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&2. It is impossible to con6rm this from the structure
observed in any line.

Further work is being done on samples enriched in the
isotopes 174 and 176 in order to determine the shifts
174—176 and 176—178.The interference systems on hand

at this writing do not warrant even qualitative con-
clusions, however.

Professor W. W. Watson provided assistance and
encouragement throughout this work, and this is
gratefully acknowledged.
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The electronic polarizability u has been calculated for several ions by obtaining the perturbation of the
wave functions by an external 6eld from a numerical solution of the differential equation satisfied by the
perturbation. For the helium-like ions an analytic solution was obtained by using the wave functions of
Lowdin. The calculated values of cx are, in general, between 1 and 1.5 times the observed values. For several
ions values have been calculated for the quadrupole polarizability which measures the quadrupole moment
induced in the ion by an external charge. The eftect of the dipole moment induced in the ion on the electric
6eld at the nucleus is discussed.

L INTRODUCTION

'HE electronic polarizability of ions has been
determined by a number of diferent methods.

The polarizability can be obtained from the index of
refraction of the ion in solutions or in crystals. An inde-
pendent method consists in a consideration of the
Rydberg-Ritz correction for the spectral series of atoms.
Following Born and Heisenberg, ' the deviation of the
spectral terms of the alkalis from hydrogenic levels is
attributed to the polarization of the core by the valence
electron. This procedure to obtain the polarizability
was also used by Mayer and Mayer. ' The determination
of the polarizability from the index of refraction of
solutions was first carried out by Heydweiller' and by
Fajans and Joos.' While the present work was in

progress, there appeared a paper by Tessman, Kahn,
and Shockleys who made a determination of the ionic
polarizabilities from the experimental refraction data
of crystals containing the ions considered.

In contrast to the variety of experimental deter-
minations of the polarizability n, there exist compara-
tively few theoretical treatments which attempt to
explain the values of o. in terms of the electronic

*Work done under the auspices of the U. S. Atomic Energy
Commission.

t A preliminary account of this work was presented at the
April 29-May 1, 1954 Meeting of the American Physical Society
in Washington, D. C. LPhys. Rev. 95, 594 (1954)j.

r M. Born and W. Heisenberg, Z. Physik 23, 388 (1924).
s J. E. Mayer and M. G. Mayer, Phys. Rev. 43, 605 (1933).
e A. Heydweiller, Physik. Z. 26, 526 (1925).' K. Fajans and G. Joos, Z. Physik. 23, 1 (1924).
e Tessman, Kahn, and Shockley, Phys. Rev. 92, 890 (1953).' An extensive discussion of the work on polarizabilities is given

by J.H. Van Vleck, The Theory of E/ectric and Magnetic Suscepti-
bzli4ees (Oxford University Press, London, 1932), erst edition,
Chap. VIII.

structure of the ion. Pauling~ derived-an analytic ex-
pression for o, for electrons which move in a pure
Coulomb field (hydrogenic wave functions). He used
this expression with appropriate screening constants
for the helium-like ions and, obtained good agreement
with the observed values of n. This method is not
expected to give accurate results for medium and heavy
ions since the electronic wave functions are very dif-
ferent from hydrogenic wave functions in this case.
Buckingham obtained an expression relating n to the
average values of r' for the various electron shells,
where r is the distance between the nucleus and an
electron of the core. This expression was derived from a
variational calculation in which the perturbed wave
function for each shell was taken as a preassigned func-
tion times a parameter which was varied to minimize
the energy. Although di6erent parameters were used
for the diferent subshells, this procedure probably does
not always give a good approximation to the actual
perturbed function, because only a single parameter for
each subshell is available in the variational calculation.

In the present paper, values of n are obtained for
nine ions from F to- Cs+ by means of a numerical
solution of the differential equation for the perturbation
of the electronic wave functions for the various shells.
For the unperturbed wave functions, the Hartree-Fock
functions of the ions are used. For the helium-like ions
an approximate analytic solution for the perturbation
based on the wave functions of Lowdin' will be em-

ployed. The calculated values of n lie, in general,
between 1 and 1.5 times the experimental values. Thus
the calculations are in reasonable agreement with ex-

r L. Pauling, Proc. Roy. Soc. (London) A114, 181 1927).
s R. A. Buckingham, Proc. Roy. Soc. (London) A16, 94 (1935).
e P. O. Lowdin, Phys. Rev. 90, 120 (1953).
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periment. The tendency for the calculated values to be
somewhat too large is probably due to the fact that
the Hartree-Fock wave functions give less binding and
are more external than the actual wave functions. An
increase of the binding would be accompanied by a
decrease of n. The agreement of the present values of 0.
with experiment is on the whole better than that ob-
tained by Buckingham. '

Besides the dipole polarizability o,, it is of interest to
consider the quadrupole polarizability which will be
defined as the ratio of the quadrupole moment induced
in the ion by the field of an external charge to the Geld
gradient at the nucleus produced by the charge. The
quadrupole polarizability o., was first introduced by
Mayer and Mayer. ' In the present paper, values of n,
have been calculated analytically for the helium-like
ions and numerically for the Na+ and Cs+ ions. The
last section of this paper gives a discussion of the electric
field at the nucleus due to the dipole moment induced
in the ion by the field of an external charge.

II. EXPRESSION FOR THE POLARIZABILITY

Assume that the electric field is produced by a unit
charge +e at a large distance R from the nucleus along
the positive Xaxis. If R is in units of the Bohr radius uH,
the dipole part of the potential energy (in Rydberg
units) is given by

Hi= —(2/R') r cos8,

where 8 is the angle between the X axis and the radius
vector (of length r) from the nucleus to an electron in
the core. The unperturbed wave function times r for a
core electron will be denoted by Np. I-et I& denote r
times the perturbation of the wave function due to H~,
and let E& by the first-order perturbation of the energy.
Hp and Ep will denote the unperturbed Hamiltonian and
energy, respectively. The Schrodinger equation to the
first order in H& is given by

Np will be written

Np
——(2or) '*u'pOi exp(t'tot p),

where I p is the radial wave function (times r), i=azi-
muthal quantum number, m =magnetic quantum
number, Ot is the angular eigenfunction with the
choice of phases as given in Condon and Shortley. "
up' and Ot~ are normalized according to

tt pod&=
~

0't ~' sin8d8=1.

The first-order perturbation of the density L(ttp+Qi)'j
is given by 2NpQ] for each core electron. Hence, the
induced dipole moment, which will be called p;„q, x is
given by

p 7I p2 tl'

P;~a, x= 2e Q I
— (uoli)ntmr

atm Jp Jp ao
Xcos8dr sin8d8dy, (9)

where e is the principal quantum number, and the
sum extends over all electrons of the core. Since the
density 2Npg& depends on e, l, and m, it has been labeled
2(Nptti) „t~. The field Ex is —e/Ã, so that the polariza-
bility is given by

ct=P;,q, ~/8~=2K' P (Npgi)„t r
atm ~o Ito 40

&(cos8dr sin8d8dq. (10)

We will now obtain an expression for n in terms of
the radial functions by integrating over 8 and y, and
performing the sum over the magnetic quantum
numbers m for each shell.

The contribution of the s shells will be considered
first. Since O~p = 2 &, ttp can be written

Ip
——' (2or)

—'*2—'*u'p.

(Hp+Hi) (ttp+tti) = (Ep+Ei) (Np+tti). (2) Thus the right hand side of (5) becomes in view of (1),
E& is given by

2K

Hqlp2dr sin9d8d p,

—Hittp= (2or) '2lR 'tt'pr cos8.

If Rydberg units are used, Hp is given by

(12)

where q is the azimuthal angle, Since H~ is linear in
cos8 while Np' is an even function of cose, the integral
over 8 vanishes, so that E&=0. By subtracting from
Eq. (2) the unperturbed Schrodinger equation,

Hp —V'+ Vp, ——

where Vp is the unperturbed potential in which the
electron moves. Equation (12) shows that Ni is a P
wave. n~ can be written

Hplp= Epup,

one obtains the equation for Nj ..

(Hp —Ep) Qi = —HiQp.

In the following, Np will be normalized according to

p2m'

Np2dr sin8dtIdq =1.
Jo Jp J,

(S)

Qi= (2or) 12' Q i, p~i cosH,

where u y, p y is the radial function which is determined
by

( d' 2
+—+&o—&o )I'ioi=to'or,

dr' r' )
t

' E. U. Condon and G. H. Shortley, The Theory of,. Atomic
SPoctra (Macmillan Company, New York, 1935), p. 52.
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Here and in the following the notation I'i, ~ ~ denotes
the radial function for the excitation of a state with
azimuthal quantum number / into states with azimuthal
quantum number i'. Upon inserting Kqs. (11) and (14)
into Eq. (10) one obtains for the contribution of both
ms electrons to n.'

with azimuthal quantum number E and magnetic
quantum number m into states with azimuthal quantum
number l'. The details of the numerical solution of Eq.
(23) are given in Sec. III. Upon inserting Eqs. (20) and
(22) into (10), one obtains for the contribution of both
m=0 electrons to n,

p27l

n(ls —+p) =4R' Npl~r cos8dr sin8ded@
~, ~, J,

f= (8/3) J
u'ou'i, 0 irdr.

p

(16)

&Iw p II' ps%'

n&" (Np —+d) =4R' up&"ui, i 0&'&r., J, ~,
&&cos0dr sin8d0doo (24)

= (32/15) u ou i i prdr.
4 p

The procedure of the numerical solution of Eq. (15)
will be described in Sec. III.Here we note that for the 1s
shell, if m'p is assumed to be a hydrogenic wave function,
Kq. (15) has an exact solution, as was shown previously. "
Thus if the unperturbed function is taken as

u'0 2Z——&r exp( —Zr) (17)

n(1s—+P) = (9/Z') uHs. (19)

This is a well-known result which has been derived
previously by Pauling~ and others. '

The contribution of the p shells to n will now be
obtained. The electrons with m=0 will be considered
first. The unperturbed function is given by

with an appropriate value of the eBective atomic
number Z (including screening), then u i p i is given by

u'i, o i ——Z &r' exp( —Zr)t 1+(Z/2)r), (18)

as can be verified by substitution in Eq. (15). Upon
inserting (17) and (18) into (16), one obtains

The np states with m= &1 will now be considered. The
unperturbed function rs given by

up&+'& = %(2s) &(3&/2)u'0 sin8 exp(&i&0). (25)

We have

—H,up&+' = W (27r)
—'3&R—'u'p sin0 cos8 exp(ai&o). (26)

Since the right hand side of (26) is a pure d function,
the m=&1 electrons do not contribute to the isis
excitation. The perturbation is given by

ui, i s&~"=W (2s) &3&R 'u'i, i 0 sin8cos0 exp(&i&o).
(27)

