather than A= o,
Another possible explanation is that part of the dis-
crepancy is due to the use of a single radial wave func-
tion for the 3d electrons of Cu*. This wave function
was obtained by Hartree'® from the Hartree-Fock
method which treats the ten 3d electrons as a single
group. It is possible that in a more accurate treatment
the 3d electrons would fall into two groups, some being
closer to the nucleus than predicted by the Hartree-
Fock function, while the remainder would be more
loosely bound since they are shielded more effectively
from the nucleus. Such a distribution of two 3d groups
could have a lower total energy, because of the presence
of the tightly bound group of electrons, and at the same
time, the distribution could have a larger polarizability
because of the loosely bound electrons, each of which
may give a considerably larger contribution than an elec-
tron which is described by the Hartree-Fock function.

It can be concluded that with the exception of F—
and Cut, the calculated values of «a are in reasonable
agreement with experiment. In 4 out of 9 cases, a(calc)
is essentially within the range of the observed values.
In 3 other cases, a(calc) exceeds a(exp) by a factor of
order 1.5.

The calculations for the helium-like ions will now be



ELECTRONIC POLARIZABILITIES OF IONS

described. For the unperturbed 1s functions we used
the Slater-type functions of Lowdin® which can be
written as follows,

wo=ci1[2Z1%r exp(—Z) 1Hco[ 2223 exp(—Zar)], (70)

where Z; and Z, are two effective values of the atomic
number Z; ¢; and ¢ are coefficients. If there were no
overlap between the two functions in square brackets,
we would have c¢i*+c?=1. In Sec. II, the 1s—p per-
turbed function #';, 01 was obtained for an arbitrary Z
[Eq. (18)]. Therefore, it seems reasonable to use for
the perturbation corresponding to (70) the following
expression,

w1, 0m1=Cc1{ Z1 W[ 14 (Z:/2)r] exp(—Z1)}

Feo{ Z W 14+ (Z5/2)r ] exp(—Za)}.  (71)
Thus the polarizability (in units eg®) is given by
a= (8/3)f MIQM'L o_,lrdf, (16)
0

in which #/o and 'y, o1 are given by Egs. (70) and (71),
respectively.

It may be noted that the expression of Eq. (71) is
not exact, because it assumes that the 1s electrons are
in a superposition of two states in which they‘experience
slightly different potentials. Thus if the energy is Eo,
the potential pertaining to Z; which is implied by Eq.
(71) is

V1= it (2Z1/1‘)+Z12+E0, (72)
while the potential pertaining to Z, is
V2= - (222/7)+Z22+E0, (73)

both in Rydberg units. However, the error made by
this approximation is very small, as was verified by a
calculation for Lit. Thus the exact perturbed function
can be found by solving Eq. (15) numerically by means
of the function P [Eq. (52)7] which can be obtained
directly from the Léwdin function %' according to Eq.
(53). For the case of Li*+ the function %'y, 01 obtained
numerically was found to differ from (71) by less than
6 percent throughout the range of 7, and the resulting
value of a is 0.0306A3% as compared to 0.0316A32 obtained
from (70) and (71). This difference is probably well
within the uncertainty which arises from the inac-
curacy of the Lowdin wave function #'o due to neglect
of the correlation between the 1s electrons. Figure 3
shows the perturbed wave function #'y,¢-1 for Lit, as
calculated from (71), together with the unperturbed 1s
function [Eq. (70)], and the density of induced
moment p;=(8/3)%' 11,0517, i.e., the integrand of «
[see Eq. (16)]. The constants c, and Z; for Lit as
obtained from Léwdin’s® work, are:

Z,=2435, Z,=4.425,
1= 6664/ (2Z1*) = 0877, 2= 2.562/ (2Z2*) =0.138.
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TasLE II. Calculated and experimental values of a for helium
and the helium-like ions. The calculated values were obtained from
the Lowdin wave functions. All values are in units A3,

Ion a(calc) a(exp)
H- 16.1
He 0.236 0.203
Li+ 0.0316 0.025-0.08
Bett 0.0083 0.007-0.04
B3+ 0.00308 0.003-0.02
Cet 0.00139 0.0013-0.012

Table II gives the calculated values of « for helium
and the helium-like ions from H~ to C*". The experi-
mental values are also listed.*=5 It is seen that the cal-
culated values are generally in good agreement with
experiment. This agreement was expected for the
positive ions, since for these ions the 1s electrons have
a relatively strong binding, and hence a should be
insensitive to small inaccuracies of the potential and
of the zero-order Lowdin wave functions, in the same
manner as was discussed above for Na*t, AI**, and Cat*,

IV. QUADRUPOLE POLARIZABILITY

When an ion is placed in the field of an external
charge, the quadrupole part of the field of the charge
induces a quadrupole moment in the charge distribution
of the ion. The quadrupole field is closely connected
with the electric field gradient at the nucleus. If the
external charge is at X=R, the term in the potential
energy is given by

Ve=— (r*/R% (3 cos®¥—1), (79)

in Rydberg units. Equation (74) is valid for r<R. The
field gradient at the nucleus in the X direction is

dEx/dX=—2¢/R%. (75)
The induced quadrupole moment Qnq is given by
Quna= f pina, (3 cost—1)dV, (76)

where dV =volume element, and pinq,, is the density
induced in the ion by the potential V,. It is convenient
to define the quadrupole polarizability as follows,

—é/in
i (77)
6Ex/ aX

The quadrupole polarizability was first discussed by
Mayer and Mayer? in their calculations on the spectral
term defect of the alkalis. A problem related to g was
also treated by Foley, Sternheimer, and Tycko' who
calculated the perturbation of the electric field gradient
at the nucleus produced by the density ping, o due to an
external charge. In view of (76) and (77) o4 is given by

