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It is shown that an expression for the Helmholtz function on the Thomas-Fermi atom model permits one,
in the limit of low temperature T, to expand the total energy as an asymptotic series in T'. The leading term
of the expansion is a known analytic expression for the energy at T=O, from which one can calculate the
pertinent thermodynamic functions for this case in their dependence on the atom radius and on the boundary
and initial parameters associated with a solution of the zero-temperature Thomas-Fermi equation. Pub-
lished values of these parameters are fitted by functions of the atom radius having the correct asymptotic
behavior in the two limiting cases of an infinitesimal and an infinite atom. This procedure makes thermo-
dynamic functions in this case directly available. Thermodynamic functions for the case of a first-order
temperature perturbation are derived from the corresponding term in the asymptotic expansion of the
energy. They depend (in addition to dependence on parameters of the unperturbed atom) on two parameters
derived from solution of the differential perturbation equation. These parameters differ according as the
differential perturbation equation is solved under a condition of fixed atomic volume or of zero initial slope
(which is computationally more convenient and corresponds to published solutions). The asymptotic forms
of the parameters in the first case are determined for the two limits of an infinitesimal and an infinite atom.
The boundary and initial parameters corresponding to fixed atomic volume are expressed in terms of the
parameters corresponding to a solution under zero initial slope, and are evaluated in three cases from pub-
lished solutions. These values are fitted by functions of the atom radius which have the proper limiting
behavior for an infinitesimal and an infinite atom. Thus, approximate values of the first-order temperature
perturbations of thermodynamic functions become directly available.

'HE statistical theory of Thomas' and Fermi, '
generalized to arbitrary temperature, contains

implicitly a complete thermodynamic specification of
the atom model. Brachman' has derived expressions on
this model for the Helmholtz function, the entropy,
and the heat capacity at constant volume. This paper
shows that Brachman's results permit one to expand
the energy as an asymptotic series in powers of the
temperature. With this expansion available, it is pos-
sible to exhibit explicitly the thermodynamics of the
Thomas-Fermi atom model for the case of a erst-order
temperature perturbation. The thermodynamic func-
tions for the case of zero temperature can be obtained
directly from an analytic expression due to Milne4 for
the energy. In this case, the thermodynamic functions
can be made directly accessible by fitting semi-em-

pirically as a function of atom radius the pertinent
parameters derived from solution' 7 of the Thomas-
Fermi equation. A corresponding procedure can be
carried out in the temperature-perturbed case. ' The
eGect of exchange' will be neglected throughout, which
makes the results valid only in the limit of high atomic
number at suKciently high compression.

' L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).
e E. Fermi& Z. Physik 48, 73 (1928).
e M. K. Brachman, Phys. Rev. 84, 1263 (1951).
e E. A. Milne, Proc. Cambridge Phil. Soc. 23, 794 (1927).
e Feynrnan, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949)

(referred to hereafter as FMT).
e J. C. Sister and H. M. Krutter, Phys. Rev. 47, 559 (1935)

(referred to hereafter as SK).
P. Gombas, Die Stutistiche Theoric des Atoms grid ihre

Anroendnngen (Springer Verlag, Vienna, 1949), pp. 53, 357.
e P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

1. INTRODUCTION

By the generalized Thomas-Fermi equation shall be
meant Poisson's equation V'V=4mp for the potential
V(r), at a point r in a spherically symmetric atom and
due to electrons of charge —e and a number density
p(r) which is a function of the temperature T:

p = (kr/fr') (2m) '*(kT)lI;(eV/0 T+ri).

Here m is the electron mass, kTq is the chemical po-
tential, h and k are the Planck and Boltzmann con-
stants, respectively. The function If(X) is defined by

(2)

The kinetic energy EI,i„on this model corresponds to a
kinetic energy density e1,;„(r) given by

e1,;„=(41r/h') (2m)&(kT)'f'Il (eV/kT+rl). (3)

The potential energy E„& consists of two terms, E„
and E,„, where E„corresponding to the electron-
electron interaction equals the integral —(e/2) J'„pV.dr
over the volume e of the atom (dr=4'. r'dr), and E,„

eJ;pV„dr cor—responding to the electron-nucleus
interaction is

E,„=ZeV,(0)=Ze/d(Vr)/dr]„e, (4)

if V, (r) and V„(r)=Ze/r are the potentials due to the
electrons and the nucleus, respectively. If one of the
eIlel'gles Ez;~= J~e&~~dr Ene& or the total energy
E=Eq; +E„,~ is known, the other two energies can
be determined directly from the virial theorem,

E= sos+-'E„to
934
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F= ssEt„——-E„+ZkTrf, (7)

from which the entropy 5 and heat capacity C, at con-
stant volume follow directly. His expression for the
heat capacity C„can be written

TC„= (7/4)E+ 'T'(B/BT)-„[(Ps+E,„+ZkTrl)//T j, (8)

by means of Eqs. (4) and the virial theorem (5).