Upon inserting (26) and (27) into (10), one obtains for
the contribution of the four re= +1 electrons to o.,

p2x

n&yii(riP~d) 8Rs ~l

Jo Jo
)&cos0dr sin8d8d y (28)

uo'0'= (2pr) *(3/2)* u'o cos8. (20)
= (16/5)

Jp
/ /I pS

Here and in the following the superscript of Np& &

indicates the magnetic quantum number. In view of
Eqs. (1) and (20), —Hiup"i is given by

In view of (24) and (28), the ep—+d contribution of the
complete p shell to n is given by

—Htup&o&= (2~) '*(2/3)~R 'u'0$(3 cos'0 —1)+1], (21) n(e~d) = (16/3) u'ou i, i srdr. (29)

( d' 6
+—+I 0

—&0 Iu'i i 2 u or.
I dr' r' ) (23)

In Kq. (22) and in the following, ui, &~i & & denotes r
times the wave function for the excitation of an electron

"Foley, Sternheitner, and Tyclto, Phys. Rev. 93, 734 (1954).

where the square bracket is written as the sum of a d
function and an s function; these terms give rise to
excited d waves and s waves, respectively. The ried
excitation will be considered first. In view of (5) and
(13), the excited wave function is given by

ui, i~0&"= (2~) &(2/3)&R 'u'i, i~0(3 cos'8 —1), (22)

where the radial function I'~, ~ 2 is determined by

ui, i~0 &"——(2ir)
—

& (2/3) lR—'u',
, ,~o,

where the radial function I'~, y~p is determined by

d
+I 0 +0 Iui, i 0 —uor ~

dr' )

(30)

(31)

Upon inserting (20) and (31) into (10) one obtains for
both no=0 electrons,

n(upas) = (8/3)
~o

/ /Q pQ $, ]~pttk (32)

The u~s term due to the m =0 electrons is obtained
in the same manner as rip +d From (2—1) o. ne finds for
the perturbation,
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Here and in the following, &2(n/~/') denotes the con-
tribution to 0, of the complete subshell nl,

The contributions of the d shells to o, can be found
in the same manner as for np T.he d electrons are
excited into p and f states. The complete derivation
will not be given here, but the various excited wave
functions will be listed together with the Anal results.
The nd~f waves will be considered presently. The
excited wave functions are given by

u1, 2~3&'& = (22»)-&(3/10&)R—'u'1, 2~3 (5 COS'8—3 COS8), (33)

u1, 2~3 +' ——W (22»)
—l(3/5) lR—'u'1, 2~3

)& (5 sin8 cos'8 —sin8) exp (~i &&&), (34)

u1, 2~3&+'& = (22&)
—&(15&/2)R—'u'1, 2~3 sm'8

)&cos8 exp(&2iS2), (35)

for the m=0, &1, and +2 electrons, respectively.
Similarly to Eqs. (15), (23), and (31), the radial func-
tion I'~, 2 3 is determined by

where u'1, 3~ is determined by Eq. (36) with /=3, l'=4,
and u'&& taken as the unperturbed f function. From
Eqs. (10) and (41)—(44), one obtains

u(nf-+g) = (32/3) ~ u'&&u'1, 3 4rdr.
0

(45)

where u'1, 3 2 is determined by Eq. (36) with /= 3, l'= 2.
From Eqs. (10) and (46)—(48), one finds

&2(nod) =g u ou 1, 3 srdr. (49)

The excited wave functions for njord are as follows,

u1, 3~2&'&= (22») &(3/14&)R su'1, 3~2(3 cos'8 —1), (46)

uI, sm2 ~ (22») (24/7) R u 1, 3-+2

&(sin8 cos8 exp(~imp), (47)

u1, 3~2&"'&= (22») '*(15/28)'*R 'u'1, 3~2

)&sin'8 exp(&2ip), (48)

d' /'(/'+ 1)

,+, +F3—~o lu'1, 1-&=u'«, ( ) From Eqs (16) (29) (32) (37) (40) (45) and (49)
one obtains the following expression for o.,

in which /=2, l'=3, and I'p is the unperturbed radial
nd function. Upon inserting Eqs. (7) and (33)—(35) into
(10), one obtains

~8 y (8 16
=Z( -Io-

I +Z) -I o+—I
&3 ).. (3 3 )„,

&2(«~f) =8
aJ p

Q oN y, 2~3fdr. (37) /
16 q /' 32

+2( —I2,+8I2 3 I +2( gI3 2+—Is . I, (50)
&3 ) 4 E 3 )„,'

The nd~p excited wave functions are given by

u1, 2~1"'= (22r) *(8/5)*R 'u'1, 2~1 cos8$

where the sums extend over the occupied s, p, d, and f
(3g) shells, and I& 1 is defined as

u1, 2„1&+'&=T (22»)
—

&(3/5)&R 'u'1, 2~1

Xsin8 exp(&i&&2), (39) og z, t~trdr, (51)

and N~, 2 ~'+"=0. The radial function I'~, ~ ~ is deter-
mined by Eq. (36) with /=2 and / 1.1From Eqs. (10),
(38), and (39), one obtains

~(nd~p) = (16/3)~' u'su'1, 2 1«».
0

The f electrons are excited into d and g states. The
excited wave functions for nag are given by

u1, 3 4& &= (22») '14 ~R u 1, 3 4

&( (35 cos48 —30 cos'8+3), (41)

where e'&, « is the perturbation considered. It may be
noted that the coeKcients of I1 1 and I1 1 in Eq. (50)
are equal. This was expected because the transition
from n/2n to n'/'ns (n'=principal quantum number of
excited state) has the same matrix element as the
transition from n'l'm to num. Since the angular factors
do not depend on n and n', the equality of the coeS-
cients of the Is~& follows. We note that Eq. (50) gives
n in units aH' and must be multiplied by a factor
0.529'=0.$48 to obtain a in units A'.

IIL CALCULATIONS OF THE POLARIZABILITY

u1 3~4&+'&= %(22») &(75/56)&R su'&, 3~4

&& (7 sin8 cos'8 —3 sin8 cos8) exp(&i&&2),

u, ,„,&+'& = (22r)
—

&(15/28) &R 'u'1, 3~4

&( (7 sin'8 cos'8 —sin'8) exp(&2i&2),

u1, 3~4&+3&=W (22r) **(35/8)'*R 'u'1, 3~4

)&sin38 cos8 exp(&3i y),

In this section the calculation of the radial functions
u'1, 1~1. is described and the resulting values of &2, as
obtained from Eq. (50), are compared with experiment.

The u'1 1 1 are determined by Eq. (36), of which

(43) Eqs. (15) for n~p, (23) for np —»d, and (31) for np —&s

are special cases. The calculations of 0, for the helium-
like ions, which were done analytically, will be discussed

(44) below. In the numerical calculations for the medium
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and heavy ions, the unperturbed functions u'0, were
taken as the Hartree-Fock or Hartree wave functions.
For Na+, Cl, K+, Ca~, and Cu+, the Hartree-Fock
functions" 'P (including exchange) were used, while for
F, AP+, Rb+, and Cs+ only Hartree functions" "
(without exchange) are available. The function on the
left hand side of Eq. (36) was obtained directly from
the tabulated Hartree-Fock functions, in the manner
shown previously. "Thus, let P(r) be defined as

2.0

&050
I-
O
Z 0

&-0,5

I
2u0

P(r) =Ll—(l+1)/r'j+ Vp(r) —Ep, (52)

where l is the azimuthal quantum number for the un-
perturbed state. If r„ is a selected radius and 8 is the
interval at which I p is tabulated, P(r„) is given by

P(r„)=Le'p(r„+b) —2u'p(r„)+n'p(r„—b) j/Lb'n'p(r„)g.
(53)

The function which appears on the left hand side of
Eq. (36) is

P'(r) —=P(r)+ (l'(l'+1) —l(l+1)j/rP (54)

If I denotes the inhomogeneity I=I'Or, the equation
used for the numerical integration with the same interval
b is given by

u'i(r„+b) =u'i(r„) {2+5'$P'(r„)—I(r„)/I'i(r„)))
—n'i(r„—b). (55)

Equation (55) is appropriate for outward integration
starting near r =0. The equation for inward integration
is obtained from (55) by reversing the sign of b.

For ns~p and np —&s, Eq. (36) was integrated out-
ward with starting values obtained as follows. Near
r=0, the ns~p function I'i, p~i(ns) is approximately
proportional to the unperturbed np function n'p(np)
for the same n, as will now be shown. Here and in the
following I'p(nl) denotes the unperturbed function for
nl, and n'i, i i (nl) denotes the perturbation of the state
nl. From Eq. (15) it is seen that the inhomogeneity I'pr
acts in the same manner as an additional potential
bV= —n'pr/I'i, p i. Near r=O, n'p(ns) per, n'i, p i(ns)
~ r', so that bV is constant and therefore much smaller
than the terms 2/r' and Vp. Thus the right hand side
of (15) can be neglected near r =0 and the equation for
I i p i(ns) is the same as the equation for I'p(nP),
except for the small difference between the unperturbed
energies Ep for ns and for np. However, the term Ep
plays a negligible role near r=O, so that I'i, p i(ns)

'~V. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368
(1934).

»D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A156, 45 (1936)."D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).

'p D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A164, 167 (1938).

'P D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).

» D. R. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935)."D.R. Hartree, Proc. Roy. Soc. (London) A143, 506 (1934).
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FIG. 1. Bs function u'p and 3s-+p perturbation
I'~, o y for Cl .

'IPN 1, 1 2/~» +I 1, 1 p (56)

is approximately proportional to n'p(np). The integra-
gration LEq. (55)$ was started at two values of r near
r=0.05aH, the starting values I'i(r ) and u'i(r„+b)
were taken proportional to the values of I'p(np) at
these radii. Thus I'i=Pin'p(np), where Pi is a propor-
tionality constant to be determined. The integrations
were carried out with several values of Pi. The correct
P, is that for which the resulting I'i p i is well behaved
(i.e., exponentially decreasing) at infinity. In practice,
Pi and I'i, p~i were found by interpolation. For two
choices of Pi which enclose the correct value, the func-
tions diverge slowly, the one to positive values, the
other to negative values as r~~. However, they agree
quite well (in general within 15 percent) in the region
of importance for n, between r 1aH and r 3uH, where
the outermost maximum of I'0 occurs. Figure 1 shows
the 3s~p function I'i, p i for Cl, together with twice
the unperturbed 3s function 2N'0.