- (R/2) f pa (3 cofo—1)dV.  (78)
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We now obtain an expression for «, similar to Eq.
(50) for the dipole polarizability «. The derivation
follows closely the same lines as for a. The results of
Foley, Sternheimer, and Tycko! will be used. These
authors showed that V, results in an excitation of s
electrons into excited d states, and of p electrons into p
and f states. Similarly the d electrons are excited into
s, d, and g states. The ns—d wave will now be con-
sidered. If the zero-order #s function (times 7) is
denoted by #q, and if %, denotes 7 times the ns—d per-
turbation, then #%; is determined by Eq. (2) in which
H, is now defined as V, and E; is the first-order per-
turbation of the energy due to H;. By subtracting Eq.
(4) from Eq. (2), one obtains

(Ho— Eo)uy= (Ey— H1)uo. (79)

E, is zero for s states. Upon inserting Eq. (11) for #,and
Eq. (74) for H, into (79), one obtains

(HO—E[))%L 0m2= (27!')—%2—%R—3M,07’2 (3 cos?0— 1) . (80)

Here and in the following #,;-; denotes the wave
function for the quadrupole excitation of a state with
azimuthal quantum number / into states with azimuthal
quantum number . Upon inserting (13) into (80), one
obtains

U1, 02= (21!')—%2_%1{_3%,1, 02 (3 cos?— 1), (81)

where the radial function %'y, 052 is determined by

@ 6
(—_+_+ VU—E0>M’,L 02 =2'g7% (82)

art

Here and in the following the subscript notation for
%'y, 15r is the same as for #4,;p. In view of (78) the
contribution to e, from the ns—d wave is given by

© T 2T
a,(ns—d)=4(R%/2) f f f Uoh1, 0272
] 0 0

X (3-cos?0—1)dr sinfdbd e, (83)

where the factor 4 arises from the fact that the per-
turbed density ping,q 1S 2%0%1, 052 for each us electron.
Upon inserting Eqgs. (11) and (81) into (83) and per-
forming the integrations over 8 and ¢, one obtains

ay(ns—d)=(8/5) f oty 0ordr. (84)
0

We will next consider the excitation of p electrons
into p states. For the states with m=0 the perturba-
tion energy E, is given by

0 T 27
T o
0 0 0

X (3 cos?0—1)dr sinfdbd o, (85)

where %@ is the unperturbed #p function as given by
Eq. (20). Upon substituting this expression in (85),
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one obtains
E1= _— (4/5) <f2>an_3, " (86)

where (r%),; is the average value of #? over the radial
function #'o:

= f Wil (87)
0

Upon inserting Egs. (20), (74), and (86) into Eq. (79),
one obtains

43\ (M)
(Ho— Eo)u, O =— (2#)'*—(—) ——tp cosf
5\2/ R®

3\{2 14

—I— (21)’%(5) —R?/t'o[g cosf
9

+ (3 cossﬂ—-g coso) ], (88)

where the angular factor in the square brackets has
been written as the sum of a p and a f function. The p
part contributes to the excited p wave function

#1,1-1© which can be written
U, 110 = (ZT)—%(24/25) %R_au’lv 1-1 COsB, (89)

where the radial function %'y, 151 is determined by the
following equation,

a 2
(—d—2‘+—2-+ Vo—Eo) ' 1o1=2wo(PP—{r*)n1). (90)
72y

The contribution to «, due to the excitation of the
m=0 electrons is given by

0 T 2w
ag® (np—p) = 4(R3/2) f f f Oty 11
0 0 0

X72(3 cos?0— 1)dr sinfdfde (91)
= (32/25)f Mlou’l, 1_,11’2117',
0

where the factor 4 has the same origin as in Eq. (83).
For the #np electrons with m=21, E, is given by

© T 2T
E,= f f f [0V PV (dr sinfdbd o
o Yo Yo

= (2/5)(* )R,

where Eq. (25) for #*V has been used. Upon inserting
Egs. (25), (74), and (92) into Eq. (79), one obtains

3t <7‘2>,,1
(Hy— Eq)uy =+ (27!')_%(—5— —R-s—u’o sinf

(92)

3ty 72
Xexp (:l:lga):l: (ZT)_%(;)EMIOE— % sinf

+ (3 cos? sind— £ sinf) | exp(=ig). (93)
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The square bracket has been written as a sum of p and
f functions. Upon using the p part, one obtains the
following expression for the perturbed p wave,

Uy, 1_,1(:t1) = (ZW)—% (3%/5)R_3M,1, 1-1

Xsind exp(E£ip), (94)

where #'y1.,1 is determined by Eq. (90). The con-
tribution to «, from the four electrons with m==+1 is
given by

) T 27
a2 pp)=s@/D [ [ [
0 0 0

X1, 151F72(3 cos?— 1)dr sinfdfde  (95)
= (16/25)f u’ou’l, 1._,172df.
0

From Egs. (91) and (95) one obtains for the complete
np shell,

aq(np—sp) = (48/25) f Woly a’dr. (96)
0

In order to obtain the terms of o, for the excitation
of np electrons into f states and the excitation of the @
electrons, we make use of the results previously derived!
for the perturbation of the electric field gradient at the
nucleus. This quantity, which will be called A(dEx/9X),
is given by

A(OEx/0X)=¢ f pina, (3 cos9—1)dV.  (97)

Results were obtained for the ratio of —A(dEx/dX) to
the field gradient —2e¢/R? produced by the external
charge. In view of Eq. (97), this ratio which was called
Y« 1s given by

o= (R%/2) f pina, (B cosB—1)dV.  (98)

By comparing (78) with (98), it is seen that «, differs
from ., only by having 72 instead of 7= in the integrand.
Thus the integration over 8 and ¢, and the summation
over the magnetic substates in Eq. (78) give the same
coefficients as for .

The radial wave functions #'y,;,, are determined by
the following equation similar to Eq. (14) of reference
11,

& rE+)
[——-—+ +Vo—Eo |#'1, 150
dr? 72
=uo(r*—{r")nibur),

where (7%),; is given by Eq. (87). Obviously, Egs. (82)
and (90) are special cases of (99). The term (r%),8:
arises from the Eyuo term of Eq. (79) [see Egs. (88)
and (93)7]. For the case /=10’ that solution #’y, ;-; of Eq.
(99) must be chosen which is orthogonal to #,.