2. GENERAL PERTURBATION METHOD

Brachman's Eq. (8) for C„will be made the basis
in this section of a perturbation calculation of the
total energy E. All the thermodynamic functions can
be obtained once the energy is available.

It is convenient to define a 4 (generalizing in the
manner of MBs the usual Thomas-Fermi function P
corresponding to zero temperature) by

Ze'4/px= eV+kTrf,

where x is defined by r= px, and p equals as(9s'/128Z)'
in terms of the radius ao of the erst Bohr orbit for
hydrogen. By means of an asymptotic expansion" for
Iy(X) applied to p of Eq. (1), which is valid for X=Ze'4/
pxkT&&1, the asymptotic form of the generalized
Thomas-Fermi equation for low temperatures becomes

where I' is the pressure given by

P= seg;„(a),

in which c is the atom radius.
Brachman' has shown by an explicit temperature

integration of the Gibbs-Helmholtz equation, that the
Helmholtz function F on the Thomas-Fermi model is
given by

where 4b ——4(xb, xb) is the boundary value of 4. The
distinction implied by the partial derivative notation in
Eqs. (10) and (12b) will be germane later. It is possible
to show" that 4/x is a monotone-decreasing function of
x for any neutral atom solution of the generalized
Thomas-Fermi equation; hence the domain of validity
X»1 of Eq. (10) becomes

k T« (Ze'/p) 4 b/xb. (13)

The asymptotic series on which Eq. (10) is based is
divergent for S suKciently large, so that an optimum
E exists for a given accuracy when the inequality (13)
is fulfilled for a given X.

For this same domain of validity, the corresponding
asymptotic expansion of I;(X) yields for the pressure P
from Eq. (6),

Z'e' f'4bq I' N 5t„(kTxb) s"'
1+& I I (14)

10vrp4 E xb ) ~=& 5—4' & 4b )
where the chemical potential kTq has been evaluated
from Eq. (9) as

kTr)= (Ze'/p)4b/xb (15)

(since V=0 at the atom boundary). From Eqs. (4) and
(9), the energy E,„can be evaluated as

E,„=(Z'e'/p) (4,' —4 b/xb), (16)

where 4,' is the initial slope $B4/Bxj b The v. olume e of
the atom is determined by the boundary condition
(12b) as e= (47r/3)p'xb' These .thermodynamic func-
tions are the ones given directly by solution of the
differential Eq. (10).

With use of Eqs. (15) and (16), Brachman's Eq. (8)
for C, yields

Be/Bx =(4~/x~) 1++ t-.(kTx/4)'" (10)
(BE't 7 ( B p Zses

T-' »+ 4, (17)
&BT)„4 iBT) „

in which e &1,
{„=(p/Ze')'"a,

4(o,x,) =1,

B4 (x,xb)
Cy=xy

8$

(12a)

(12b)

' R. E. Marshak and H. A. Bethe, Astrophys. J. 91, 239 (1940)
(referred to hereafter as MB).

'b J. McDougall and E. C. Stoner, Trans. Roy. Soc. (London)
A23?i 6? (1938)

and the coeKcients a„are dined and tabulated by
McDougall and Stoner. "Equation (10) reduces to the
usual Thomas-Fermi equation for T=O (where kTr)
approaches a constant p'). The function 4 is subject to
a boundary condition at the radius x~ of the atom which
makes it a function 4 (x,xb) of the two variables x and
xb The initi. al and boundary conditions on 4 (x,xb) are,
respectively,

where the right-hand side contains no terms depending
on integrals over the volume. This equation is a Qrst-
order partial differential equation in T for the total
energy E. Its solution is

T

E=,'T'~4) T *'(B/BT-), -
&& {T-'L»+(Z'"/~)4''3) ~T, (18)

where the integration is carried out at constant volume.
For T=O, in which case the integrand appearing is
singular, this equation gives correctly the result of
Milne4 for the energy.

Since P is expressed by Eq. (14) as an asymptotic
series in T' whose coeKcients depend on C only through
boundary values, the integral on the temperature in

~' This result has been shown by Dr. R. Latter by means of an
integral equation formulation of the generalized Thomas-Fermi

. equation.
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Eq. (18) can be evaluated if C,' can be obtained as a
function of T'. This can be dori by expanding C as an
asymptotic series

(19)

in T', where @ is the Thomas-Fermi function corre-
sponding to T=O, and the coefficients x„are functions
only of x and xb, determined by solution of the asymp-
totic Thomas-Fermi Eq. (10).Determination of the y„
requires the solution of S separate differential equa-
tions, whose analytical form can be found by substi-
tuting Eq. (19) into Eq. (10). The di6erential equation
for x„ is an inhomogeneous linear equation involv-
ing p and all perturbations of lower order. With the
functions x„available, C,' becomes

n=l
(20)

where @,
' and y„are the initial slopes corresponding

to P and y„, respectively. Since the integrand in Eq.
(18) then depends on C only through boundary and
initial parameters, the equation yields an asymptotic
series for the energy E in powers of T' through T',
which is analogous to the corresponding expansion in
the case of a degenerate Fermi-Dirac gas."