For the n~s excitation essentially the same pro-
cedure was used as for ns-+p. Near r=0, the pertur-
bation n'i, i p(np) is proportional to u'p(ns) since the
extra potential bV= —n'p(np)r/I'i i~p(np) which cor-
responds to the inhomogeneity of Eq. (31) is negligible
near the nucleus. This follows from the fact that
n'p(np) ~ r', u'i, i p(np) cc r, so that b V ~ r' near r= 0, in
contrast to Vp which goes as 1/r. The difference between
the values of Ep for ns and for np can also be neglected,
so that Eq. (31) is approximately the same as the equa-
tion for I'p(ns). The numerical integration LEq. (55)g
was started near r =0.05aH, using for u'~, ~ 0 the values of
P&u'p(ns) where P& is a proportionality constant. Simi-
larly to ns—+p, the integrations were carried out for
several values of P& until a value was found by inter-
polation for which the resulting I'~, ~ 0 is well behaved
at r = ~. Figure 2 shows the 3~s perturbation e'i, i p

for Cl, together with twice the unperturbed 3p function
2N'o.

For np —+d, an inward method of integration was used
in most cases, starting at a large radius r~. For this
purpose, Eq. (23) was written as follows,



956 R. M. STERNHEI MER

The sign of the terms of n due to 3s—&p and 3p—os is
discussed below.

For Cu+, 3d &f,—and inward method of integration
was used, similar to that for ts~d, while the 3d~P
wave of Cu+ was obtained by outward integration,
similar to ns~p and np—os

After the u'~, ~ ~ are obtained, the integrals I~ ~

[Eq. (51)j are evaluated and n is calculated from Eq.
(50). It is estimated that the inaccuracy of the values
of 0. due to the interpolation procedure to obtain the
I'&, «. is less than &20 percent. In many cases the
values of n(22l—+l') are probably accurate to &10-15
percent.

It was found that the polarizability n is almost en-
tirely due to the outermost shell whose principal
quantum number will be called mo. The contribution
of the shells with m(no is negligible in all cases. This
result was already obtained by Pauling from the hydro-
genic wave functions and by Buckingham. ' The results
of the calculations are presented in Table I. The 6rst
6ve rows list the term n(npl ol') due to the various
modes of excitation of the outermost shell. The last
two rows give the resulting calculated value of n and
the experimental values. The fact that the inner shells

(I(22p) make a negligible contribution to n was estab-
lished by calculating n(2p +d) f—or Cl, n(3d-+f) for
Rb+, and n(4d—&f) for Cs+. These represent the largest
terms for the shell with e= eo—1, and were found to be
0.01A', 0.03A', and 0.T6A', respectively. Even for Cs+,
this term represents only 3 percent of the contribution
due to so= 5, and is therefore appreciably smaller
than the uncertainty of the calculations. The reason
why the inner shells make only a negligible contribution
is that both the right hand side of Eq. (36) for I'&, &

and the integrand of Ig~p [Eq. (51)7 contain a factor
r, so that the contribution to n depends essentially on
the average value of r' for the shell considered. ' Since
(rs)„& decreases very considerably as rl, is decreased by
I, only the outermost shell contributes eQ'ectively to n.

The experimental values n(exp) given in the last row

of Table I correspond to the values obtained by Born
and Heisenberg, ' Mayer and Mayer 2 Fajans and Joos, '
Pauling, ~ and Tessman, Kahn, and Shockley. s The
range of n(exp) is due to the fact that different experi-
mental methods give appreciably difFerent values of n
in some instances. These discrepancies can probably
be attributed to uncertainties in corrections which enter
into the determination of o, from the experimental data.
As an example of these corrections, the quadrupole
polarizability and the e8ect of penetration of the core
enter into the spectral level method. ' Similarly, the
values of n obtained from the index of refraction of

0.5

I-
Oz
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FIG. 2. 3p function u'p, 3p—+s perturbation u'~ &„0, and
3P—+d perturbation u'I, i 2 for Cl .

where 1V' is given by [see Eqs. (52) and (54)j:
1V=I" [I'pr/2e'. —. 2j. (57)

Note that for large r, S is constant and given by —Eo.
Several integrations were carried out with diferent
Starting ValueS I'r, 2~2(rr). It WaS aSSumed that X iS

constant for r) rr, for a given te'2, r 2(rr), 1V(rr) is cal-
culated from (57), and 2e'r, r~2(rr+8) is obtained from

tel 1 2( 1+3) I I 1 2( 1) xp( P( 1)3 3)' (5g)

wave functions are such as to shield the atom from the electric
field gradient of the external charge in the vicinity of that charge,
i.e., in the region of the outermost maximum of the atomic wave
functions. However, near the nucleus, the eGect is in some cases an
antishielding because of nodes and changes of sign of the unper-
turbed and perturbed wave functions.

The numerical integration is then started with the
values I'Q, r 2(fr) and pe'r 2 2(rr+8). The correct value
of I'r, 2~2(rr) is that for which the resulting I'r, r 2 is
zero at r=0. This requirement is appropriate since the
actual perturbation goes as r' near r=0. In practice,
the actual I'& r 2(r&) and the solution were found by
interPolation. For two choices of I'r. r 2(rr) which
enclose the correct value, the solutions pe'2, ,~2(r) diverge
slowly, the one to positive values, the other to negative
values, near r=0. However, they agree closely (in
general within 15 percent) in the region of importance
for n(r 1an —3aH). Figure 2 shows the 3p—&d per-
turbation n'~, ~ 2 for Cl . The contribution to n is
determined by (16/3)ee'p2e'&, &~2r [see Eq. (29)g. Since
e'~, ~ 2 and u'0 have the same sign for r)0.55aH, the
contribution to n(3p +d) from this—region is positive.
For r &0.55aH, I'~, ~ 2 and I'0 have opposite sign because
of the node of I'0, so that the region inside 0.55uH
makes a negative contribution to n(3p +d). However, —
this contribution is negligible compared to that made
by r&0.55aH, because the values of 0'0, n'j, & 2, and r
are considerably smaller than in the region" r&0.55uH.

'9While the contribution of r&0.55aH is negligible for the
polarizability, it may be important for properties which depend
strongly on the region of the electron cloud near the nucleus. Thus
as shown below (Sec. V) the induced charge distribution con-
tributes to the electric field at the nucleus. The term in the electric
Geld due to 3p-+d is given by (16e/3E )Jo"I'og'i, i or odr. The fact
that the dependence on r is r~ rather than r as for the polariza-
bility results in a strong dependence on the values of u'Ou'&, &„2
near the nucleus. It may also be noted that the antishielding cor-
rection to the nuclear quadrupole coupling (reference 11) is an
effect similar to the one discussed here. In this case, the perturbed
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I i, o~t=gs a„ts o(np), (59)

where a„ is a coeKcient and so'p(np) is the normalized
solution of

d 2
+—+Vo—Eo(nP) ts'0(nP) =0,

dr
(60)

where Ep(np) is the energy eigen value for np In (.59)
the sum extends over all of the discrete states allowed
by (60) and over the continuum states with Ep(np) )0.
In Eq. (15) Ep will be written more explicitly as Ep(nos)
and I'p will be written as I'p(nps). Upon inserting (59)
into (15), one obtains

2
+—+Vp —Eo(nps) P u„ts'0(np) =I'p(nps)r. (61)

dr n

crystals' ~ may be affected by distortion of the ion by
interatomic forces. '

Table I shows that cr(npsop) and rr(nop-+s) cancel
each other approximately, so that n(nod) makes the
major contribution to n for the cases where npp is the
outermost subshell. A similar near-cancellation takes
place for 3p-+d and 3d—+p of Cu+, so that the 3d sub-
shell through u(3d~f) makes the largest contribution
to o, for Cu+. This cancellation will now be explained
for the case of nos-+p and npp —os For. this purpose, Eq.
(15) for I'i, 0 i and Eq. (31) for I'i, i 0 will be solved in
terms of eigenfunctions. We expand I'1, p 1 in terms of
the np eigenfunctions for the potential Vp. Thus

proximately given by unpN p(npp). As a result,

rIo i u 0 I'0(nos)rsvp'0(npp)dr.
0

(64)

In a similar manner, the np—os perturbation ss'i t~o
will be expanded in terms of the ns eigenfunctions
n'0(ns) which are the normalized solutions of

Thus,

d2

+Vp Ep(—ns) I'p(ns) =0.
dr'

SS i, imp gs ~st 0(ns)q

(65)

(66)

00

b.= I'0(nop)rN'0(ns) dr
0

[E0 (ns) —Ep (no p)).
(68)

Again the smallest energy denominator is obtained for
n=np, and a comparison of (63) and (68) shows that
bsp= —asp. In the approximation in which the terms
e/ep are neglected, we have

where b„ is a coeflicient. In Eq. (31) Ep will be written
more explicitly as Ep(npp) and I'0 as I'p(nop). Upon in-
serting (66) into (31) and using (65), one obtains

Z LE0(ns) —Eo(npp))b„n'0(ns) =ps'0(nop)r. (67)

Upon multiplying both sides of (67) by n'0(ns) and
integrating over r, one finds

In view of (60), Eq. (61) becomes

P„LE0(np) —Eo(nos))a No (np) =No (nos)r. (62)
Ii o

—aso ro o(nos)rl'0(npp)dr,
dp

(69)

f
o = I p(nps)rrs'0(np)dr

-~0
LEp (n p) —Ep (nps) ).

(63)

Since the energy denominator is smallest for e= ep, the
largest u„ is expected to be unp, so that e'1, 0 1 is ap-

Upon multiplying both sides of (62) by I'p(np) and
integrating over r, one obtains

so that Ip & and I& p would exactly cancel each other.
These results have a simple physical interpretation.

In the absence of the Pauli principle, the major part of
the nos—op excitation would be npp, and the major part
of the npp —os excitation would be nps. However, since
both the nps and npp shells are filled, the two terms
just cancel each other, so that only excitations of cps
into higher p states (n) np) and excitations of npp into
higher s states (n) np) are possible. This leaves nop —od

TABLE I. Calculated and experimental values of the polarizability n. The rows above a(calc) list the contributions to n of the various
modes of excitation of the (outermost) shell with highest principal quantum number ooo All values . are in units Ao.

