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It is shown that an expression for the Helmholtz function on the Thomas-Fermi atom model permits one,
in the limit of low temperature T', to expand the total energy as an asymptotic series in 72. The leading term
of the expansion is a known analytic expression for the energy at T'=0, from which one can calculate the
pertinent thermodynamic functions for this case in their dependence on the atom radius and on the boundary
and initial parameters associated with a solution of the zero-temperature Thomas-Fermi equation. Pub-
lished values of these parameters are fitted by functions of the atom radius having the correct asymptotic
behavior in the two limiting cases of an infinitesimal and an infinite atom. This procedure makes thermo-
dynamic functions in this case directly available. Thermodynamic functions for the case of a first-order
temperature perturbation are derived from the corresponding term in the asymptotic expansion of the
energy. They depend (in addition to dependence on parameters of the unperturbed atom) on two parameters
derived from solution of the differential perturbation equation. These parameters differ according as the
differential perturbation equation is solved under a condition of fixed atomic volume or of zero initial slope
(which is computationally more convenient and corresponds to published solutions). The asymptotic forms
of the parameters in the first case are determined for the two limits of an infinitesimal and an infinite atom.
The boundary and initial parameters corresponding to fixed atomic volume are expressed in terms of the
parameters corresponding to a solution under zero initial slope, and are evaluated in three cases from pub-
lished solutions. These values are fitted by functions of the atom radius which have the proper limiting
behavior for an infinitesimal and an infinite atom. Thus, approximate values of the first-order temperature
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perturbations of thermodynamic functions become directly available.

HE statistical theory of Thomas!' and Fermi,?

generalized to arbitrary temperature, contains
implicitly a complete thermodynamic specification of
the atom model. Brachman? has derived expressions on
this model for the Helmholtz function, the entropy,
and the heat capacity at constant volume. This paper
shows that Brachman’s results permit one to expand
the energy as an asymptotic series in powers of the
temperature. With this expansion available, it is pos-
sible to exhibit explicitly the thermodynamics of the
Thomas-Fermi atom model for the case of a first-order
temperature perturbation. The thermodynamic func-
tions for the case of zero temperature can be obtained
directly from an analytic expression due to Milne! for
the energy. In this case, the thermodynamic functions
can be made directly accessible by fitting semi-em-
pirically as a function of atom radius the pertinent
parameters derived from solution®7 of the Thomas-
Fermi equation. A corresponding procedure can be
carried out in the temperature-perturbed case.’ The
effect of exchange® will be neglected throughout, which
makes the results valid only in the limit of high atomic
number at sufficiently high compression.
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1. INTRODUCTION

By the generalized Thomas-Fermi equation shall be
meant Poisson’s equation V2V =4mrep for the potential
V(r), at a point 7 in a spherically symmetric atom and
due to electrons of charge —e and a number density
p(r) which is a function of the temperature T':

p= (4m/13) (2m)} (RT)H 3 (eV /KT +n). )

Here m is the electron mass, kT is the chemical po-
tential, # and %k are the Planck and Boltzmann con-
stants, respectively. The function I;(\) is defined by

I(\)= f y*exp(y—N)+11"dy. (2)

The kinetic energy Exin on this model corresponds to a
kinetic energy density exin(7) given by

exin= (4x/I%) 2m}(RT)* L3 (eV/RT+m).  (3)

The potential energy E,, consists of two terms, E,,
and E., where E,, corresponding to the electron-
electron interaction equals the integral — (e/2) fopV dr
over the volume v of the atom (dr=4wr%dr), and E,,
= —¢fopVadr corresponding to the electron-nucleus
interaction is

Eo=2eV ,(0)=Ze[d(Vr)/dr ], @

if V.(r) and V,(r)=Ze/r are the potentials due to the
electrons and the nucleus, respectively. If one of the
energies Eyin= foexind7, Epos or the total energy
E=Eyin+Ep is known, the other two energies can
be determined directly from the virial theorem,

E=$§Pv+3Ep, (5)
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where P is the pressure given by
P=3exin(a),

in which a is the atom radius.