In the literature, two methods of solving the differ-
ential perturbation equations (for the case X= 1) have
been used. In the method of MB, the radius of the atom
is kept at its unperturbed value xb, and the boundary
condition (12b) is met by requiring

by subtraction of the energy of a standard state to
obtain a total energy U which is always positive. The
standard state is taken as a neutral atom of infinite
radius at zero temperature, for which the energy is
(3/7) (Z'e'/tt)p;, „', where g; „' is the corresponding
initial slope of p. Accordingly, one has

U= Z—(3/7) (Z' e'/ tc)y, ,
„'. (22)

In terms of U, a parameter y can be defined at this
point by

(23)U= Pe/(y 1). —

Further, it is convenient to introduce two differential
parameters:

e8= —(ci lnP/cl inc) s, er= —(ct lnP/cl inc)r, (24)

es/er ——C&/C. ,

where C& is the heat capacity at constant pressure. The
energy equation of thermodynamics" provides a con-
nection

es=y —/el in(y —1)/ct inc]s (26)

between eq and y. An integral relation between eq and

p can be derived directly from the first law of thermo-
dynamics; it is'

(27)

which are the (negative) slopes of the pressure-volume
curves in log-log coordinates for constant entropy and
for constant temperature respectively. These parameters
are connected by the relation"

Xn, b Xb
ciy„(x,xt,)

BX X =Xb
(21)

which one can show by direct mathematical processes
to be an integral of Eq. (26). An integration by parts
on the integral in Eq. (27) shows that 7 & e8.

where x„,b is the boundary value of X„at the atom
boundary xb. In this case, the initial slope of the per-
turbation must be selected (by trial) so that Eq. (21)
is met at the boundary. In the method of FMT, the
initial slope is set equal to zero, and a perturbed radius
xb* of the atom is determined at which the boundary
condition (12b) is met. The method of FMT is computa-
tionally far more convenient, but the method of MB
avoids the complication of introducing a perturbation
in the volume. In any event, solutions of the differential
perturbation equation of any order by the two methods
can differ only by a solution of the corresponding homo-
geneous equation. Thus it is possible to express the
pertinent parameters on the method of MB in terms of
corresponding parameters derived by the computa-
tionally more convenient method of FMT; in Sec. 4b,
this process is carried out explicitly for the case S= i.

For the subsequent development of the thermo-
dynamics, it is convenient to modify the total energy E

n J. E Mayer and M. . G. Mayer, Statistical mechanics (John
%Riley and Sons, Inc. , New York, 1940), p. 374.

cl'y/rix'= y~/xl. (28)

The initial value P(O, x&) of P is unity, and the boundary
value Pe satis6es the condition (12b) at the atom
radius xb. Since the entropy is zero, the isothermal and
isentropic equations of state are identical in this case;
the common value of ez and ez will be denoted by 6p,

and the value of p by pp. For the other thermodynamic

"M. W. Zernansky, Heat and Therntodynarnics (McGraw-Hill
Book Company, Inc. , New York, 1937), first edition, pp. 222,
225, 227.

~4 This result for zero temperature was derived by the author;
the generalization to nonzero temperature, by Dr. W. G.
McMillan.

3. CASE OF ZERO TEMPERATURE

In this section, the thermodynamic functions corre-
sponding to the case T=O will be developed. For
reasons that will become clear in the next section,
thermodynamic variables corresponding to this case
will be distinguished by a special notation.

For the case T=O, the Thomas-Fermi Eq. (10)
becomes
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xs'*dQ /dxs = ps'~' —sxspsl—dps/dxs. (32)

The parameter ep can be evaluated directly from Eq.
(30) as

es ——(5/6) L1—d ines/d 1nxsj, (33)

and the parameter ys can be evaluated from Eqs. (29)
and (30) as

(vs —1) '
= (3/7) L1+ (15/2) (0 '' —0', ')/(»'A'")3 (34)

For the case T=O, the partial derivative in Eq. (26)
becomes a total derivative, so that 6p and yp are equal
whenever either is constant. A lower bound on yp can
be written immediately from the virial theorem in the
form (5); since Es,& is necessarily negative, it follows
that" ~, &5/3 at T=O.

The limiting values of the thermodynamic functions
for high and low pressures can be evaluated if the
corresponding asymptotic forms of ps and p as a func-
tion of xb can be determined for xb ~ 0 and xb —+ ~.
For sufficiently high pressures, the Thomas-Fermi
atomic model must pass over into the degenerate
Fermi-Dirac gas, since the kinetic energy (varying as
1/r' in the limit of small volume) dominates the po-
tential energy (varying as 1/r). Accordingly, the po-
tential inside the atom for this limiting case is

V= (Ze/u)Lx '+-', xs 'x' —-sxs 'j (35)

which corresponds to the sum of the nuclear potential
and the potential due to a uniform distribution of Z
electrons within the atomic volume. The corresponding
value of p is thus

@=1+ s (x/xs)s —s (x/xs)+ 3&x/xs (36)

where the last term arises by evaluating the chemical
potential g'=limz phd for the Thomas-Fermi atom

"This result was derived by Dr. W. G. McMillan. The lower
limit in question does not hold for temperatures other than zero, be-
cause of the presence in the definition of U by Eq. (22) of the
energy of a standard state corresponding to T=o.

functions, the values corresponding to the case T=O
will be distinguished by use of lower case letters.