Ion

a(ooos~p)
a(nop~s)
~(eoP~d)
n(nod~p)
a(nod~f)
n(calc)
n (exp)

0.39—0.30
3.11

3.20
0.76—1.04

0.125—0.101
0.121

0.145
0.17—0.26

AP+

0.061—0.054
0.043

0.050
0.052—0.067

Cl

1.33—0.97
5.28

5.65
2.97—3.66

0.57—0.44
1.13

1.26
0.80-1.20

Ca++

0.40—0.36
0.69

0.73
0.47—1.1

Cu+

0.077—0.069
0.096—0.084
0.450
0.470
1.6

0.98—0.89
2.61

2.73
1.4-1.8

Cs+

2.15—1.71
4.43

5.03O

2.35-3.14

a Includes a term 0.01A3 due to 2p-+d.
b Includes a term 0.03A~ due to 3d~f.
o Includes a term 0.16A3 due to 4d~f.
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as the major contribution to n, since the energy di6er-
ence between esp and lsd is fairly small and the nod

states are unoccupied. A similar explanation applies to
the approximate cancellation of the 3~d and 3d~p
terms for Cu+ and the predominance of the 3d +f—term,
involving the excitation into the unoccupied f states.

The preceding results are illustrated by Figs. I and 2.
Figure 1 shows that the 3s~p excitation u'r, s~t of Cl
and the 3s function u's(3s) have the same sign through-
out most of the range of r (for r) 0.12aH), resulting in
a positive contribution to n since u'su'& s~&)0 )see Eq.
(16)$. By contrast the 3~s wave u't, t Q and the 3p
function have in general opposite sign (see Fig. 2) so
that n(3~s) is negative. It is also seen that u'r s t for
3s—+p has the same node as u's(3p) at r=0.55an and is
approximately proportional to u's(3p) inside r=2aH
Similarly, u'&, &~s(3~s) and u's(3s) have the same
nodes and are approximately proportional for r&2uH.

From Table I it is seen that the calculated values of
n are, in general, between 1 and 1.5 times the experi-
mental values. As mentioned above, a discrepancy in
this direction is expected because the Hartree-Fock
functions provide less binding than the actual wave
functions and should, therefore, tend to give values of
z which are too large. For Cl, Rb+, and Cs+, the dis-
agreement is a factor of 1.5. However, for K+, the
calculated n is barely above the experimental range, and
for Na+, AP+, and Ca~, the calculated o. is either within
the experimental range or slightly below the experi-
mental values. This agreement can be understood by
virtue of the fact that for small positive ions or ions
with net charge greater than 1, the wave functions of
the outermost electrons have a relatively strong binding,
and the calculated polarizability should be insensitive
to small inaccuracies of the potential for the external
electrons and of the zero-order wave functions. The
fact that for Na+, n(calc) =0.145A' is below the experi-
mental values is somewhat disturbing. A difference in
this direction has already been noted by Buckingham. '
However, it should be pointed out that the experimental
values are subject to uncertainties, and the discrepancy
(0.17—0.145=0.025A') is smaller than the difference
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FIG. 3. 1s function u'0, 1s—+p perturbation u'&, o 1, and induced
moment density P;= (8/3)N'Om'j, s qr for Li+.

between the experimental values (0.26—0.17=0.09As).
We also note that the value of n derived in Sec. IV
from the spectral term defect including the quadrupole
polarizability is 0.138A which is smaller than n(calc).
For F, n(calc) is larger than n(exp) by a factor of 3.
This disagreement is probably due to the fact that only
Hartree functions" were available for the calculation.
Since F is a negative ion, the binding of the 2p electrons
is very sensitive to small changes of the potential in
which these electrons move. Since the wave function
was obtained from the Hartree equations, '~ the exchange
correlation which would provide additional binding is

. not included. Thus, the rather large discrepancy is not
surprising. The fact that there is better agreement for
Cl than for F is probably due to the use of Hartree-
Fock functions" for Cl . For Cu+, Table I shows that
n(calc)=0.47A' is appreciably smaller than n(exp)
= 1.6A'. The experimental value was obtained by
Tessman, Kahn, and Shockley' from the index of
refraction of CuCI, CuBr, and CuI for the wavelength
A,D of the sodium D line. While the values of n obtained
from the 3 compounds agree quite well (1.47, . 1.67, and
1.71As) it is likely that n for infinite wavelength X= ao

is appreciably smaller than n for 'A=AD. This trend is
shown by all of the positive ions investigated by
Tessman et al. ' However, it seems unlikely that it can
account for all of the discrepancy. Thus for Rb+,
n(XD) —n(~) is 0.182A'. For Ca++ and Ba++ the dif-
ference between n(XD) determined by Tessman eI aL
and the largest value of 0. obtained by the other
authors' ' is 0.59A' and 0.82A'. Hence it cannot be
excluded that the difference n(exp) —n(calc) is due to
the inaccuracy of the experimental determination and
the fact that n(exp) pertains to Xn rather than X= ~.
Another possible explanation is that part of the dis-
crepancy is due to the use of a single radial wave func-
tion for the 3d electrons of Cu+. This wave function
was obtained by Hartree'6 from the Hartree-Fock
method which treats the ten 3d electrons as a single
group. It is possible that in a more accurate treatment
the 3d electrons would fall into two groups, some being
closer to the nucleus than predicted by the Hartree-
Fock function, while the remainder would be more
loosely bound since they are shielded more effectively
from the nucleus. Such a distribution of two 3d groups
could have a lower total energy, because of the presence
of the tightly bound group of electrons, and at the same
time, the distribution could have a larger polarizability
because of the loosely bound electrons, each of which
may give a considerably larger contribution than an elec-
tron which is described by the Hartree-Fock function.

It can be concluded that with the exception of F
and Cu+, the calculated values of a are in reasonable
agreement with experiment. In 4 out of 9 cases, n(calc)
is essentially within the range of the observed values.
In 3 other cases, n(calc) exceeds n(exp) by a factor of
order 1.5.

The calculations for the helium-like ions will now be
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where Z~ and Z2 are two effective values of the atomic
number Z; c~ and c2 are coefBcients. If there were no
overlap between the two functions in square brackets,
we would have cp+coo=1. In Sec. II, the imp per-
turbed function I'&, p & was obtained for an arbitrary Z
[Eq. (18)). Therefore, it seems reasonable to use for
the perturbation corresponding to (70) the following
expression,

I i, o~i ——c~(Zz &r'[1+ (Za/2) r) exp( —Z~r) }
+co(Zp '*r'[1+(Zp/2)r) exp( —Z2r) }. (71)

Thus the polarizability (in units aH') is given by

F00

n= (8/3) &'oN'i, o irdr, (16)

in which I'p and m'&, p & are given by Eqs. (70) and (71),
respectively.

It may be noted that the expression of Eq. (71) is
not exact, because it assumes that the is electrons are
in a superposition of two states in which they'experience
slightly diGerent potentials. Thus if the energy is Ep,
the potential pertaining to Z& which is implied by Kq.
(71) is

described. For the unperturbed is functions we used
the Slater-type functions of Lowdin' which can be
written as follows,

I'p ——c~[2Z~&r exp( —Z~r))+cp[2Zo&r exp( —Zor)), (70)

TABLE II. Calculated and experimental values of a for helium
arid the helium-like ions. The calculated values were obtained from
the Lowdin wave functions. All values are in units A .

Ion

H
He
Li+
Be++
@3+
C4+

a(calc)

16.1
0.236
0.0316
0.0083
0.00308
0.00139

a(exp)

0.203
0.025—0.08
0.007—0.04
0.003-0.02
0.0013-0.012

Table II gives the calculated values of n for helium
and the helium-like ions from H to C'+. The experi-
mental values are also listed. ' 5 It is seen that the cal-
culated values are generally in good agreement with
experiment. This agreement was expected for the
positive ions, since for these ions the is electrons have
a relatively strong binding, and hence 0. should be
insensitive to small inaccuracies of the potential and
of the zero-order Lowdin wave functions, in the same
manner as was discussed above for Na+, Ap+, and Ca~.

IV. QUADRUPOLE POLARIZABILITY

When an ion is placed in the field of an external
charge, the quadrupole part of the field of the charge
induces a quadrupole moment in the charge distribution
of the ion, The quadrupole field is closely connected
with the electric 6eld 'gradient at the nucleus. If the
external charge is at X=A, the term in the potential
energy is given by

Vg ———(2Zg/r)+ ZP+ Ep, (72) V,= —(r'/R') (3 cos'B—1), (74)

while the potential pertaining to Z2 is

V,= —(2Z2/r)+ Zo'+ Eo, (73)

both in Rydberg units. However, the error made by
this approximation is very small, as was verified by a
calculation for Li+. Thus the exact perturbed function
can be found by solving Eq. (15) numerically by means
of the function P [Eq. (52)) which can be obtained
directly from the Lowdin function u p according to Eq.
(53). For the case of Li+ the function I'$, p $ obtained
numerically was found to differ from (71) by less than
6 percent throughout the range of r, and the resulting
value of n is 0.0306A' as compared to 0.0316A' obtained
from (70) and (71). This diBerence is probably well

within the uncertainty which arises from the inac-
curacy of the Lowdin wave function I'p due to neglect
of the correlation between the Is electrons. Figure 3
shows the perturbed wave function n'~, p ~ for Li+, as
calculated from (71), together with, the unperturbed 1s
function [Eq. (70)), and the density of induced
moment p;= (8/3)N pl, y, p~yr, i.e., the integrand of n
[see Eq. (16)). The constants c; and Z; for Li+ as
obtained from Lowdin's' work, are:

in Rydberg units. Equation (74) is valid for r(R. The
field gradient at the nucleus in the I direction is

BEx/BX = —2e/R'.