Brachman® has shown by an explicit temperature
integration of the Gibbs-Helmholtz equation, that the
Helmholtz function F on the Thomas-Fermi model is

given by
Q)

from which the entropy .S and heat capacity C, at con-
stant volume follow directly. His expression for the
heat capacity C, can be written

= (1/4)E+-$T*(9/9T),[ (Pv+E..+ZkTn)/T], (8)
by means of Egs. (4) and the virial theorem (5).

(6)

F=—%Eyn—E .+ ZkTy,

2. GENERAL PERTURBATION METHOD

Brachman’s Eq. (8) for C, will be made the basis
in this section of a perturbation calculation of the
total energy E. All the thermodynamic functions can
be obtained once the energy is available.

It is convenient to define a ® (generalizing in the
manner of MB? the usual Thomas-Fermi function ¢
corresponding to zero temperature) by

2@/ ux=eV-+kTn, )

where x is defined by r=pux, and u equals ao(97%/1282)%
in terms of the radius a@¢ of the first Bohr orbit for
hydrogen. By means of an asymptotic expansion® for
I;(\) applied to p of Eq. (1), which is valid for A= Ze*®/
uxkT>>1, the asymptotic form of the generalized
Thomas-Fermi equation for low temperatures becomes

6001 = (‘I>*/x*)[1+§ a(ka/@?"], (10)

in which #>1,
= (u/Zé&)*"a,, (1)

and the coefficients a, are defined and tabulated by
McDougall and Stoner.® Equation (10) reduces to the
usual Thomas-Fermi equation for 7=0 (where kTy
approaches a constant 7). The function @ is subject to
a boundary condition at the radius x; of the atom which
makes it a function ®(x,xs) of the two variables x and
#p. The initial and boundary conditions on ®(x,x;) are,
respectively,

®(0,25) =1, (122)
0P (x,xb) ‘
= xb[ ox ] ~a:b’ (125)

®R. E. Marshak and H. A. Bethe, Astrophys. J. 91, 239 (1940)
(referred to hereafter as MB).
10 T McDougall and E. C. Stoner, Trans. Roy. Soc. (London)
A237, 67 (1938).
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where ®,=® (xs,%s) is the boundary value of ®. The
distinction implied by the partial derivative notation in
Egs. (10) and (12b) will be germane later. It is possible
to show!! that &/« is a monotone-decreasing function of
x for any neutral atom solution of the generalized
Thomas-Fermi equation; hence the domain of validity
AM>1 of Eq. (10) becomes

RTK (Ze2/u)<I>b/xb (13)

The asymptotic series on which Eq. (10) is based is
divergent for N sufficiently large, so that an optimum
N exists for a given accuracy when the inequality (13)
is fulfilled for a given A.

For this same domain of validity, the corresponding
asymptotic expansion of I3(A) yields for the pressure P
from Eq. (6),

ZZeZ (I)b 5/2

P o) [
10mut \ xp

where the chemical potential 2Ty has been evaluated

from Eq. (9) as
kTn=(Ze*/ ) ®v/xv (15)

(since V=0 at the atom boundary). From Egs. (4) and
(9), the energy E., can be evaluated as

= (2°¢"/u) (B — Bv/ 1), (16)

where ®;’ is the initial slope [0®/% Js—o. The volume v of
the atom is determined by the boundary condition
(12b) as v=(4n/3)udx;3. These thermodynamic func-
tions are the ones given directly by solution of the
differential Eq. (10).

With use of Egs. (15) and (16), Brachman’s Eq. (8)

for C, yields
1(5z) () [ ]} o

where the right-hand side contains no terms depending
on integrals over the volume. This equation is a first-
order partial differential equation in T for the total
energy E. Its solution is

N sfn (kT b

=t 5—4n ]’ 48

T
—37 [ 1-/a1),
0

X{T [P+ (2°/u)®{ 1}dT, (18)
where the integration is carried out at constant volume.
For T=0, in which case the integrand appearing is
singular, this equation gives correctly the result of
Milnet for the energy.