(99)
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As is seen from Eqs. (84) and (96), a,(#l—?’) involves
the integral.

Jisr= f u'ow'y, 1vrdr. (100)
0

The coefficients of the J;,; can be obtained from the
expression for y,, as was mentioned above. For this
purpose, we note that vy, also occurs in the calculation
of the quadrupole moment Qjng, ¢ induced in the core
by the nuclear quadrupole moment® Q. v,, is equal to
this induced moment expressed in units of Q. Thus the
coefficients of the J;,; must be proportional to the
coefficients which occur in the expression for Qing, e
as given by Egs. (3) and (7) of reference 20. In fact,
with the present normalization of the radial wave
functions %'y, 15 [Eq. (99)] the coefficients for Qing, g
and for a, turn out to be equal; e.g., the contribution to
Qina @ from ns—d is given by (8/5)QJfc*w sy, gr*dr,
where #'y, ¢ is the appropriate perturbation; the coef-
ficient 8/5 is equal to that which appears in Eq. (84)
for ay(ns—d). Hence the coefficients of the Ji,» can
be obtained directly from Egs. (3) and (7) of reference
20. One finds

8 48 72
aq=Z(—J0-»2) +Z(—JM+—JM)
\s ) T \as T s )L

14

8 16 4
+2 (—J 250t —J o t+—J 2-»4) , (101)
n 5 7 35 nd

where the sums extend over the occupied s, p, and d
shells, respectively. The terms J;,; and Ji,; for np
pertain to the np—p and np— f excitations, respectively.
The terms for #d pertain to the nd—s, nd—d, and nd—g
waves. Equation (101) gives @, in units ¢x® and must
be multiplied by 0.5295=0.0415 to obtain a, in units A8,

For 1s—d, it is easily verified that if %o is a hydro-
genic wave function Eq. (82) has an exact solution
which is given by

'y, 000=(Z7¥/2)P[14%Zr] exp(—Zr).

Upon inserting (17) and (102) into (84) one finds for
both 1s electrons,

a,(1s—d)= (30/Z%)ax®.

(102)

(103)

Thus for the hydrogen atom, a,=15¢5°=0.622A35.

In order to obtain values of «, for helium and the
helium-like ions, the Lowdin® wave functions will again
be used [Eq. (70)]. For the perturbation %y, o2 we will
use an expression similar to Eq. (71) for the 1s—p
perturbation. In view of (102), %'y, 02 will be taken as
follows,

'y, 0s2=1{ (Z1 ¥/ 2)P[1+2Zr] exp(—Z1r)}

+e{ (Z57Y/2)r[1+3Zr ] exp(—Za)}.
2 R. M. Sternheimer, Phys. Rev. 95, 736 (1954).

(104)
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By inserting Egs. (70) and (104) into (84) one obtains
the values of a, listed in Table III.

Besides the calculations for the helium-like ions,
values of o, were obtained for the cases of Na* and Cs*t
by numerical integration of Eq. (99). The results are
listed in Table III. For Nat, the contributions to
a,(=0.058A%) are as follows: 0.013A% from 2s—d,
0.020A% from 2p—p, and 0.025A% from 2p—f. The
unperturbed functions %'y used in these calculations are
the Hartree-Fock functions obtained by Fock and
Petrashen.? As an illustration of the numerical pro-
cedure, in order to obtain the 2p—p wave, (r%)s, is cal-
culated from #’4(2p) and the resulting value 0.78ax? is
inserted in Eq. (99) in which / and 7 are taken as 1.
P(r,) is obtained from the tabulated values of'2 #/q by
means of (53), and #'y,151 is calculated by outward
integration by means of (55) in which

I(r)=u'o(r— (1%)2,).

After a function #'y 1,7 is thus obtained, a suitable
multiple of %/, is subtracted,; so as to make the resulting
function orthogonal to #'o. From Eq. (103) the 1s—d
term for Nat is 0.0415X (30/Z%) =~0.8X10-%A% which
is negligible.

For Cs*™ the wave functions obtained by Hartree'
were used. The terms of «,(=7.62A%) are as follows:
0.90A% for 5s—d, 1.56A% for 5p—p, and 5.16A% for
Sp—f. The largest term is due to the 5p—f waves,
because the overlap of 5p with the 5p—f function
#1153 is greatest for large values of 7 which in turn
make large contributions to Ji,3 through the factor #?
[see Eq. (100)7]. The contribution of the inner shells
is expected to be negligible because of the relatively
small values of (72),; for these shells. This was verified
by calculating the 4d—g wave which gives one of the
largest n=4 terms. The result was a,(4d—g)=0.019A%
which is negligible compared to the #o=35 terms. Note
that 72 enters twice, namely in Eq. (99) for %'y, ;1 and
in the integral Ji, ;. Since (#%),; decreases rapidly as »
is decreased, this explains why only the outermost shell
contributes to o, The situation is similar to that for
the dipole polarizability a. In fact, the relative con-
tribution of the inner shells is even smaller for a, than
for @, because a, depends essentially on [(#*).; > as
compared to the dependence of @ on (#?),;.

Taste III. Calculated values of the quadrupole
polarizability (in units AS).