The induced quadrupole moment Q;„z is given by

(75)

Q;„q—— I p;„o,,r'(3 cos'B—1)dV, (76)

where dV=volume element, and p;„d, , is the density
induced in the ion by the potential V,. It is convenient
to define the quadrupole polarizability as follows,

ind
CXq =

BEx/BX
(77)

The quadrupole polarizability was first discussed by
Mayer and Mayer' in their calculations on the spectral
term defect of the alkalis. A problem related to o., was
also treated by Foley, Sternheimer, and Tycko" who
calculated the perturbation of the electric field gradient
at the nucleus produced by the density p;„d, , due to an
external charge. In view of (76) and (77) n, is given by

Zg =2.435, Z2 ——4.425)

cg= 6.664/(2Zg~) =0.877, co=2.562/(2Zo&) =0.138.
.,=(R/2) I', ,;(3-"e-1)dV. (78)
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Ke now obtain an expression for 0,, similar to Eq.
(50) for the dipole polarizability n. The derivation
follows closely the same lines as for n. The results of
Foley, Sternheimer, and Tycko»» will be used. These
authors showed that V, results in an excitation of s
electrons into excited d states, and of p electrons into p
and f states. Similarly the d electrons are excited into
s, d, and g states. The ms—+d wave will now be con-
sidered. If the zero-order ls function (times r) is
denoted by No, and if I» denotes r times the es—&d per-
turbation, then u& is determined by Eq. (2) in which
H» is now de6ned as V, and E» is the first-order per-
turbation of the energy due to H». By subtracting Kq.
(4) from Eq. (2), one obtains

(Hp —Ep) ug ——(Eg—Hg) up. (79)

E~ is zero for s states. Upon inserting Eq. (11)for up and
Eq. (74) for H& into (79), one obtains

(Hp —Eo)uL o~p= (2or) &2 &R Pu'pr'(3 cos'0 —1). (80)

Here and in the following u~ ~ t, denotes the wave
function for the quadrupole excitation of a state with
azimuthal quantum number / into states with azimuthal
quantum number l'. Upon inserting (13) into (80), one
obtains

(r') ~= u'o'r'dr. (87)

Upon inserting Eqs. (20), (74), and (86) into Eq. (79),
one obtains

4 (3) &(r')„(
(Ho —Ep)ug&o& = —(2m)

—
&—

i
—

i
up cos0

5 (2) R'

p3~&r' 4
+ (2or)-&i —

i
—u'o —cos0

E2) R' 5

+i 3 cos'0 ——cos0 i, (88)

where the angular factor in the square brackets has
been written as the sum of a p and a f function. The p
part contributes to the excited p wave function
I», »»&') which can be written

u&, &~& = (2~) (24/25) R u ~, ~~~ cos0, (89)

one obtains
E,= —(4/5) (r')„(R '-,

'

(86)

where (r')„q is the average value of r' over the radial
function I'0.

uL p~p = (2r) 2 R 'u'L p~p (3 cos'0—1)&

where the radial function I'», 0 2 is determined by

( d' 6
+—+Vp —Ep ~u y, p p=u pr .

dr' r' ) (82)

d' 2
+—+V —&o I

', - = 'o(' —(')-) (9o)
)dr2 r2

(81) where the radial function u'&, » is determined by the
following equation,

n, (ms—&d)=(8/5) " u'pu'g, p pr'dr. (84)

We will next consider the excitation of p electrons
into P states. For the states with m=0 the perturba-
tion energy E» is given by

X (3 cos'0 —1)dr sin0d0dq, (85)

where up&+ is the unperturbed up function as given by
Eq. (20). Upon substituting this expression in (85),

Here and in the following the subscript notation for
u'~, g~~ is the same as for u~, ~~p. In view of (78) the
contribution to 0., from the es—+d wave is given by

p2s'

n, (rose) =4(R'/2), NPQ», 0~2t'
J, J, 4,

)& (3 cos'0 —1)dr sin0d0dqr, (83)

where the factor 4 arises from the fact that the per-
turbed density p;„z,, is 2Nou», 0 2 for each re electron.
Upon inserting Eqs. (11) and (81) into (83) and per-
forming the integrations over 0 and y, one obtains

The contribution to n, due to the excitation of the
m= 0 electrons is given by

p 7l p27I

no&'& (oP~P) =4(R'/2) I uo&o&u, ,~, &o~

gr'(3 cos'0 —1)dr sin0d0dy (91)

= (32/25) J
u'ou'i, i ir'dr,

0

where the factor 4 has the same origin as in Eq. (83).
For the up electrons with rrI= &1, E& is given by

II f\ F

E~= [up'+" J'V,dr sin0d0d y
4o "o

= (2/5)(r')-& ', (92)

where Eq. (25) for up&+'& has been used. Upon inserting
Eqs. (25), (74), and (92) into Eq. (79), one obtains

, )3'~(")-~, .
(Ho —Zo)u, +' = +(2~)-'*~ —

~

u'o sin0
&5) RP

p3&q r'
Xexp(&ipo) & (2or) '*( —

[
—u'pP —

p sin0
&2) RP

+ (3 cos'0 sin0 —
ap sin0)g exP(&ioo). (93)
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From Eqs. (91) and (95) one obtains for the complete
rtp shell,

n, (lp—tp) = (48/25) u'pu't i ir'dr. (96)

In order to obtain the terms of o., for the excitation
of top electrons into f states and the excitation of the d
electrons, we make use of the results previously derived"
for the perturbation of the electric field gradient at the
nucleus. This quantity, which will be called 4(8Ex/&X),
is given by

/i(8Ex/8X) = e pt„s, ,r '(3 cos'8 —1)dV. (97)

Results were obtained for the ratio of —A(BEx/BX) to
the field gradient —2e/R' produced by the external
charge. In view of Eq. (9'7), this ratio which was called

p„ is given by

y„= (R'/2) pled, pr '(3coss8 —1)dV. (98)

By comparing (78) with (98), it is seen that no differs
from p„only by having r' instead of r ' in the integrand.
Thus the integration over 8 and y, and the summation
over the magnetic substates in Eq. (78) give the same
coefFicients as for y„.

The radial wave functions I'&, «are determined by
the following equation similar to Eq. (14) of reference
11,

d' l'(/, '+ 1)
+Vo—Eo u'i, t t

dr2 r2
=u'o(r' —(r')„thtt ), (99)

where (r')„t is given by Eq. (87). Obviously, Eqs. (82)
and (90) are special cases of (99). The term (r')„tbtt.
arises from the Eius term of Eq. (79) Lsee Eqs. (88)
and (93)j.For the case L= l' that solution u'i t~t of Eq.
(99) must be chosen which is orthogonal to u'o.

The square bracket has been written as a sum of p and

f functions. Upon using the p part, one obtains the
following expression for the perturbed p wave,

ui, i~i'+" = W (2s.)-&(3&/5)R-'u'i, i~i
&(sin8 exp(~imp), (94)

where u'i, i i is determined by Eq. (90). The con-
tribution to n, from the four electrons with m=&1 is
given by

g2x

n '+"(np—+p) =8(R'/2) ' ~ ' uo'+"
J, J, J,

Xui, t~t'+" r'(3 cos'8 —1)dr sin8d8d p (95)

As is seen from Eqs. (84) and (96), no(tsl~P) involves
the integral.

+t~v= ~ u ou i, t~t'r~dr
Jo

(100)

where the sums extend over the occupied s, p, and d
shells, respectively. The terms Jt i and Jt s for rtp
pertain to the rtp~p and Np —t fexcitations, respectively.
The terms for nd pertain to the nd —+s, ed—+d, and nd—+g
waves. Equation (101) gives n, in units ttHs and must
be multiplied by 0.5295=0.0415. to obtain o.~ in units A~.

For 1s—+d, it is easily verified that if u 0 is a hydro-
genic wave function Eq. (82) has an exact solution
which is given by

u'i, p~p
——(Z &/2)rL1+-'sZrf exp( —Zr). (102)

Upon inserting (1/) and (102) into (84) one finds for
both 1s electrons,

n, (is +d) = (30/ZP)tt tto. — (103)

Thus for the hydrogen atom, u, =15aH'=0.622AS.
In order to obtain values of n, for helium and the

helium-like ions, the Lowdin wave functions will again
be used )Eq. (70)j.For the perturbation u'i p s we will
use an expression similar to Eq. (71) for the is-+p
perturbation. In view of (102), u'i, p s will be taken as
follows,

u'i, o s=ct((Zi—&/2)r'L1+sZirj exp( —Z,r)}
+co((Zs &/2)t Li+sZsrj exp( —Zsr)}. (104)

~ R. M. Sternheititer, Phys. Rev. 95, 736 (1934).

The coeKcients of the Jg q can be obtained from the
expression for y, as was mentioned above. For this
purpose,

'

we note that y„also occurs in the calculation
of the quadrupole moment Q;„e, tt induced in the core
by the nuclear quadrupole moment" Q. y„ is equal to
this induced moment expressed in units of Q. Thus the
coeScients of the J~ ~ must be proportional to the
coefficient which occur in the expression for Q; s, tt

as given by Eqs. (3) and (7) of reference 20. In fact,
with the present normalization of the radial wave
functions u't, t~t (Eq. (99)] the coeKcients for Q;„o,q
and for 0., turn out to be equal; e.g., the contribution to
Qt„s, tt from rts~d is given by (8/5)QJo"u'ou't, @r'dr,
where I'~, g is the appropriate perturbation, ' the coef-
ficient 8/5 is equal to that which appears in Eq. (84)
for np(ts~d) Henc. e the coefficients of the Jt t can
be obtained directly from Eqs. (3) and (7) of reference
20. One 6nds

(8 ) (48 72
n, =P) -~o s

I +~I —~t i+—~t-s I

(5 $ „, &25 25

(8 16 144
+P~ &s o+—A-s+ ~s-4 I, (101)

e (5 7 35 )
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TAsLE III. Calculated values of the quadrupole
polarizability (in units As).

Ion

H
He
Ll
Be++
+3+
C4+
Na+
Cs+

71.1
0.101
4.77X10 '
6.40X10 4

1.40X10 4

4.31X10 ~

0.058
7.62

By inserting Eqs. (70) and (104) into (84) one obtains
the values of n, listed in Table III.

Besides the calculations for the helium-like ions,
values of n, were obtained for the cases of Na+ and Cs+
by numerical integration of Eq. (99). The results are
listed in Table III. For Na+, the contributions to
n, (=0.058A') are as follows: 0.013A~ from 2s.—+d,
0.020A' from 2~p, and 0.025A' from 2p +f—Th. e
unperturbed functions I'0 used in these calculations are
the Hartree-Fock functions obtained by Fock and
Petrashen. " As an illustration of the numerical pro-
cedure, in order to obtain the 2p—+p wave, (r')2„ is cal-
culated from u'0(2p) and the resulting value 0.78un' is
inserted in Eq. (99) in which / and l' are taken as 1.
P(r„) is obtained from the tabulated values of'2 e'0 by
means of (53), and e'i, i~i is calculated by outward
integration by means of (55) in which

I(r) =I'p(r'- (r'),„).
After a function I'~ ~ ~ is thus obtained, a suitable
multiple of I'0 is subtracted, so as to make the resulting
function orthogonal to I'o. From Eq. (103) the ised
term for Na+ is 0.0415X (30/Z') =0.8)&10 'A' which
is negligible.

For Cs+ the wave functions obtained by Hartree'9
were used. The terms of n, (=7.62A') are as follows:
0.90A' for Ss—+d, 1.56A' for S~p, and 5.16A' for
S~f. The largest term is due to the Sp &f wave—s,
because the overlap of 5p with the S~f function
I'~ ~ 3 is greatest for large values of r which in turn
make large contributions to J~ 3 through the factor r'
[see Eq. (100)7. The contribution of the inner shells
is expected to be negligible because of the relatively
small values of (r')„i for these shells. This was verified

by calculating the 4d~g wave which gives one of the
largest 0=4 terms. The result was n, (4d—+g) =0.019A'
which is negligible corn.pared to the eo ——5 terms. Note
that r' enters twice, namely in Eq. (99) for u'i,

& & and
in the integral J& &.. Since (r')„i decreases rapidly as n
is decreased, this explains why only the outermost shell
contributes to n, . The situation is similar to that for
the dipole polarizability n. In fact, the relative con-
tribution of the inner shells is even smaller for n, than
for n, because n, depends essentially on [(r')„&7' as
compared to the dependence of n on (r')„i.