The basic tkermodynamic function is the total energy
u /corresponding to U of Eq. (22)$, evaluated by
Milne4 and SK as

I= (Z'e'/p) L(3/7) (y —4,, „')+(2/35)xs&yb"g (29)

The pressure p is

P= (Z'~/10wp4) (A/») sl', (30)

from Eq. (14). The enthalpy 1's is accordingly

h=( '+/~)L( i )(~'-~',.')+(4/ )»'~s"'j. (3 )

The Helmholtz function is identical, of course, with
the total energy, and the Gibbs function is identical
with the enthalpy. The connection between the three
variables xs, gs and g which enter the functions is
provided by p= —dN/dn, which yields the differential
relation

from the expression's r)' = (hs/8m) (3Z/m. e) ' for the chem-
ical potential of a Fermi-Dirac gas of Z electrons in the
atomic volume e, as

rl'= 31Ze'/px ' (37)

in terms of x&. Since the last term of Eq. (36) dominates
in P for xs small, one obtains

pb=3'/», y =3'~/xb', (38)

in the limit xb~O. Kith these asymptotic forms for
xb small, all the thermodynamic functions derived
reduce to the corresponding functions for a Fermi-
Dirac gas, " as one can verify. The common limiting
value of ep and ys in this case is 5/3.

The corresponding forms for the limit of low pressure
(infinite atom) can be obtained from an asymptotic
formula due to Sauvenier" (derived from a result of
Sommerfeld, "), which represents an approximate solu-
tion of the Thomas-Fermi Eq. (28) which is perturbed
slightly from the solution for an infinite atom. The
solution is

4ss+1 (1+s q
"»"&

y= (1+s)—"»' 1+
()I.r—4)ss+1 E1+sb)

where
s= (x/12-)" ss ——(xs/12-*) "&

and

(39)

(4o)

) r ———,'L731+7&, X,=-,'&73&—7j. (41)
This expression yields"

ps ——16(3+2Xr)xb 'L1 —(3+8K,)12-**»/18xs"sj (42)

as the asymptotic form of @& for xb~ ao. The corre-
sponding asymptotic form of P, follows from Sauvenier's
result, by means of Eq. (32), as

p, '=p, , „'+(256/9)(2+3Xs)(3+2)u)'~'12&~sxs ~' (43)
and is determined only by the second term of Eq. (42).
The common limiting value of ep and ys is 10/3 from
these asymptotic forms. It is possible to show" that
ps and dPs/dxs are monotonic functions of xs, which
shows that ep and ys between the limits 5/3 and 10/3
are monotonic functions of xb.

To determine thermodynamic functions for a given
volume s, one needs values of Ps and P (and their
derivatives) corresponding to xs= (3e/4n)'/p, . Fourteen
values of ps and P g;, „' correspond—ing to values of
xb are available from numerical results" of FMT and

"H. Sauvenier, Bull. Soc. Roy. Sci. Liege 8, 313 (1939).
r7 A. Sommerfeld, Z. Physik 78, 19 (1932).
"The data consists of results from six solutions of FMT

(Table III of their paper), and from eight solutions of SK, as
tabulated in Table V of Gombas (see reference 7). The value of'
p;,„'(—1.58875) given by FMT was associated with their data,
and the value (—1.58808) given by SK was associated with theirs,
in obtaining the difference @ —p;, '. In the region of xb, where
they overlap, the results of FMT and SK are discrepant; the
discrepancy is more signi6cant in @ —@;,„' than in qb&. The data
was sinoothed in this region with major weight given to the data
of FMT. For this reason, and because insufhcient significant
6gures apparently appear in the diQ'erence @ —@;,„', results of a
seventh and eighth solution of SK corresponding to the largest
volumes, as given by Gombas, have been ignored in showing data
points in Figs. 1, 2, and 3. The discrepancy in uestion has been
noted by K. Umeda )Phys. Rev. 83, 651 (1951) .
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function has this property likewise. "The fitted func-
tion and the data points are shown in Fig. 1.