Since P is expressed by Eq. (14) as an asymptotic
series in 7% whose coefficients depend on & only through
boundary values, the integral on the temperature in

11 This result has been shown by*Dr. R. Latter by means of an
integral equation formulation of the generalized Thomas-Fermi
equation.
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Eq. (18) can be evaluated if ®; can be obtained as a
function of 72. This can be done by expanding ® as an
asymptotic series

N
D=4+ ek, (19)

in 72, where ¢ is the Thomas-Fermi function corre-
sponding to 7'=0, and the coefficients x, are functions
only of x and «;, determined by solution of the asymp-
totic Thomas-Fermi Eq. (10). Determination of the x»
requires the solution of V separate differential equa-
tions, whose analytical form can be found by substi-
tuting Eq. (19) into Eq. (10). The differential equation
for x, is an inhomogeneous linear equation involv-
ing ¢ and all perturbations of lower order. With the
functions x, available, ®; becomes

N
=/ +2 {nxn, i (RT)*", (20)
n=1

where ¢;” and x,,; are the initial slopes corresponding
to ¢ and xa., respectively. Since the integrand in Eq.
(18) then depends on @ only through boundary and
initial parameters, the equation yields an asymptotic
series for the energy E in powers of 7?2 through 7%V,
which is analogous to the corresponding expansion in
the case of a degenerate Fermi-Dirac gas.!?

In the literature, two methods of solving the differ-
ential perturbation equations (for the case N=1) have
been used. In the method of M B, the radius of the atom
is kept at its unperturbed value x;, and the boundary
condition (12b) is met by requiring

Axn (%) J
ox x =xb,

@1

Xn, b=xb[

where x5 is the boundary value of x. at the atom
boundary xs. In this case, the initial slope of the per-
turbation must be selected (by trial) so that Eq. (21)
is met at the boundary. In the method of FMT, the
initial slope is set equal to zero, and a perturbed radius
x5* of the atom is determined at which the boundary
condition (12b) is met. The method of FMT is computa-
tionally far more convenient, but the method of MB
avoids the complication of introducing a perturbation
in the volume. In any event, solutions of the differential
perturbation equation of any order by the two methods
can differ only by a solution of the corresponding homo-
geneous equation. Thus it is possible to express the
pertinent parameters on the method of MB in terms of
corresponding parameters derived by the computa-
tionally more convenient method of FMT; in Sec. 4b,
this process is carried out explicitly for the case N=1.

For the subsequent development of the thermo-
dynamics, it is convenient to modify the total energy E

2 J. E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley and Sons, Inc., New York, 1940), p. 374.
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by subtraction of the energy of a standard state to
obtain a total energy U which is always positive. The
standard state is taken as a neutral atom of infinite
radius at zero temperature, for which the energy is
(3/7)(Z%¢%/w)ds, ', where ¢, is the corresponding
initial slope of ¢. Accordingly, one has

U=E—(3/7)(Z*¢/ )i, (22)

In terms of U, a parameter v can be defined at this
point by
U=Py/(y—1). (23)

Further, it is convenient to introduce two differential
parameters:

€= — (6 lnP/a Inv) S, €r=— (a lnP/a ln‘l))qv, (24)

which are the (negative) slopes of the pressure-volume
curves in log-log coordinates for constant entropy and
for constant temperature respectively. These parameters
are connected by the relation'

es/er=Cp/C,, (25)

where Cp is the heat capacity at constant pressure. The
energy equation of thermodynamics®® provides a con-
nection

es=vy—[0In(y—1)/3 Inv]s (26)

between es and y. An integral relation between eg and
v can be derived directly from the first law of thermo-
dynamics; it is**

U
y= f esdU=(es)o, @7
0

which one can show by direct mathematical processes
to be an integral of Eq. (26). An integration by parts
on the integral in Eq. (27) shows that v >es.

3. CASE OF ZERO TEMPERATURE

In this section, the thermodynamic functions corre-
sponding to the case 7'=0 will be developed. For
reasons that will become clear in the next section,
thermodynamic variables corresponding to this case
will be distinguished by a special notation.