Ion aq
 H- 71.1

He 0.101

Li+ 4.77X1073
Bet+ 6.40X 10
B3+ 1.40X10™*
Cet 4.31 X105
Nat 0.058

Cs* 7.62

STERNHEIMER

As was first shown by Mayer and Mayer,? the values
of a, enter into the term defect of the energy levels of
the valence electron in the alkalis and the alkali-like
atoms. The term defect AT is defined as the difference
between the energy E of the level and the corresponding
hydrogenic value which is Eg=—R4Z%/n?, where R4
is the value of the Rydberg constant for the atom con-
sidered, Z is the net charge of the ion in whose field the
valence electron moves, and # is the principal quantum
number. Thus

AT=En—E. (105)

As is well known, AT has been interpreted by Born and
Heisenberg! as due to the dipole moment induced in
the electron core by the series electron. However, as
pointed out by Mayer and Mayer,? the induced quad-
rupole moment makes an additional contribution to AT
The dipole part AT, of AT is given by a{r—*) Rydberg,
where a is the polarizability in units ¢g® and () is the
average value of »—* over the valence wave function,
where 7 is in units ag. The quadrupole part AT, of AT
is obtained in the same manner as'? AT4. For the fol-
lowing derivation we assume that all lengths are in cm.
When the valence electron is at a distance 7, the electric
field gradient at the nucleus is 2¢/7%, and hence the
induced quadrupole moment is given by

Qina=2a,/7. (106)

Qina gives rise to the following potential at the position
of the valence electron,

Vo= Qinae/ (27%). (107)
The resulting field is given by
Ey=—93V,/3r=3Qinae/ (2r") =3aee/r",  (108)

where the last equality follows from (106). From (108)
one obtains for the potential due to E,,

5V,=e f Edr' = —ag/ (219, (109)

T

Hence 6V, equals —a,/7® rydbergs, if ¢, and 7 are units
au® and ey, respectively. Thus

AT =afr %)Ra, (110)
where (%) is the average of ¢ over the valence wave
function.

It was shown by Mayer and Mayer? that the observed
AT includes, besides AT; and AT, a term AT pen Which
is due to the penetration of the core by the series elec-
tron. The zero-order (spherical) part of the potential is
larger than 2Z/r when the series electron is inside the
core. AT pen has been calculated by Mayer and Mayer.?
Thus we have

AT—AT pn=Ru[a{r+ar)].  (111)
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Mayer and Mayer? have made a study of the term
defects by means of Eq. (111) in order to obtain values
of a. In this treatment, they used estimates of a, based
on an expansion of the quadrupole perturbation of the
core in terms of eigenfunctions of the unperturbed
problem [similar to Eqgs. (59)-(69) of Sec. IIT]. It was
assumed that all of the excitations have the same
energy denominator, so that the completeness proper-
ties of the eigenfunctions could be used. The expectation
value of 7* for the core electrons which enters into the
resulting expression for @, was not calculated directly,
but was estimated from the values of {#?),;. The present
values of a, lead to a quadrupole term AT, of the order
of twice as large as that obtained by Mayer and Mayer.?
It therefore seems worth while to repeat their calcula-
tions using the values of o, of Table ITI. The discrepancy
of the a, is probably due in part to the approximations
made by Mayer and Mayer.? On the other hand, the
present values of o, are subject to uncertainties, because
aq is rather sensitive to the zero-order wave functions,
since it depends on the external part of the ion core
through the factor 72 in J;, ;. However, this reservation
probably does not apply to the «, for Bet+, B3+ and
C** because of the large binding of the 1s electrons for
these ions.

Following Mayer and Mayer,? Eq. (111) will be
written as follows,

AT—ATWn=RAao<7—4>=RAva f_4>,
where ap and C, are constants; in view of (111), C, is
given by

Co=14ar=)/(alr™)).

In order to calculate C,, (r*) is obtained from the
formula of Waller® and (r~®) is obtained from the work
of Van Vleck.” For convenience the values of {r~)/{r™*)
will be listed here; they are 0.22272, 0.27122, 0.29122
for 3d, 4d, 3d, respectively; and 0.020822, 0.026722
0.029522 for 4f, 5f, 6f, respectively. As has been men-
tioned previously by several authors,! 2 (r—%)/(r~*) and
hence C,—1 is approximately constant within a given
series, but is considerably smaller for #f than for #d. For
the p electrons (r—%) diverges so that the present treat-
ment is inapplicable.? C, is obtained from the above
(r=8)/(r*) together with values of «, obtained from
Table III and of « from Tables I and II. Note that «,
and o must be expressed in units eg® and ag?, respec-
tiively, for use in Eq. (112). The resulting values of C,
are listed in Table IV. The third column in this table
lists the values of o as obtained by Mayer and Mayer;
from AT—ATpen. The last column gives the resulting
dipole polarizability a=ay/C,. By comparing Table IV
with the results of Mayer and Mayer,? it is seen that
the present values of C, are appreciably larger. As a

(112)

21, Waller, Z. Phys. 38, 635 (1926).

2 J. H. Van Vleck, Proc. Roy. Soc. (London) A143, 679 (1934).
The values of (1/7%) for nd states as given in this paper are too
large by a factor of 10.

(111a)
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TaBre IV. Values of the polarizability a as obtained from
spectral term defects. The second column gives the state of the
valence electron in the field of the ion. The values of the constant
ap were calculated by Mayer and Mayer.2 C, is the factor which
corrects for the quadrupole polarizability. « and ao are in units A3,

Ion State ay Cq @
Li* 3d 0.0258 1.12 0.0230
4d 0.0273 1.14 0.0239
5d 0.005 1.16 0.0043
Bet+ 3d 0.00841 1.24 0.00678
44 0.00746 1.30 0.00574
S5d 0.00696 1.32 0.00527
B3+ 3d 0.00361 1.32 0.00273
4d 0.00405 1.40 0.00289
5d 0.00421 1.43 0.00294
Ct+ 3d 0.00185 1.40 0.00132
44 0.00193 1.48 0.00130
5d 0.00198 1.52 0.00130
Nat 3d 0.184 1.32 0.139
4d 0.192 1.39 0.138
5d ) 0.194 1.42 0.137
Cst 4f 2.58 1.11 2.32
Sf 2.61 1.14 2.29
of 2.56 1.16 2.21

result, the values of a of Table VI are about 10-20
percent smaller than those given in reference 2.

In Table IV, values are given only for the d series,
except for Cs, where the d levels are too strongly pene-
trating so that the f series must be used to calculate a.
The “best” values of « as obtained by averaging the
values® of Table IV are (in units A3):

a(Li¥)=0.0235, a(BetH)=0.0059, a(B*")=0.0029,
a(C+*)=0.0013, «(Na+)=0.138, and «(Cs¥)=2.27.

It is of interest that all of these values are somewhat
smaller than those calculated from the perturbed wave
functions, as was expected from the discussion of Sec.
I11.