With these fitted functions for pb and p, all the
thermodynamic functions discussed previously can be
determined by direct algebraic or differential processes.
In the range covered by the data of FMT and SK,
thermodynamic functions can be obtained with an
accuracy of the order of a few percent, on the. basis of
the data" employed. Outside this range the fitted func-
tions yield results which are correct in both asymptotic
limits, and their monotonic character gives some as-
surance of approximate validity, at least, outside of the
regions fitted directly. The fitted function for pb yields
the equation of state

IO

j I,OO

IO"" P2/b P g (3e/4z. +s) (n+si(6 (gse2/M~+4)2/5 (46)

IO 0 8 IO
xb

l2

FIG. 1. Fitted functions for p& and @ —ft;,„' against boundary
radius in zero-temperature case.

if n ranges over the sequence n= 2, 3, , 6 and if the
coeS.cients A2 and A6 are chosen to agree with the
corresponding coefficients in the asymptotic forms (38)
and (42), respectively. It has been found possible to
choose the intermediate coefficients 3„ to represent
the smoothed data' of FMT and SK within about 1.5
percent. The coeS.cients A„are tabulated in Table I;
since they are all positive, the fitted function is mono-
tone, as is" gb The fi.tted function pb is shown in
Fig. 1 for comparison with the data points.

The corresponding fitted function for g, '—g;, „' could
be determined, in principle, from Eq. (32), but it is
simpler to fit the data for p =p;,„' directly. A reason-
able fitting function is

=t&& xb"?

in which e ranges over the sequence n=2, 3, 7, X~,

and the coefficients 82 and B~~ are chosen to agree
with the corresponding coefficients in the asymptotic
forms (38) and (43), respectively. The smoothed data's
of FMT and SK for the difference p —p, ,

„' can be
reproduced within about 1.5 percent by means of the
coefficients 8„ tabulated in Table I. It is possible to
show" that p is a monotonic function of xb, the fitted

SK. To reduce the labor of interpolation, and in the
interest of direct accessibility of the data, it is con-
venient to 6t these results by empirical formulae chosen
to have the correct asymptotic forms in the two limits
xb ~ 0 and xb + ~ . A fitting function for pb yielding
the correct asymptotic forms can be written as

pb=I Q A xb "j '

Pressures from this equation are shown in Fig. 2 for
comparison with the corresponding quantities as calcu-
lated directly from the data of FMT and SK. The
energy u from Eq. (29) is shown likewise; the unit of
energy is the Rydberg, R= e'/2a&. A similar comparison
with directly calculated values is shown in Fig. 3 for
ys (directly calculated values are not given for ep since
it is a differential parameter). Note that pressure and
energy scale as Z"~' and Z ~3, respectively, while the
volume scales as Z '.

~'X/»'= z (4/x)'x+x'/4' (48)

TABLE I. CoefBcients' of 6tted functions, zero-temperature case.

2
3

5
6
7

Xg =7.77200

4.8075X10 '
7.009 X10 '
7-003 X10~
8.901 X10 '
3 3704X10 3

4 8075X10 '
4.3462 X10 '
6.9203X10~
5.9472 X10 2

—49688X10 3

4 3386X10 4

1 5311X10 6

& The coef6cients are given to four or five figures to minimize round-o8
error and to yield smoothness in computational work.

'9 The coefBcient 86 is negative, but one can show that qf and
dp,'/dzb from the tabulated coeKcients have no zeros for zb
positive.

4. FIRST-ORDER TEMPERATURE PERTURBATIO5'

In this section, the thermodynamic functions de-
rived for the case T=O will be generalized to include
terms in T'. The procedure corresponds to retaining
terms through T' in the expansion of the right-hand
side of the asymptotic Thomas-Fermi Eq. (10).Setting
xi=x and I i——I in Eq. (19), one can write

(47)

as a solution of the resulting equation, where p is an
unperturbed solution corresponding to T=O, and the
perturbation y satisfies
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under the initial condition x(0,xb)=0. The coeflicient

f can be evaluated (with a&=pr'/8) as pr'pP/8ZV, or as
(2.034Z4"R) P in terms of the Rydberg. The limitation
(13) on the temperature can be written

5.0

2.8
o Data of F MT
o Data of SK

Z~~'kT/R&&8 (2/9m') Ipb/xb. (49)
2.6

A particular perturbation x always corresponds to a
definite p(x, xb); the atom corresponding to this p will

be referred to as the unperturbed atom to which the
perturbation x corresponds.

In Sec. 4a following, the thermodynamic functions
will be developed in terms of parameters corresponding
to the method of MB. In Sec. 4b following, these pa-
rameters will be expressed in terms of parameters on
the method of FMT, in order to yield the thermo-
dynamic functions in that case. In a final section, nu-
merical results will be presented.

a. Method of MB

In this case, the perturbation leaves the volume e un-

changed. The boundary value y~=yi, q satisfies the
boundary condition (21) at the radius xb of the un-
perturbed atom. The initial slope g,'=x~, must be
selected by trial so that this condition is met.

It is convenient to introduce two parameters,

~=Xbldb, ~=X''/(xb'0b'"), (50)

in terms of which the boundary value C~ and initial
slope C of 4 can be written

~ =~ L1+.1-(kT) r, (51a)

c =y,'+xbfyb'~'~1. (kT)' (51b)

respectively. With use of Eq. (51a), the pressure P of
the perturbed atom follows directly from Eq. (14), by
retention only of terms through T', as

I'=PP1+ (5/2) (o+2r)1 (kT) j

N 2,4

2.2

2.0

where p is the pressure of Eq. (30) corresponding to the
unperturbed atom, and

T—$$ (53)

The parameters a-, 7, and co are functions of x~, and
thus of e.