For the case 7=0, the Thomas-Fermi Eq. (10)
becomes

%/ 9x2=¢3/xt, (28)

The initial value ¢ (0,%5) of ¢ is unity, and the boundary
value ¢, satisfies the condition (12b) at the atom
radius x;. Since the entropy is zero, the isothermal and
isentropic equations of state are identical in this case;
the common value of eg and er will be denoted by e,
and the value of ¥ by . For the other thermodynamic

1B M. W. Zemansky, Heat and Thermodynamics (McGraw-Hill
;32050k2 (;ompany, Inc., New York, 1937), first edition, pp. 222,
27.
1'This result for zero temperature was derived by the author;
the generalization to nonzero temperature, by Dr. W. G.
McMillan.
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functions, the values corresponding to the case 7=0
will be distinguished by use of lower case letters.

The basic thermodynamic function is the total energy
u [corresponding to U of Eq. (22)], evaluated by
Milnet and SK as

u=(2¢/w)[(3/7) (p/ —¢:,0")+ (2/35)as*pe™2].  (29)
The pressure p is
= (226%/10mu?) (¢s/ %), (30)

from Eq. (14). The enthalpy % is accordingly
h=(Z?¢/w)[ (3/7) (¢ — i)+ (4/21)m¥¢pp®2].  (31)

The Helmholtz function is identical, of course, with
the total energy, and the Gibbs function is identical
with the enthalpy. The connection between the three
variables x5, ¢» and ¢, which enter the functions is
provided by p= —du/dv, which yields the differential
relation

xb*d¢,~'/dxb= — P2 —Layppidps/ dxy. (32)

The parameter ¢ can be evaluated directly from Eq.
(30) as
€= (5/6) [1 —d lnqu/d Inxb], (33)

and the parameter v, can be evaluated from Egs. (29)
and (30) as

(yo—1)?
= (3/N[1+(15/2) (¢S — i)/ (xe2ps®2)].  (34)

For the case =0, the partial derivative in Eq. (26)
becomes a total derivative, so that e and v, are equal
whenever either is constant. A lower bound on v, can
be written immediately from the virial theorem in the
form (5); since Epos is necessarily negative, it follows
that!® y¢>5/3 at T=0.

The limiting values of the thermodynamic functions
for high and low pressures can be evaluated if the
corresponding asymptotic forms of ¢ and ¢,’ as a func-
tion of x can be determined for x, — 0 and x, — .
For sufficiently high pressures, the Thomas-Fermi
atomic model must pass over into the degenerate
Fermi-Dirac gas, since the kinetic energy (varying as
1/7% in the limit of small volume) dominates the po-
tential energy (varying as 1/7). Accordingly, the po-
tential inside the atom for this limiting case is

V= (Ze/w[a45a5 32—y ], (35)

which corresponds to the sum of the nuclear potential
and the potential due to a uniform distribution of Z
electrons within the atomic volume. The corresponding
value of ¢ is thus ’

¢=143(w/x)’ — § (/1) 3%/ we?, (36)

where the last term arises by evaluating the chemical
potential %’ =limz0k7T% for the Thomas-Fermi atom

15 This result was derived by Dr. W. G. McMillan. The lower
limit in question does not hold for temperatures other than zero, be-

cause of the presence in the definition of U by Eq. (22) of the
energy of a standard state corresponding to 7'=0.
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from the expression!? v’ = (h2/8m) (3Z/7v)? for the chem-
ical potential of a Fermi-Dirac gas of Z electrons in the
atomic volume v, as

7' =3Z¢?/ uxs? (37

in terms of ;. Since the last term of Eq. (36) dominates
in ¢ for x; small, one obtains
¢b=3%/xb) ¢i,=3§/xb2, (38)
in the limit x; — 0. With these asymptotic forms for
xs small, all the thermodynamic functions derived
reduce to the corresponding functions for a Fermi-
Dirac gas,'? as one can verify. The common limiting
value of € and 7o in this case is 5/3. :
The corresponding forms for the limit of low pressure
(infinite atom) can be obtained from an asymptotic
formula due to Sauvenier'® (derived from a result of
Sommerfeld,'”), which represents an approximate solu-
tion of the Thomas-Fermi Eq. (28) which is perturbed

slightly from the solution for an infinite atom. The
solution is
4711 142\ M/
¢=(1+z)‘“’2|:1+ : ( ) ], (39)
()\1—'4)}Zb+1 1+Zb
where
z=(x/128)%, 2= (1p/12%)%2, (40)
and
M=3[734+7T], N=1[73}—7]. (41)
This expression yields!®
$o=16(3+211)xs3[1— (3+8N1)1282/18x;,2]  (42)

as the asymptotic form of ¢, for x, — . The corre-
sponding asymptotic form of ¢, follows from Sauvenier’s
result, by means of Eq. (32), as