V. ELECTRIC FIELD AT THE NUCLEUS

It was pointed out by Foley? that the electric field
at the nucleus of an ion in the presence of an external
electric field is known and can therefore be used as an
additional test of the perturbed wave functions #;.
Taking first the example of a neutral atom, the total
electric field at the nucleus E:(0) must be zero since
the nucleus does not move. This means that the induced
density must give rise to a field at the nucleus E;,4(0)
which just cancels the external field. In the present
discussion it is assumed that the external field is weak
enough so that it does not cause ionization; this, of
course, is implied in the assumption that %;<<#%, so that
first-order perturbation theory can be used. The external
field will again be considered as due to a unit positive
external charge 4-e¢ at a distance X=R from the

2 The 5d level of Li will be excluded because the Li #nd series is
strongly perturbed starting with 5d, as can be seen from the fact
that for 64—9d, Eg—E is negative, i.e., the valence electron is
bound less strongly than for a hydrogenic level [see R. F. Bacher
and S. Goudsmit, Afomic Energy States (McGraw-Hill Book

Company, Inc., New York, 1932), first edition, p. 265].
2 Professor H. M. Foley (private communication).
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nucleus. For an ion of net charge ge, Etot, x(0) must be
—qe/(ZR?) since the force on the nucleus in the X
direction is —qe?/R2 Thus the field due to the induced
density is given by

qe

e e q
Bing x(0)= ———+—=— 1—-), (113)
ZR? R?* R? Z

where the term ¢/R? in the first equality is minus the
external field. By calculating Eing, x(0) from the per-
turbed wave functions #; and comparing with Eq.
(113) one obtains an additional check on the #;. It may
be noted that the preceding considerations can also be
used for the total force on the electrons in the presence
of an external field. Since the acceleration of the elec-
trons is the same as that of the nucleus, the force must
be smaller by a factor of order m/M, where m and M
are the mass of the electron and of the proton, respec-
tively.?® In the present approximation this means that
the total force on the electrons must be zero both for
neutral atoms and ions, i.e., the force due to the induced
distribution cancels the effect of the external field e/R2.

If Eq. (113) is satisfied, then it follows that the total
force Fx on the electrons is zero, so that the condition
Fx=0 does not lead to a further test of the perturbed
wave functions #;. In order to prove this result, we note
that Eing, x(0) is given by

Eing, x(0)= efpi“dr 2 cosfdV, (114)

where ping is the electron density induced by the field
¢/R? of the external charge 4¢ at X=R. The force on
the electrons Fx consists of two parts: (1) the force
Fext, x due to the external charge which is

Fext,X= (Z“q)ez/Rz, (115)

since there are Z—q electrons; (2) the force Fing, x due
to the electric field of the nucleus acting on pinq. Since
the component of electric field along X is Ze cosf/7?,
Fing, x 1s given by

Find, x= ~—-Zez‘fpind?’_2 cosfdV = —ZeEi,.d, X(O), (116)

where the last equality follows from Eq. (114). Thus in
order that Fx=0, we must have

Fext, x+Fing, x
q\ e
— ——Ze[Eind, x(0)— (1—)—] ~0,
Z/ R?

which leads to the condition of Eq. (113) for Eiag, x(0).
In order to obtain an expression for Ei. x(0) in

(117)

25 If the mass of the electrons is not neglected, —ge/ZR? in Eq.
(113) is replaced by — (g¢/ZR%)(1—M,/M;), where M ,=mass of
all electrons and M¢=mass of ion. The force on the electrons is
then Fx= — (ge?/R2) (M ./M;).

STERNHEIMER

terms of the %o and #,, we note that the induced dipole
moment is given by

ae/R2=efpindr cosfdV. (118)

Since (114) and (118) involve the same angular factor,
the integration over 6 and ¢, and the summation over
the magnetic substates give the same coefficients as for
a, and hence Einq,x(0) is given by the following ex-
pression similar to Egs. (50) and (51),

8
Z(_Kﬂ—ﬂ)
n 3 ns

/8 16
+Z(—K 1—>0+—-K1—>2)
w \3 3

Eing, x(0)=

€
R

np

16
+2 (?K2->1+8K2->3)

nd
32
2 (3Kt —Ke) | 119
n nf
where K,y is defined by

K= f wow's, 1 pr2dr. (120)
0

" The sums of Eq. (119) extend over the filled s, p, d, and

f shells. Before proceeding to the calculations for the
helium-like ions by means of the Léwdin wave functions,
we note the result of Eq. (119) for the 1s electrons when
the hydrogenic wave functions of Eqs. (17) and (18)
are used. If one considers an ion with a single 1s electron
(e.g., He*, Li**, etc.) one obtains for the field due to
Pina by substituting (17) and (18) into (119):

Eina, x(0)= (4/3) (¢/R)Kon=e/(ZR?). (121)
This agrees with Eq. (113) since ¢g=Z—1 when only
one 1s electron is present.

In obtaining Ejnq, x(0) for the helium-like ions using
the Lowdin® wave functions, Ko,1 [Eq. (120)] was
evaluated using Eq. (70) for #'¢ and Eq. (71) for
#'1,0»1. The results are given in the second column of
Table V. The values listed are Eing, x(0)/(e/R? which
will be denoted by Eing,x(0). Thus Eing, x(0) was cal-
culated from

E-ind, X (O) = (8/3)f M’oull, 017 "2dr. (1 19a)
0

The third column gives the actual values of Einq, x(0),
i.e., 1—q/Z [see Eq. (113)7]. The fourth column gives
the ratio p of the calculated to the actual values. It is
seen that p is always larger than 1, as was expected
from the similar result for the polarizability . Thus
since the calculated wave functions give too little
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binding, they are expected to give values for the induced
density which are too large, and hence an overestimate
of Eina, x(0). p decreases with increasing state of ioniza-
tion in passing from H~ to C*. This result can be
explained as follows. As the field due to the nucleus
becomes relatively more important in comparison with
the repulsion between the electrons, the wave function
becomes less sensitive to small inaccuracies of the
binding, and hence the calculated Eing, x(0) should
become closer to the actual value.