Equations (52) and (51b) provide expansions through
terms in T' of P and C, respectively, so that the total
energy can be evaluated from Eq. (18).The energy U is

U= I+ (15/2)Pw(o+2r+3a&) f (kT)P, (54)

where I is the energy of the unperturbed atom, given
by Eq. (29). The entropy 5 is

5=15pv(o+2r+3(u) fk'T (55)

from the relation T(BS/BT)„= (BE/BT),. '1ne enthalpy
B 1S

H=k+(5/2)Pv(4o+8r+9s))1 (kT)' (56)

where k is the enthalpy of the unperturbed atom. The
Helmholtz function F is

18~ I I I lIIII I I I lllll I I I f IIII I I I

5.IO-' IO' IO' lo IO' 5~10

zv (a')—
FIG. 3. Parameters y0 and co from fitted functions for gib, and

@ —P;, ', against scaled volume in cubic angstroms; zero-tem-
perature case.

510

Io

5.IO'

Io'
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and the Gibbs function G is

G= k—(5/2) (2o+4r+9co)I (kT)P. (58)

One can verify (with the aid of the virial theorem)
that Ii satisfies the Brachman relation (7).

The parameter y is determined by

v=vp —(5/2) (vp —1)
XL(3yp —4) (~+2r)+9(yp —1)~ff(kT)', (59)
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where yo corresponds to the unperturbed atom. The
diGerential parameter ez can be obtained from the
definition as

er ep —L(5/——6)do/d lnxb+4epr)f (kT)', (60)

FIG. 2. Scaled pressure and energy from 6tted functions for @&

and @ —qb;, ', against scaled volume in cubic angstroms; zero-
temperature case.

where use has been made of the relation

dr/d lnxb ——(12/5) epr, (61)
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and eo corresponds to the unperturbed atom. To obtain
~q, note that the heat capacity C, is equal to S in this
approximation, and that the heat capacity C& is given
in general by"

Cp C.+——(pr/p) (Bv/BT) p'PT. (62)

From this equation, one can show that

(63)

y= (144/x') (1—Xi12 &/2x"') (71)

which corresponds, in Eq. (39), to replacing the square
bracket by unity and expanding the factor (1+z) "~~p.

The solution for y in this limit is

the corresponding asymptotic forms can be obtained
from the di6'erential equation (48) by substitution of the
approximation for p in this case,

in this approximation, and one obtains

(64)

3Xi12~"' x' (4+5K i) 12~"p

y=Ax"& ' 1+ +—1+
4x~

(72)

from Eq. (25).
The parameters a., 7-, and co are subject to an equation

of connection fixed by the identity (BP/BT) „=(BS/Bp) p,
which yields the diGerential relation

d(p+3pp)/d lnxb ——(3pp
—2)p'

+[(6/5) pp
—4)v+9(pp —1)(o. (65)

As one can verify, this relation is necessary and suS-
cient for the differentials of U, H, F and G, as derived
above, to be exact differentials of their arguments, and
for the Maxwell relations to be satisfied. Equation (65)
implies a differential relation between yb, g and @b

which is the analog of Eq. (32) in the zero-temperature
case.

In the limit xb —& 0 of vanishing atomic volume, the
thermodynamic functions derived must reduce to the
corresponding functions for a degenerate Fermi-Dirac
gas through terms of order T'. Substitution in the dif-
ferential equation (48) for x of the dominant terms of
Eq. (36) for P in the Fermi-Dirac limit, solution of the
resulting equation, and imposition of the boundary
condition (21) yields

where the constant A is 6xed by the boundary condi-
tion (21) as

A = —[(Xi—3)/108)xb' "'[1+(Xi—1)12&"'/6xb"'j. (73)

This solution yields

Xb= —[(2Xp—1)/2167xbb[1+X 1i2' 'i/2 x"b'7 (74)

for the boundary value of g. The value of 0. follows as

a= —[(4Xp—3)/2'34j
xxb'[1+ (3+17Xi)12'*i'/6xb"pg, (75)

with use of Eq. (42), and the value of r is

T= [(33—40&p)/2'3'jxb'. (76)

The parameter co is determined by the diGerential
identity (65), and is independent of the first-order
terms of 0. and ~ in xb'. With inclusion of a second-order
term in eo by

pp = (10/3) [1—(Xi+9)12'*"'/24xb". 'j
integration of Eq. (65) yields

x,'= —(2/3"') xb' (66) (o= —[(30+7Xp)/2'3~$12l"'xbp "&. (78)
for the initial slope. The corresponding solution for x
in the Fermi-Dirac limit is

x= —(2/3'I') xb'x, (67)

which is a straight line in x. The boundary value of x
is thus

(68)xb= —(2/3'")xb'

and the parameters 0 and co become

o-= —(2/3'")xb', pp= —(2/3'PIP)xb', (69)

with use of the first of Eqs. (38). The parameter r is

r = (1/34'P) xb4. (70)

One can verify that, with these asymptotic forms, all
the thermodynamic functions derived reduce to the
corresponding functions for a degenerate Fermi-Dirac
gas through terms of order T'. The inequality (49) in
this case requires that Z~~bkT/R be less than a quan-
tity proportional to xb 2, so that large temperatures are
permitted.