As was first shown by Mayer and Mayer, ~ the values
of n, enter into the term defect of the energy levels of
the valence electron in the alkalis and the alkali-like
atoms. The term defect AT is defined as the di6'erence
between the energy E of the level and the corresponding
hydrogenic value which is E&= R—zZ /n', where Rz
is the value of the Rydberg constant for the atom con-
sidered, Z is the net charge of the ion in whose field the
valence electron moves, and e is the principal quantum
number. Thus

AT =EH —E. (105)

As is well known, AT has been interpreted by Born and
Heisenberg' as due to the dipole moment induced in
the electron core by the series electron. However, as
pointed out by Mayer and Mayer, ' the induced quad-
rupole moment makes an additional contribution to AT.
The dipole part AT& of AT is given by n(r ') Rydberg,
where n is the polarizability in units an' and (r ') is the
average value of r 4 over the valence wave function,
where r is in units aH. The quadrupole part AT, of AT
is obtained in the same manner as' ' AT~. For the fol-
lowing derivation we assume that all lengths are in cm.
When the valence electron is at a distance r, the electric
field gradient at the nucleus is 2e/r', and hence the
induced quadrupole moment is given by

Q;„~ 2a,/r'—— (106)

The resulting field is given by

E,=—BV,/Br= 3Q;„qe/(2r') =3',e/r', (108)

where the last equality follows from (106). From (108)
one obtains for the potential due to E„

f
6V,=e ' E,dr '= ate'/(2r'). —(109)

Hence 8V, equals —n,/r' rydbergs, if n, and r are units
aH' and aH, respectively. Thus

(110)

where (r ') is the average of r ' over the valence wave
function.

It was shown by Mayer and Mayer' that the observed
AT includes, besides AT~ and AT„a term AT~,„which
is due to the penetration of the core by the series elec-
tron. The zero-order (spherical) part of the potential is
larger than 2Z/r when the series electron is inside the
core. AT~,„has been calculated by Mayer and Mayer. '
Thus we have

(111)

Q;„q gives rise to the following potential at the position
of the valence electron,

(107)
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Mayer and Mayer' have made a study of the term
defects by means of Eq. (111)in order to obtain values
of o,. In this treatment, they used estimates of n, based
on an expansion of the quadrupole perturbation of the
core in terms of eigenfunctions of the unperturbed
problem (similar to Eqs. (59)—(69) of Sec. 111$.It was
assumed that all of the excitations have the same
energy denominator, so that the completeness proper-
ties of the eigenfunctions could be used. The expectation
value of r' for the core electrons which enters into the
resulting expression for n, was not calculated directly,
but was estimated from the values of (r')„i. The present
values of n, lead to a quadrupole term d T, of the order
of twice as large as that obtained by Mayer and Mayer. '
It therefore seems worth while to repeat their calcula-
tions using the values of 0,,of Table III.The discrepancy
of the n, is probably due in part to the approximations
made by Mayer and Mayer. ~ On the other hand, the
present values of o., are subject to uncertainties, because
o, is rather sensitive to the zero-order wave functions,
since it depends on the external part of the ion core
through the factor r' in J~ ~ . However, this reservation
probably does not apply to the o., for Be++, 8'+, and
C4+ because of the large binding of the is electrons for
these ions.

Following Mayer and Mayer, ' Eq. (111) will be
written as follows,

hT DTo, =R~ns—(r ') =R~nCv(r '), (111a)

where ns and C, are constants; in view of (111),C, is
given by

(112)Cs=1+ns&r ')/(n&» '))

In order to calculate C„(r 4) is obtained from the
formula of Wailer" and (r ') is obtained from the work
of Van Vleck."For convenience the values of (r s)/(r ')
will be listed here; they are 0.222Z', 0.271Z', 0.291Z'
for 3d, 4d, 5d, respectively; and 0.0208Z', 0.0267Z',
0.0295Z' for 4f, 5f, 6f, respectively. As has been men-
tioned previously by several authors, ' ' (r s)/(r ') and
hence C,—1 is approximately constant within a given
series, but is considerably smaller for mf than for nd. For
the P electrons (r ') diverges so that the present treat-
ment is inapplicable, C, is obtained from the above
(r ')/(r ') together with values of ns obtained from
Table III and of o. from Tables I and II. Note that o.,
and n must be expressed in units aH5 and aH', respec-
tiively, for use in Eq. (112).The resulting values of C,
are listed in Table IV. The third column in this table
lists the values of 0.0 as obtained by Mayer and Mayer&
from AT—AT„„.The last column gives the resulting
dipole polarizability n= no/C, . By comparing Table IV
with the results of Mayer and Mayer, ' it is seen that
the present values of C, are appreciably larger. As a

s' I. Wailer, Z. Phys. 38, 63S (1926).~ J.H. Van Vleck, Proc. Roy. Soc. (London) A143, 679 (1934).
The values of (1/rs) for ed states as given in this paper are too
large by a factor of 10.

TABLE IV. Values of the polarizability e as obtained from
spectral term defects. The second column gives the state of the
valence electron in the field of the ion. The values of the constant
oo were calculated by Mayer and Mayer. ~ C~ is the factor which
corrects for the quadrupole polarizability. e and a0 are in units A'.

Ion

Li+

Be++

B3+

C4+

Na+

Cs+

State

3d
4d
M
3d
4d
M
3d
4d
M
3d
4d
5d
3d
4d
M
4f
5f
6f

ao

0.0258
0.0273
0.005
0.00841
0.00746
0.00696
0.00361
0.00405
0.00421
0.00185
0.00193
0.00198
0.184
0.192
0.194
2.58
2.61
2.56

1.12
1.14
1.16
1.24
1.30
1.32
1.32
1.40
1.43
1.40
1.48
1.52
1.32
1.39
1.42
1.11
1.14
1.16

0.0230
0.0239
0.0043
0.00678
0.00574
0.00527
0.00273
0.00289
0.00294
0.00132
0.00130
0.00130
0.139
0.138
0.137
2.32
2.29
2.21

result, the values of n of Table VI are about 10—20
percent smaller than those given in reference 2.

In Table IV, values are given only for the d series,
except for Cs, where the d levels are too strongly pene-
trating so that the f series must be used to calculate n
The "best" values of n as obtained by averaging the
valuesss of Table IV are (in units A'):

n(Li+) =0.0235, n(Be++) =0.0059, n(B'+) =0.0029,

n(C4+) =0.0013, n(Na+) =0 138, a.nd n(Cs+) = 2.27.

It is of interest that all of these values are somewhat
smaller than those calculated from the perturbed wave
functions, as was expected from the discussion of Sec.
III.

V. ELECTRIC FIELD AT THE NUCLEUS

It was pointed out by Foley'4 that the electric field
at the nucleus of an ion in the presence of an external
electric field is known and can therefore be used as an
additional test of the perturbed wave functions N~.

Taking first the example of a neutral atom, the total
electric field at the nucleus E„,(0) must be zero since
the nucleus does not move. This means that the induced
density must give rise to a field at the nucleus E;„s(0)
which just cancels the external held. In the present
discussion it is assumed that the external field is weak
enough so that it does not cause ionization; this, of
course, is implied in the assumption that I~&&NO so that
first-order perturbation theory can be used. The external
field will again be considered as due to a unit positive
external charge +e at a distance X=R from the

3 The 5d level of Li will be excluded because the Li nd series is
strongly perturbed starting with M, as can be seen from the fact
that for 6d —9d, EH —E is negative, i.e., the valence electron is
bound less strongly than for a hydrogenic level Lsee R. F. Bacher
and S. Goudsmit, Atomic Energy States (McGraw-Hill Book
Company, Inc. , New York, 1932), first edition, p. 265$,

s4 Professor H. M. Foley (private communication).
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nucleus. For an ion of net charge qe, Et.» x(0) must be
—qe/(ZR') since the force on the nucleus in the X
direction is —qe'/R'. Thus the field due to the induced
density is given by

qe e e ( q)
E;„x(0)=-

ZR' R' R' h Zi
(113)

where the term e/R' in the first equality is minus the
external field. By calculating E;„d,x(0) from the per-
turbed wave functions I& and comparing with Eq.
(113) one obtains an additional check on the ut. It may
be noted that the preceding considerations can also be
used for the total force on the electrons in the presence
of an external held. Since the acceleration of the elec-
trons is the same as that of the nucleus, the force must
be smaller by a factor of order m/M, where m and M
are the mass of the electron and of the proton, respec-
tively. ~5 In the present approximation this means that
the total force on the electrons must be zero both for
neutral atoms and ions, i.e., the force due to the induced
distribution cancels the effect of the external field e/R'.

If Eq. (113) is satisfied, then it follows that the total
force Fx on the electrons is zero, so that the condition
FX=O does not lead to a further test of the perturbed
wave functions u~. In order to prove this result, we note
that E;„d,x(0) is given by

E;„d,x (0)=
e~ p;„dr ' cosf)d V, (»4)

where p;„& is the electron density induced by the field
e/R' of the external charge +e at X=R. The force on
the electrons Fx consists of two parts: (1) the force
F, t„x due to the external charge which is

&,», «= (Z—q) e'/R', (115)

since there are Z—
q electrons; (2) the force F;„d,x due

to the electric field of the nucleus acting on p;„q. Since
the component of electric field along X is Ze cos%',
F;„z,z is given by

P,„, = Ze ~t p,„,r 'cosedV—= ZeE;„,,-(0), (116—)

where the last equality follows from Eq. (114).Thus in
order that FX=O, we must have

which leads to the condition of Eq. (113) for E;„d,x(0).
In order to obtain an expression for Ei d, «(0) in'

ss If the mass of the electrons is not neglected, —ge/Z1V in Eq.
(113) is replaced by —(ge/ZR') (1 3II,/3f;), where 3I,=mass of-
all electrons and M;=mass of ion. The force on the electrons is
then Fx= —(q /Re'e) (3l,/3E;).