Besides the calculations for the helium-like ions,
Eing, x(0) was also calculated numerically from the
perturbed wave functions #'y, ;5 for the cases of F,
Nat and APt The integrals involved in (120) were
carried out numerically, using the functions %'y, 150
obtained in Sec. III. However, the 2p—d wave functions
#'1,12 for Nat and APt were recalculated by outward
integration starting with a power series near r=0, so
that accurate values could be obtained near the nucleus
which is the region of importance for Einq, x(0), because
of the 1/72 factor in Kj.,s. This recalculation was neces-
sary because the function #'y,1-2 determined in Sec. III
for the calculation of & was obtained by inward integra-
tion starting from a large . This procedure does not
give reliable values of #y,1-2 near the nucleus. For F-,
the function #'y, 12 determined in Sec. III to calculate
a had been obtained by outward integration from the
nucleus so that a recalculation was not necessary. The
resulting values of Eing, x(0) are listed in Table V. The
contributions to Eing,x(0) from 1s—p, 2s—p, 2p—s,
and 2p—d are as follows for F~: 0.23, 1.42, —1.29, and
1.91, respectively. For Nat the contributions in the
same order are: 0.19, 1.06, —0.95, and 1.05. For Al**
the corresponding terms are 0.16, 0.82, —0.74, and 0.80.
We note that for the 1s shells a numerical calculation
was not carried out, since the term of Ei,q, x(0) is given
to a good approximation by 2/Z.: [see Eq. (121)]
where Z is an effective Z obtained by subtracting
from the atomic number a correction for shielding of
0.30 as obtained from Slater’s?®® screening constants.
We note that the 2s—p and 2p—s terms nearly cancel
each other, as was expected in view of the behavior of
the wave functions %'y, 0-1 and %'y, 10 and of the cor-
responding terms for a. The values of p again decrease
with increasing binding in going from F~ to AlP*+. The
large value of p for F~ arises for the same reason as the
similar discrepancy for a (see Table I), namely the use
of Hartree wave functions (without exchange) which
give considerably too little binding for 2p. We note,
however, that the discrepancy p=2.05 is less than the
corresponding discrepancy for «, presumably because
the wave functions are less sensitive to binding near
=0 than in the region of large » which is of importance
for a.

The values of p are of interest in connection with
previous calculations of the electric field gradient at

26 J, C. Slater, Phys. Rev. 36, 57 (1930).
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TaBLE V. Values of_the field at the nucleus due to the induced
charge distribution. Finq,x(0) is the induced field (in units of
¢/R?) as obtained from wave function calculations. 1—g¢/Z is the
actual value of Eing, x(0), and p is the ratio of the calculated to
the actual value.

Ton Eina,x(0)

1—¢/Z I3
H- 3.81 2 1.91
He 1.32 1 1.32
Lit 0.792 0.667 1.19
Bet+ 0.566 0.5 1.13
B3+ 0.441 0.4 1.10
Cet 0.361 0.333 1.08
F- 2.27 1.11 2.05
Na* 1.35 0.909 1.49
ABF 1.04 0.769 1.35

the nucleus due to the charge distribution induced in
the core by an external charge or valence electron.!'?
This effect is of importance in the determination of
nuclear quadrupole moments, since it enters into the
nuclear quadrupole coupling g. An estimate of the
reliability of this calculated correction Aq to ¢ can be
obtained from the accuracy of Einqg x(0), i.e., from the
values of p. The calculation of Eing, x(0) should be
better suited for this estimate than the calculated a,
since the integrand of K.y for Einq, x(0) has a factor
1/72 and involves therefore the region near the nucleus
in a manner similar to Aq [=A(0Ex/3X), see Eq. (97)]
which involves 1/7%, and in contrast to a for which the
integrand of I;y has a factor 7 and depends essentially
on the behavior of the wave functions at large ». We
may conclude that the calculated Ag is probably
overestimated by ~10-30 percent, except possibly for
negative ions, where the overestimate may be larger if
the calculations are based on Hartree wave functions
(without exchange). This estimate of the accuracy of
Agq is actually not very different from that which would
have been obtained from a comparison of the calculated
values of a with the experimental values. However, it
should be noted that the values of the overestimate
given above neglect two differences between Ag and
Eina, x(0). Eing, x(0) was calculated for the field of an
external charge, whereas Aq is determined by the field
of the valence electron which penetrates the core during
an appreciable part of the time. This fact reduces Ag
considerably and may tend to make the error for Ag
smaller than that for Einq x(0) since the region near
the nucleus (which is insensitive to binding) becomes
more emphasized. The second difference is that Ag
involves a different perturbation than Ej,g, x(0), namely
a perturbation in which / changes by 0 or 2 units,
whereas Eing x(0) involves Al=-1. The perturbation
which gives rise to Eing, x(0) is probably more related
to the modes of excitation with Al=-2 (shielding
modes) for Ag than to those with Al=0 (radial or anti-
shielding modes).? .

It seems of interest to calculate Eing, x(0) from the
Thomas-Fermi model, in order to compare with the
wave function results. The calculation follows the same
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lines as the Thomas-Fermi calculation?” of Ag. The
momentum #p of an electron in the presence of an
external charge 4-¢ at X=R is given by

P Zxe* e cosf

2m r R?

) (122)

where x is the Thomas-Fermi function. If po denotes the
momentum in the absence of the external charge, and
Ap=p—po, we have

poAp=me*r cosf/R?,

po= 2mZxe*/r)}.

(123)
(124)

The change of density Ap corresponding to Ap is given

by

Ap=8mp?Ap/IB. (125)

The field at the nucleus produced by Ap is
Eing, x(0)=2me f f Ap cosbdr sinfdf.  (126)
o Yo

Upon inserting Eqgs. (123), (124), and (125) into (126)
and integrating over 6 one obtains

e [32m223miZ3e?
Eing, x(0)= —[~—*
R? 3n

Upon using the Thomas-Fermi variable

x=27% (3w /4) tan,
one finds

Eing, x(0)= (¢/2R?) f °°(xx)*dx- (128)

The integral over (xx)* diverges logarithmically at the
upper limit, because x falls off only as 1/a? for large «,
instead of exponentially, as required by the wave
functions. This result is associated with the inadequacy
of the statistical model for large x. Thus we can conclude
that the Thomas-Fermi model (without exchange)
cannot be used to discuss the distribution induced by
an external charge.?