In the opposite limit of an infinite atom, for xb —+ ~,

The corresponding value of the initial slope x; is

g,'= —(2/3') (30+7Xp) (3+2Xi)'"12*'"&xb'—"'. (79)

The inequality (49) limiting the temperature requires
that Z~lpkT/R be much less than a quantity propor-
tional to xb 4 in this case, and thus demands tempera-
tures approaching zero as xb ~ ~ .

b. Method of FMT

In this case, the perturbed volume of the atom is
allowed to differ from the unperturbed volume. The
perturbation function g* satisfies Eq. (48), with an
initial slope equal to zero. The radius of the atom
boundary is fixed by the condition (12b).

For a definite zero-temperature solution p and corre-
sponding perturbation g*, the radius xb* can be deter-
mined approximately from the boundary condition in
terms of the radius xb corresponding to the unperturbed
atom, if p, g* and their derivatives are expanded in
Taylor series about the point x=xb. Making use of the
differential Eqs. (28) and (48) and the boundary con-
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dition on g, one obtains in 6rst order

xb* x——bt 1+vf'(kT)'7,

where the parameter v is defined by

(80)

.
v= (xb*—xbxb*')/(xWb)', (81)

9.5651
10.8038
15.8698

xf*

1747.3
3068.2

18731.

x&*'

834.82
1315.7
5689.1

x&

—812—1320
-6420

TABI.E II. Boundary and initial parameters,
temperature-perturbed case.

x&

-13.4—15.7—24.8

in which pb is the value of g at the boundary x=xb of
the unperturbed atom, ' and y~* and yq*' are the values
of x~ and Bx*/Bx, respectively, evaluated at the same
point x=x~. The volume v* of the perturbed atom is
accordingly

u*= ~L1+3vt (kT)'7, (82)

$8 (8g/Bxb)/Bx7 b dp /dx——b, (86)

where p, ' is the initial slope of the zero-temperature
solution p(x, xb). The function p~ then satisfies the
boundary condition (12b) at xb* automatically.

Evaluation at x=xb of Eq. (84) for x*, with use of

in terms of the volume e of the corresponding unper-
turbed atom.

To relate g* with g for the same volume e*, where x
is the perturbation function computed by the method
of MB, one notes that x must satisfy Eq. (48) with a

g* chosen to correspond to the perturbed atom
radius xb*. The value of p* is, accordingly,

y*=y(x,xb)+t'ay(x, xb)/Bxb7(xb* xb),— (83)

where p(x, xb) is the unperturbed solution to which x*
corresponds. Substitution of P* into the perturbation
Eq. (48) to obtain the differential equation for x, and
comparison of the result with the differential equation
for p*, yields

x*=x+ vxb8&/Bxb

with use of Eq. (80).
The function 8$/Bxb is a solution of the homogeneous

equation,
8'(By/Bxb)/Bx'= ', (y/x) &-By/Bx, (85)

corresponding to the inhomogeneous perturbation equa-
tion, as one can verify by differentiating the zero-
temperature Eq. (28) with respect to xb. At the origin,
the function vanishes and its slope satisfies the initial
condition,

Equations (88) and (90) 6X completely the signi6cant
parameters gb and y on the method of MB in terms
of quantities computed by the method of FMT. In
terms of the parameters 0 and ~, one obtains, from Eq.
(88),

0' =0' + (6/5) 6 vb&

where 0*=xb*/pb, and one obtains

~= C4/3 —(2/5) b,7v,

(91)

(92)
from Eq. (90).

Thermodynamic functions for the volume v are avail-
able from preceding results in terms of the parameters
r and co corresponding to the method of MB. To deter-
mine a thermodynamic function for the volume v~ in
terms of the parameters 0-* and v corresponding to the
method of FMT, it is necessary merely to take account
of the perturbation in the temperature-independent
term due to the volume change, e*—v, and to transform
0. and ~ into 0.* and v by the preceding equations. Thus,
if I'* is the pressure corresponding to the volume e*,
one has

P' =P+ (dp/dv) (v*—v), (93)

if P corresponds to e. With use of Eq. (82) for e*—v and
the defining equation for eo, one obtains

P+ =pt 1+(5/2) (0'++2r) f'(kT)27. (94)

In a similar manner, it can be shown that the energy
U* corresponding to e* is

U =I+2pv(50*+ 10r+18v)l (AT)2, (95)

and that the entropy 5* is

S*=15P~(o~+2r+4v)l 7r,'T. (96)