~ex»«+ ~ind, X,

(= —Ze E; d, «(0)—I
1

I

—=0, (117)zi R

terms of the No and u~, we note that the induced dipole
moment is given by

ae/R'=e tp; dr cosedV. (118)

Since (114) and (118) involve the same angular factor,
the integration over 8 and q, and the summation over
the magnetic substates give the same coe%cients as for
n, and hence E;„d,x(0) is given by the following ex-
pression similar to Eqs. (50) and (51),

e (8
E;.d, x(0)=—pI —Ep i I

R -(3 )„,
$8 16

+XI -It» p+—&t s I

3 i„„
(16

+XI —&s-i+8&s s I(3 i„,

p 00

—2dE)~) —= I pl y, )~)r ur.
0

(120)

The sums of Eq. (119)extend over the filled s, p, d, and

f shells. Before proceeding to the calculations for the
helium-like ions by means of the Lowdin wave functions,
we note the result of Eq. (119)for the 1s electrons when
the hydrogenic wave functions of Eqs. (17) and (18)
are used. If one considers an ion with a single 1s electron
(e.g. , He+, Li++, etc.) one obtains for the field due to
p; d by substituting (17) arid (18) into (119):

E;„d,x(0) = (4/3) (e/R')Ep~i ——e/(ZR'). (121)

This agrees with Eq. (113) since q=Z —1 when only
one is electron is present.

In obtaining E;„d,x(0) for the helium-like ions using
the Lowdins wave functions, ICp i I Eq. (120)j was
evaluated using Eq. (70) for I'p and Eq. (71) for
u'~ 0 ~. The results are given in the second column of
Table V. The values listed are E;„d «(0)/(e/Rs) which
will be denoted by Ejnd, x(0). Thus E;„d x(0) was cal-
culated from

E;,d, x(0)=(8/3)
~

e'pu, 't, p ir 'dr. (119a)
0

The third column gives the actual values of E; d, x(0),
i.e., 1—q/Z Lsee Eq. (113)j. The fourth column gives
the ratio p of the calculated to the actual values. It is
seen that p is always larger than 1, as was expected
from the similar result for the polarizability n. Thus
since the calculated wave functions give too little

( 32
+PI 8Z, ,y—Z, , I, (119)

3 i„, '

where E« is defined by
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binding, they are expected to give values for the induced
density which are too large, and hence an overestimate
of E;„sx(0). p decreases with increasing state of ioniza-
tion in passing from H to C4+. This result can be
explained as follows. As the field due to the nucleus
becomes relatively more important in comparison with
the repulsion between the electrons, the wave function
becomes less sensitive to small inaccuracies of the
binding, and hence the calculated E;„q x(0) should
become closer to the actual value.

Besides the calculations for the helium-like ions,
Eind, x (0) was also calculated nume'rically from the
perturbed wave functions I'~, ~ ~ for the cases of F,
Na+ and. AP+. The integrals involved in (120) were
carried out numerically, using the functions I'&, «
obtained in Sec. III.However, the 2~d wave functions
I'&, &~2 for Na+ and AP+ were recalculated by outward
integration starting with a power series near r=0, so
that accurate values could be obtained near the nucleus
which is the region of importance for E;„s,x(0), because
of the 1/r' factor in Er s. This recalculation was neces-
sary because the function I'&, & 2 determined in Sec. III
for the calculation of n was obtained by inward integra-
tion starting from a large r. This procedure does not
give reliable values of I'~, ~ 2 near the nucleus. For F,
the function I'~, ~ 2 determined in Sec. III to calculate
n had been obtained by outward integration from the
nucleus so that a recalculation was not necessary. The
resulting values of E;„s,x(0) are listed in Table V. The
contributions to E; q, x(0) from 1s-+p, 2s-+p, 2p—+s,
and 2p—+d are as follows for F:0.23, 1.42, —1.29, and
1.91, respectively. For Na+ the contributions in the
same order are: 0.19, 1.06, —0.95, and 1.05. For AP+

the corresponding terms are 0.16, 0.82, —0.74, and 0.80.
We note that for the 1s shells a numerical calculation
was not carried out, since the term of E; q «(0) is given
to a good approximation by 2/Z, ff Lsee Eq. (121)]
where Z,« is an effective Z obtained by subtracting
from the atomic number a correction for shielding of
0.30 as obtained from Slater's" screening constants.
We note that the 2s~p and 2~s terms nearly cancel
each other, as was expected in view of the behavior of
the wave functions I'~, p ~ and I y, ] p and of the cor-
responding terms for n. The values of p again decrease
with increasing binding in going from F to AP+. The
large value of p for F arises for the same reason as the
similar discrepancy for n (see Table I), namely the use
of Hartree wave functions (without exchange) which

give considerably too little binding for 2p. We note,
however, that the discrepancy p=2.05 is less than the
corresponding discrepancy for n, presumably because
the wave functions are less sensitive to binding near
r =0 than in the region of large r which is of importance
for n.

The values of p are of interest in con~ection with

previous calculations of the electric field gradient at

I J. C. Slater, Phys. Rev. 36, 57 (1930).

TABLE V. Values of the 6eld at the nucleus due to the induced
charge distribution. E'~a, x.(0) is the induced Geld (in units of
e/2V) as obtained from wave function calculations. 1—q/Z is the
actual value of E;~s,«(0), and p is the ratio of the calculated to
the actual value.

Ion

H
He
Li+
Be++
+3+
C4+
F
Na+
AP+

2;.d,r(0)

3.81
1.32
0.792
0.566
0.441
0.361
2.27
1.35
1.04

2
1
0.667
0.5
0.4
0.333
1.11
0.909
0.769

1.91
1.32
1.19
1.13
1.10
1.08
2.05
1.49
1.35

the nucleus due to the charge distribution induced in
the core by an external charge or valence electron. ""
This effect is of importance in the determination of
nuclear quadrupole moments, since it enters into the
nuclear quadrupole coupling q. An estimate of the
reliability of this calculated correction hq to q can be
obtained from the accuracy of E; s, «(0), i.e., from the
values of p. The calculation of E „s,x(0) shoul'd be
better suited for this estimate than the calculated n,
since the integrand of E~~~ for E;„d,x(0) has a factor
1/r' and involves therefore the region near the nucleus
in a manner similar to Aq (=A(BE«/BX), see Kq. (97)1
which involves 1/r', and in contrast to n for which the
integrand of I«has a factor r and depends essentially
on the behavior of the wave functions at large r. We
may conclude that the calculated Aq is probably
overestimated by 10—50 percent, except possibly for
negative ions, where the overestimate may be larger if
the calculations are based on Hartree wave functions
(without exchange). This estimate of the accuracy of

Aq is actually not very diGerent from that which would
have been obtained from a comparison of the calculated
values of n with the experimental values. However, it
should be noted that the values of the overestimate
given above neglect two differences between Aq and
E;,s, x(0). E;„sx(0) was calculated for the field of an
external charge, whereas hq is determined by the 6eld
of the valence electron which penetrates the core during
an appreciable part of the time. This fact reduces Aq

considerably and may tend to make the error for Aq
smaller than that for E; q, x(0) since the region near
the nucleus (which is insensitive to binding) becomes
more emphasized. The second difference is that hq
involves a different perturbation than E;„s,x(0), namely
a perturbation in which l changes by 0 or 2 units,
whereas E; s, x(0) involves 63=&1. The perturbation
which gives rise to E;,z, x(0) is probably more related
to the modes of excitation with 61=&2 (shielding
modes) for d,q than to those with LB=0 (radial or anti-
shielding modes) .'

It seems of interest to calculate E;,q, x(0) from the
Thomas-Fermi model, in order to compare with the
wave function results. The calculation follows the same
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In contrast to the function x, the Thomas-Fermi-
Dirac potential y, ,h which includes exchange vanishes
for large x. Since the difhculties encountered above are
associated with this region, it appears possible that the
Thomas-Fermi-Dirac potential will give reasonable
results for E;„q,„(0).A derivation of E;„s,«(0) using the
potential x,h will now be given.

The maximum momentum pp in the Thomas-Fermi-
Dirac model is determined by'9

lines as the Thomas-Fermi calculation'~ of hq. The
momentum p of an electron in the presence of an
external charge +e at X=R is given by

p' Z7(e' e'r cos8
+

r R'
(122)

2m

where x is the Thomas-Fermi function. If pp denotes the
momentum in the absence of the external charge, and
hp=P-pp, we have

Pp 2& Pp
+e(Ep Vp) =—0,

2m h
(129)

(123)ppd, P =vie'r cos8/R',

Pp
——(2mZxes/r) &.

The change of density Dp corresponding to Ap is given

by
( )Ap =8s-PpshP/h'.

( 24) where Ep is the maximum energy of the electrons, and
Vo is the electrostatic potential; the second term
—2e'pp/h takes into account the exchange. If Vp is

125
varied by an amount

The field at the nucleus produced by Ap is
2 V=er cos8/R' (130)

the resulting change of pp called Ap is determined by

E;~p, x(0)=27re Ap cos8dr sin8d8. (126) PphP 2eshP —eh V=0, (131)

fPp 2ssp
Zp=szv

&m I ae 32m'2'm&Z&e'
R a, x(0)=- (xr)&dr . (127)

R' 3h' 40 The solution of Eq. (129) for pp is given by"

Upon inserting Eqs. (123), (124), and (125) into (126) which gives
and integrating over 8 one obtains

(132)

Upon using the Thomas-Fermi variable

x= 2Zlr(3~/4)-laH —',
one finds

2e'm 4e'm'
+ +2'�(Vp—Ep)

h h'
(133)

&;.p, x (0) = (8/2R') ~ (7fx)~dx.
The change of the density Ap is again given by Eq.

(128) (125). Upon using the definition of x, ,h given by Slater
and Krut ter, 29

The integral over (zx)'* diverges logarithmically at the

upper limit, because z falls off only as 1/xs for large x,
instead of exponentially, as required by the wave

functions. This result is associated with the inadequacy
of the statistical model for large x. Thus we can conclude
that the Thomas-Fermi model (without exchange)
cannot be used to discuss the distribution induced by
an external charge. "

Zx.„,be/r= Vp Ep+2me'/I—s', (134)

pp can be written as follows,

pp= 4(47I' /3)4lM li [e+ (X,xog/x) j, (135)

where &=0,2118Z & and x is the Thomas-Fermi variable
defined after Eq. (127). We also have

'r R. M. Sternheimer, Phys. Rev. 80, 102 (1950).
2 The same integral over (gx)& also occurs in the expression

for the quadrupole moment induced by the nuclear quadrupole
moment Q; The total induced quadrupole moment is given by

Q;~p, or= (3/10)QJ (xx)&dx, (128a)

pp 2s 'i'& (Xexoh l

mhh(x)
produced by an external charge is changed by an amount

xx &dx,

(136)

(128b)
and its sign is such as to shield the nuclear Q. )Note that the
factor 0.2998 in Eq. (8) of reference 27 should be 3/10.$ The
divergence of the integral for large x does not acct the calcu-
lation of Aq for atomic ground states since dq depends only on
the values of (xx)& near the nucleus fsee reference 20 and dis-
cussion at the end of this section/. From Eq. (128a) one can
also conclude that the electric Geld gradient at the nucleus

due to the perturbation of the core by the external change LR. M.
Sternheimer and H. M. Foley, Phys. Rev. 92, 1460 (1953)g. Thus
the Thomas-Fermi model is inadequate both for the electric Geld
and the electric Geld gradient at the nucleus due to an external
charge.