27 R. M. Sternheimer, Phys. Rev. 80, 102 (1950).

28 The same integral over (xx)?! also occurs in the expression
for the quadrupole moment induced by the nuclear quadrupole
moment Q. The total induced quadrupole moment is given by

Oind, 0z = (3/10)Q fo * (xa)Hdz, (1282)

and its sign is such as to shield the nuclear Q. [Note that the
factor 0.2998 in Eq. (8) of reference 27 should be 3/10.] The
divergence of the integral for large x does not affect the calcu-
lation of Ag for atomic ground states since Ag depends only on
the values of (xx)* near the nucleus [see reference 20 and dis-
cussion at the end of this section]. From Eq. (128a) one can
also conclude that the electric field gradient at the nucleus

fo i (Xr)%dr]. (127)
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In contrast to the function x, the Thomas-Fermi-
Dirac potential xexsn Which includes exchange vanishes
for large . Since the difficulties encountered above are
associated with this region, it appears possible that the
Thomas-Fermi-Dirac potential will give reasonable
results for Eing,«(0). A derivation of Eing, x(0) using the
potential xexon Will now be given.

The maximum momentum po in the Thomas-Fermi-
Dirac model is determined by®

Po 2¢’po

2m

+e(Eo— Vo) =0, (129)

where E, is the maximum energy of the electrons, and
Vo is the electrostatic potential; the second term
—2é*po/h takes into account the exchange. If Vy is

varied by an amount
AV =er cosf/R?, (130)

the resulting change of p, called Ap is determined by

Ap  282Ap
i i SN (131)
m h
which gives
Po 2¢?
Ap=eAV / (——— (132)
The solution of Eq. (129) for p is given by?
2¢'m [ 4e'm?
= +[ - —{-Zem(Vo—Eo)] (133)

The change of the density Ap is again given by Eq.
(125). Upon using the definition of xexch given by Slater
and Krutter,®

Zxoxent/r=Vo— Eo+2mé’/ 12, (134)
$o can be written as follows,
po=4(4n%/3) me’ et (Xexan/®)¥],  (135)

where €=0.2118Z-% and «x is the Thomas-Fermi variable
defined after Eq. (127). We also have

po 26 me2 Xexch
—_— (136)
produced by an external charge is changed by an amount
0Ex\ 2e
A( = ) R3[10 S ey dx] (128b)

due to the perturbation of the core by the external change [R. M.
Sternheimer and H. M. Foley, Phys. Rev. 92, 1460 (1953)]. Thus
the Thomas-Fermi model is inadequate both for the electric field
a}r:d the electric field gradient at the nucleus due to an external
charge.

2 ]’ C. Slater and H. M. Krutter, Phys. Rev. 47, 559 (1935).
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The rest of the derivation is identical with that given
in Eqgs. (126)-(129) for the Thomas-Fermi model.
From Egs. (132), (135), and (136), one obtains

Eina x(0) = (¢/2R?) f Lot (oman/2) T

X (Xexen/x) Hxdz, (137)
where x, is the value of x beyond which Xexch=0.
Equation (137) differs from (128) only through the
replacement of x by Xexch and the presence of e.

Values of xexen throughout the range of Z have been
obtained by Metropolis and Reitz.3* We have carried
out calculations of Eipg x(0) using the tabulated
Xexch for Z=18 and 57, to correspond approximately to
the cases of Cl and Cs, respectively. For each value of Z,
Metropolis and Reitz* have calculated several functions
Xexen Which are obtained by using different slopes at
x=0 and lead to different values of x,. Solutions with
a relatively large downward slope at x=0 become zero
at a finite x=1x9 and correspond to positive ions. Solu-
tions with a less negative slope at x=0 go through a
minimum at large x and correspond to neutral atoms;
they are cut off at the value of x=wx, for which

dXexch) (Xexch)
dx T=2x0 X = xo.

Equation (137) was evaluated for nine cases. The
results are given in Table VI. The first two columns list
the value of Z and the number labeling the function
Xexch as given by Metropolis and Reitz® (e.g., Z=18,
1is “case 1”” for Z=18 in their paper). The third column
lists the values of #x¢; the unit of x is 0.338ax for Z=18
and 0.230ag for Z=357. The fourth column gives the
net charge Z;(=¢) of the ion if the solution is ionic; the
other cases where no value is listed correspond to
neutral atoms of various radii. The next column gives
Ena, x(0) which is one-half the integral of Eq. (137),
while the last column lists the values of Eing, x(0)/o.
It may be noted that for,ionic solutions where: Xexch
becomes zero at %o, the integrand of (137) has a singu-
larity at x=wxo. However, since the integrand goes as
(x0—x)~% near xy, the integral is finite, and in fact, the
region near o makes only a very small contribution.

It is seen that the calculated Eing, x(0) are consider-
ably too large, since the actual value is 1 for neutral
atoms and 1—Z,/Z for ions [see Eq. (113)]. Except
for Z=57, case 7, the disagreement is by a factor larger
than 2 with values ranging up to 4.6 for Z=37, case 3.
These values of p may be compared with those obtained
from the wave function calculations (see Table V) which
are generally in the range 1-1.5. It may be noted that
the values of Einq, x (0)/%0 are nearly constant. Thus the
Thomas-Fermi-Dirac values of Eing, x(0) depend pri-
marily on the radius «,. For ions the general decrease

3 N. Metropolis and J. R. Reitz, J. Chem. Phys. 19, 555 (1951).
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TasLE VI. Values of Eing x(0) from the Thomas-
Fermi-Dirac model.