It is clear that these results are easily modified to
take account of the use of an arbitrary initial slope
(rather than zero) in the method of FMT.

drab/dxb yb/xb+ $8——y(x)xb)/Bxb7x =zb, (87)
c. Numerical Results

yields the relation

Xb= Xb*+(6/5) ebvyb (88)
Three solutions by their method of the first-order

temperature-perturbation equation have been tabu-

between boundary values computed under the two
methods. Differentiation of the same equation with
respect to x and evaluation at @=0 yields the further
relation

TABLE III. CoeKcients of Gtted functions,
temperature-perturbed case.

xb&yb&Xb+ 3X, = xb&4b&Xb +4vxb&4 b I, (89)

when Eqs. (86) and (32) are employed. The last two
equations give

—3.205X10 '
—4 021X10~—2 519X10 '

1—X2=0.22800
1
2

—5.805X10 3

—3.755X10 '
—3.120

x''= L4/3- (2/5) «7vxb'A"'.
& The coeKcients are given to four figures to minimize round-oB error

and to yield smoothness in computational work.
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tions involve the differential parameter eo, which has
been determined from the fitted function (44) for ps,
the accuracy of pb and p cannot be guaranteed as
better than a few percent.

As in the zero-temperature case, it is desirable to
represent the pertinent quantities, which the diGeren-
tial equation yields, by fitted functions having the
proper asymptotic behavior in the two limits xb —+0
and xb ~ . It is convenient to use parameters corre-
sponding to the method of MB, in order to avoid the
complication of a perturbation in the volume. The
quantity xb can be represented by

xs=g C xs", (97)
2000

1000

14

12

if n=3, 4, 5, and the coeKcients C3 and C5 are chosen
to agree with the corresponding coefficients in the
asymptotic forms (68) and (74), respectively. Similarly
x can be represented by

0
8 10 l2 14 16

10
18

FIG. 4. Fitted functions for X& and X against boundary
radius in temperature-perturbed case.

lated by FMT. The corresponding values of zb* and pb*'
have been determined by quartic interpolation from
their data and are tabulated in Table II against the
unperturbed radius xb to which they correspond. The
corresponding values of yb and X on the method of MB
have been determined by use of Eqs. (88) and (90)
respectively and tabulated likewise. Since these equa-

x''=I 2 D xs "j ', (98)

2.0 200

if e ranges over the sequence 1—X2, 1, 2 and the coeffi-
cients Ds and Di-i, s are fixed by Eqs. (66) and (79),
respectively. The coefficients C„and D„ tabulated in
Table III reproduce" the values of Table II within
about 1 percent in the case of xb and within about 3
percent in the case of x,'. It can be shown that xb and

are monotonic functions of xb, as are the fitted func-
tions. The fitted functions and the data points are
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FIG. 5. Perturbation parameters o, r, and co from fitted func-
tions for x&, p and @&, against boundary radius in temperature-
perturbed case.

FIG. 6, Scaled pressure perturbation and energy perturbation
from 6tted functions for xb, x and @b, against scaled volume in
cubic angstroms; temperature-perturbed case.

'o By adjusting the exponent as weH as the coeKcient of the
middle term in Eqs. (97) and (98), one can obtain a much closer
Gt. The accuracy obtained is considered su%cient, however, since
yq and x are perturbation parameters. Note further that r
(known only to a few 'percent from the Qtted function for ps) ex
ceeds —o. by a factor of about two and —~ by a factor of 6ve or
six, over the range of xs-corresponding to the data (Fig. 5).
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shown in Fig. 4. Values of the parameters 0 and co com-
puted from the 6tted functions, as well as values of v,
are shown in Fig. 5 with directly computed values
(omitted in the case of r).

In Fig. 6, the effect of the erst-order temperature
perturbation on the equation of state is shown graphi-
cally by plotting Z I(kT/2) s(P—P), which is inde-
pendent of T, as a function of Ze. The energy per-
turbation U—I in units of the Rydberg is shown simi-
larly. The entropy 5 is not shown, since the value of
Z&(kT/E) 'S in E/'K divers from ZI(kT/R) s(U —u),
as plotted, by the numerical factor 1.27&10 '. The
parameters cz and y are shown in similar fashion in
Fig. 7. The quantity 8(2/9ss)&g&/x&, relative to which
Z~/skT/E must be small, is shown by the dashed
curve in Fig. '/. Note that the perturbation in a thermo-
dynamic function scales with Z differently than does
the unperturbed function (for fixed temperature).

5. CONCLUSION
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As mentioned in the Introduction, neglect of ex-
change makes the results obtained valid only in the
limit of high Z and high compression. It is hoped to
extend this work by including exchange to remove this
limitation. Since initiation of this work, extensive
numerical results obtained by Dr. R. Latter indicate
some systematic errors in the published data used; it is
planned in the future to give 6tted functions for the
solution parameters which are based on more accurate
data.
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