~ J. C, Sister and H. M. Krutter, Phys. Rev, 47, 559 (1935).
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The rest of the derivation is identical with that given
in Eqs. (126)—(129) for the Thomas-Fermi model.
From Eqs. (132), (135), and (136), one obtains

p$0
E a, x(0)= (e/2R')

~
Le+ (X.„,q/x) 7'

&& (X,„,g/x)
—

&xdx, (137)

where xo is the value of x beyond which p, .h=0.
Equation (137) diGers from (128) only through the
replacement of p by x,„,h and the presence of e.

Values of X,I, throughout the range of Z have been
obtained by Metropolis and Reitz."Ke have carried
out calculations of E;„s,«(0) using the tabulated
x, ,h for Z= 18 and 57, to correspond approximately to
the cases of Cl and Cs, respectively. For each value of Z,
Metropolis and Reitz" have calculated several functions
x, ,h which are obtained by using different slopes at
x=0 and lead to diGerent values of xo. Solutions with
a relatively large downward slope at x=0 become zero
at a finite x=xo and correspond to positive ions. Solu-
tions with a less negative slope at x=0 go through a
minimum at large x and correspond to neutral atoms;
they are cut oG at the value of x= xo for which

(CXoxoh ) (Xoxoh )
& Cx iz=zp ( x )z=*p

Equation (137) was evaluated for nine cases. The
results are given in Table VI. The first two columns list
the value of Z and the number labeling the function

X, ,a as given by Metropolis and Reitz" (e.g., Z=18,
1 is "case 1"for Z= 18 in their paper). The third column
lists the values of xo,. the unit of x is 0.338uH for Z=18
and 0.230uH for Z=57. The fourth column gives the
net charge Z;(= q) of the ion if the solution is ionic; the
other cases where no value is listed correspond to
neutral atoms of various radii. The next column gives
E; z, «(0) which is one-half the integral of Eq. (137),
while the last column lists the values of E;„s,«(0)/xp.
It may be noted that for. ionic solutions where- y, ,h

becomes zero at xp, the integrand of (137) has a singu-
larity at x=xo. However, since the integrand goes as
(xp —x)

—
& near xp, the integral is finite, and in fact, the

region near xo makes only a very small contribution.
It is seen that the calculated E;„d,«(0) are consider-

ably too large, since the actual value is 1 for neutral
atoms and 1—Z;/Z for ions Lsee Eq. (113)7. Except
for Z=57, case 7, the disagreement is by a factor larger
than 2 with values ranging up to 4.6 for Z=57, case 3.
These values of p may be compared with those obtained
from the wave function calculations (see Table V) which
are generally in the range 1—1.5. It may be noted that
the values of E;„s,«(0)/xp are nearly constant. Thus the
Thomas-Fermi-Dirac values of E; s, «(0) depend pri-
marily on the radius xo. For ions the general decrease

TAsLE VI. Values of E; @«(0) from the Thomas-
Fermi-Dirac model.

18
18
18
18
18
57
57
57
57

Case

6.00
9.20
7.25
6.66
5.46
5.17

12.80
9.66
3.81

3.047
0.976

14.80
2.303

Bind, x (0)

2.19
3.99
2.98
2.73
2.22
1.59
4.41
3.50 .

1.47

z;.d,x(0)/~o

0.365
0.434
0.411
0.409
0.406
0.306
0.345
0.362
0.385

of E;„q,«(0) with increasing Z, and decreasing xp is in
the right direction, but the values of E;,q, «(0) for the
small Z, of interest are too large. For neutral atoms
one could obtain a value of E; q, «(0) close to 1 by
assuming a small value for the radius xo. However, as
is shown by the example of Z=57, case 7, the required
xo would be unreasonably small, since x0=3.81 for
Z=57, case 7, corresponds to a radius of 3.81)(0.230
=0.88uH, which is considerably smaller than the radius
of the outermost maximum of the Sp distribution which
occurs at r=1.9aH.

It should be emphasized that the preceding discussion
of the inadequacy of the statistical model for the field
at the nucleus produced by an external charge does not
apply to the correction hq to the quadrupole coupling
for atomic states. Dq can be regarded as due to the
interaction of the valence electron with the quadrupole
moment Q; z, o induced in the core by the nuclear Q.
The Thomas-Fermi expression for the density of induced
moment is""

Q;„s, odr = (3/10) Q (Xx)&(x/r) dr. (138)

For the atomic ground states and first excited states the
statistical model can be used to calculate the shielding
because the result depends only on the values of (Xx)&

near the nucleus, by virtue of the penetration of the
valence electron. Thus in the expression" for Ag, (Xx)'*

is essentially multiplied by e', where ~ is r times the
valence wave function. As a result of the exponential
decrease of e' at large r, the contribution of this region
to Dq becomes negligible. As was shown in reference 20,
the Thomas-Fermi values of Aq divided by 1.5 give a
good estimate of the contribution of the shielding modes
of excitation of the core to the quadrupole coupling.
The factor 1.5 by which the Thomas-Fermi model over-
estimates these shielding terms arises primarily because

Q;„q, @ is too large near the nucleus.
In the same manner as in the derivation of (137),

one can show that the density of induced moment ac-
cording to the Thomas-Fermi-Dirac model is given by

Q s, ocr= (3/10)Q{t e+(x,h/x)&7'

&& (x, ,h/x) &x}(x/r) dr. (139)

opN. Metropolisand J.R. Reitz, J. Chem. Phys. 19, 555 (1951). The previous calculations'p of hq from the statistical
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model were carried out using the Thomas-Fermi ex-
pression (138). However, the values given by (139)
differ from (138) by less than 12 percent (for Z~18)
in the region of importance near the nucleus (i.e., for
x&2). Thus at x=2, the curly bracket of (139) which
replaces (7tx) & in Eq. (138) has the value 0.779 for Z= 18
and 0.732 for Z=57, as compared to ()fx)'*=0.698.

These diGerences are even smaller for @&2 and vanish
as x-+0. Hence the previous conclusions" about the
Thomas-Fermi values of hq are essentially unaGected
by the inclusion of exchange in the statistical model.

I would like to thank Professor H. M. Foley for
suggesting this problem and for several helpful and
stimulating discussions.
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Rotational Spectra of RbC1 by the Molecular Beam Electric Resonance Method*

J. W. TRISCHKAt AND R. BRAUNSTEINf.
Collrlbiu University, Eem Fork, Pew Fork

(Received August 2, 1954)

The rotational transitions for which J=0~1 were studied by the molecular beam electric resonance
method for the first three vibrational states, v=0, 1, 2, of Rb"Cp~ and the ground vibrational state, @=0,
of Rb 'Cl'5. The molecular constants are:

'v=2
—51.903%0.040
+ 0.470~0.017

Rb"Cp'
Yoi (Mc/sec) 2627.394 ~0.002
—Yq~=a. (Mc/sec) 13.601 &0.005
F~~=y. (Mc/sec) 0.021 %0.002
B. (Mc/sec) 2627.414 &0.010
r, (A) 2.78670&0.00006

The quadrupole (eqQ) and spin-rotation (c) interaction constants of Rb"CP' are:

v=0 8=1
(eqQ) Rb (Mc/sec) —52.675&0.005 —52.306%0.030
(eqQ) oq (Mc/sec) + 0.774~0.009 + 0.612~0.013
cRb (kc/sec) + 0.3 a0.3
coy (kc/sec) 0.0 ~0.8

For the v= 0 state of Rb"Cl", (eqQ) Rb = —25.485+0.006 Mc/sec. The ratio of the Rb quadrupole moments
is Qss/QsI= 2.0669&0.0005. The mass ratio of the Rb isotopes is Mss/M's7 0.9770163&0.0000045.

I. INTRODUCTION

'HROUGH their studies of KC1 and KBr Carlson,
Fabricand, Lee, and Rabi' ' initiated an investiga-

tion by the molecular beam electric resonance method"
of the rotational spectra of the alkali halide molecules
in their ground 'Z electronic states. We have continued
this work by studying the J=0—+1 transitions of
Rb"CP' in its three lowest vibrational states and of
Rb' CP' in its ground vibrational state.

We selected RbC1 in order to clarify further the
nature of the Cl quadrupole interaction which shows
unusual variations with vibration in KC1. Also, at the
outset of our work, the mass ratio of the Rb isotopes
had not been determined with the accuracy made
possible by the electric resonance method. Since then

*This research was supported in part by the Once of Naval
Research and by the Army Signal Corps.

t On leave of absence from Syracuse University, Syracuse,
New York, 1952-1953.

g Now at RCA Laboratories, Princeton, New Jersey.
'Lee, Fabricand, Carlson, and Rabi, Phys. Rev. 91, 1395

(1953).
2Fabricand, Carlson, Lee, and Rabi, Phys. Rev. 91, 1403

(1953).' H. K. Hughes, Phys. Rev. 72, 614 (1947).

Honig, Mandel, and Townes, using microwave absorp-
tion measurements of the rotational spectra of RbBr
and RbI, have obtained this mass ratio with an accuracy
equal to ours, ' while Collins, Johnson, and Nier have
made mass spectrometric measurements which give a
mass ratio of much greater accuracy. '

The hyperfine structure of the spectra yielded the
Rb and Cl quadrupole and spin-rotation interaction
constants, the ratio of the quadrupole moments of the
Rb isotopes and the frequencies of the unperturbed
rotational lines. The last-named frequencies gave the
first three rotational constants of the molecules, the
equilibrium internuclear distance and the mass ratio
of the Rb isotopes. Of the above quantities the following
have been measured by other methods: the magnitudes
of the quadrupole and spin-rotation interactions of Rb'
in Rb 'Cl, ' the ratio of the quadrupole moments of the
Rb isotopes, ~ the internuclear distance, ' and the mass
ratio of the Rb isotopes. 4' These constants, with the

4 Honig, Mandel, and Townes (private communication).
s Collins, Johnson, and Nier, Phys. Rev. 94, 398 (1954).

D. I. Bolef and H. I. Zeiger, Phys. Rev. 85, 799 (1952).
I V. Hughes and L. Grabner, Phys. Rev. 79, 314 (1950).' Maxwell, Hendricks, and Mosley, Phys. Rev. 52, 968 (1937).