A Case %o Z; Eing,x(0)  Eina,x(0)/20
18 1 6.00 3.047 2.19 0.365
18 2 9.20 0.976 3.99 0.434
18 3 7.25 2.98 0.411
18 4 6.66 2.73 0.409
18 5 5.46 2.22 0.406
57 1 5.17 14.80 1.59 0.306
57 3 12.80 2.303 441 0.345
57 4 9.66 3.50 - 0.362
57 7 3.81 1.47 0.385

of Eina, x(0) with increasing Z; and decreasing xo is in
the right direction, but the values of Ejnq, x(0) for the
small Z; of interest are too large. For neutral atoms
one could obtain a value of Eiq x(0) close to 1 by
assuming a small value for the radius x,. However, as
is shown by the example of Z=57, case 7, the required
%o would be unreasonably small, since xo=3.81 for
7 =357, case 7, corresponds to a radius of 3.810.230
=0.88ag, which is considerably smaller than the radius
of the outermost maximum of the 5p distribution which
occurs at r=1.9ax.

It should be emphasized that the preceding discussion
of the inadequacy of the statistical model for the field
at the nucleus produced by an external charge does not
apply to the correction Ag to the quadrupole coupling
for atomic states. Agq can be regarded as due to the
interaction of the valence electron with the quadrupole
moment Qing,@ induced in the core by the nuclear Q.
The Thomas-Fermi expression for the density of induced
moment is?+28

Qina, @dr= (3/10)Q (xx)}(x/7)dr.

For the atomic ground states and first excited states the
statistical model can be used to calculate the shielding
because the result depends only on the values of (xx)?
near the nucleus, by virtue of the penetration of the
valence electron. Thus in the expression?” for Ag, (xx)*
is essentially multiplied by %, where v is 7 times the
valence wave function. As a result of the exponential
decrease of #* at large 7, the contribution of this region
to Aq becomes negligible. As was shown in reference 20,
the Thomas-Fermi values of Ag divided by 1.5 give a
good estimate of the contribution of the shielding modes
of excitation of the core to the quadrupole coupling.
The factor 1.5 by which the Thomas-Fermi model over-
estimates these shielding terms arises primarily because
Qing, @ 1s too large near the nucleus.

In the same manner as in the derivation of (137),
one can show that the density of induced moment ac-
cording to the Thomas-Fermi-Dirac model is given by

Qing, od7 = (3/10)Q{ [e (Xexen/x)*
X (Xexon/%) "2} (/7)dr.

The previous calculations® of Ag from the statistical

(138)

(139)
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model were carried out using the Thomas-Fermi ex-
pression (138). However, the values given by (139)
differ from (138) by less than 12 percent (for Z=18)
in the region of importance near the nucleus (i.e., for
< 2). Thus at x=2, the curly bracket of (139) which
replaces (xx)*in Eq. (138) has the value 0.779 for Z=18
and 0.732 for Z=57, as compared to (xx)*=0.698.

STERNHEIMER

These differences are even smaller for £<2 and vanish
as ¥—0. Hence the previous conclusions® about the
Thomas-Fermi values of Ag are essentially unaffected
by the inclusion of exchange in the statistical model.

I would like to thank Professor H. M. Foley for
suggesting this problem and for several helpful and
stimulating discussions.
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The rotational transitions for which J=0—1 were studied by the molecular beam electric resonance
method for the first three vibrational states, v=0, 1, 2, of Rb8CI35 and the ground vibrational state, =0,

of Rb87CI3%, The molecular constants are:

Rb35CR35 RBI7CI35

Yo1 (Mc/sec) 2627.394 4:0.002 2609.779-0.003

—Yu=a. (Mc/sec) 13.601 =0.005 13.4644-0.005

Ya=v. (Mc/sec) 0.021 +0.002 0.0214-0.002

B. (Mc/sec) 2627.414 40.010

7e (A) 2.786704-0.00006

The quadrupole (egQ) and spin-rotation (¢) interaction constants of Rb#Cl% are:
=0 =1 =2

(egQ)rb (Mc/sec) —52.6754:0.005 —52.306£0.030 —51.9034-0.040
(egQ)c1 (Mc/sec) + 0.774+0.009 + 0.61240.013 + 0.4704-0.017
crob (kc/sec) + 03 =+0.3
car (ke/sec) 0.0 =+038

For the =0 state of Rb87CI?5, (egQ) rp= —25.485+0.006 Mc/sec. The ratio of the Rb quadrupole moments
is Qss/Qsr=2.0669-£0.0005. The mass ratio of the Rb isotopes is Mgs/ Mg =0.9770163+0.0000045.

I. INTRODUCTION

HROUGH their studies of KCl and KBr Carlson,
Fabricand, Lee, and Rabi'? initiated an investiga-
tion by the molecular beam electric resonance method!-
of the rotational spectra of the alkali halide molecules
in their ground ¥ electronic states. We have continued
this work by studying the J=0—1 transitions of
Rb85CI® in its three lowest vibrational states and of
RDb#CI% in its ground vibrational state.

We selected RbCl in order to clarify further the
nature of the Cl quadrupole interaction which shows
unusual variations with vibration in KCL? Also, at the
outset of our work, the mass ratio of the Rb isotopes
had not been determined with the accuracy made
possible by the electric resonance method. Since then

* This research was supported in part by the Office of Naval
Research and by the Army Signal Corps.

1 On leave of absence from Syracuse University, Syracuse,
New York, 1952-1953.

I Now at RCA Laboratories, Princeton, New Jersey.
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Honig, Mandel, and Townes, using microwave absorp-
tion measurements of the rotational spectra of RbBr
and RbI, have obtained this mass ratio with an accuracy
equal to ours,* while Collins, Johnson, and Nier have
made mass spectrometric measurements which give a
mass ratio of much greater accuracy.®

The hyperfine structure of the spectra yielded the
Rb and Cl quadrupole and spin-rotation interaction
constants, the ratio of the quadrupole moments of the
Rb isotopes and the frequencies of the unperturbed
rotational lines. The last-named frequencies gave the
first three rotational constants of the molecules, the
equilibrium internuclear distance and the mass ratio
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