& =i+ (256/9) (243N2) (34215212 2M (43)

and is determined only by the second term of Eq. (42).
The common limiting value of € and v, is 10/3 from
these asymptotic forms. It is possible to show!! that
¢ and dg¢y/dx, are monotonic functions of x,, which
shows that € and vo between the limits 5/3 and 10/3
are monotonic functions of ws.

To determine thermodynamic functions for a given
volume v, one needs values of ¢, and ¢; (and their
derivatives) corresponding to xy= (3v/4w)}/u. Fourteen
values of ¢y and ¢/ —¢;.," corresponding to values of
xp are available from numerical results!® of FMT and

16 H. Sauvenier, Bull. Soc. Roy. Sci. Liege 8, 313 (1939).

17 A. Sommerfeld, Z. Physik 78, 19 (1932).

18 The data consists of results from six solutions of FMT
(Table III of their paper), and from eight solutions of SK, as
tabulated in Table V of Gombas (see reference 7). The value of
‘b’ (—1.58875) given by FMT was associated with their data,
and the value (—1.58808) given by SK was associated with theirs,
in obtaining the difference ¢;’—¢s,’. In the region of x5, where
they overlap, the results of FMT and SK are discrepant; the
discrepancy is more significant in ¢;’—¢;,.’ than in ¢;. The data
was smoothed in this region with major weight given to the data
of FMT. For this reason, and because insufficient significant
figures apparently appear in the difference ¢;'—;...’, results of a
seventh and eighth solution of SK corresponding to the largest
volumes, as given by Gombas, have been ignored in showing data
points in Figs. 1, 2, and 3. The discrepancy in question has been
noted by K. Umeda [Phys. Rev. 83, 651 (1951)q]
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Fic. 1. Fitted functions for ¢ and ¢;’—¢:,«’ against boundary
radius in zero-temperature case.

SK. To reduce the labor of interpolation, and in the
interest of direct accessibility of the data, it is con-
venient to fit these results by empirical formulae chosen
to have the correct asymptotic forms in the two limits
25— 0 and x — . A fitting function for ¢, yielding
the correct asymptotic forms can be written as

bp= [Z Ay ],

if # ranges over the sequence =2, 3, - - -, 6 and if the
coefficients A, and A¢ are chosen to agree with the
corresponding coefficients in the asymptotic forms (38)
and (42), respectively. It has been found possible to
choose the intermediate coefficients 4, to represent
the smoothed data!® of FMT and SK within about 1.5
percent. The coefficients 4, are tabulated in Table I;
since they are all positive, the fitted function is mono-
tone, as is'! ¢,. The fitted function ¢, is shown in
Fig. 1 for comparison with the data points.

The corresponding fitted function for ¢/ —¢s,.’ could
be determined, in principle, from Eq. (32), but it is
simpler to fit the data for ¢;/=¢;,. directly. A reason-
able fitting function is

¢i, - ¢i, eo, = [Z anbn]_ly

in which # ranges over the sequence #=2, 3, -7, Ay,
and the coefficients By and Bx; are chosen to agree
with the corresponding coefficients in the asymptotic
forms (38) and (43), respectively. The smoothed data'®
of FMT and SK for the difference ¢/ —¢; . can be
reproduced within about 1.5 percent by means of the
coefficients B, tabulated in Table I. It is possible to
show!! that ¢, is a monotonic function of x5; the fitted

(44)

(45)
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function has this property likewise.”® The fitted func-
tion and the data points are shown in Fig. 1.

With these fitted functions for ¢, and ¢/, all the
thermodynamic functions discussed previously can be
determined by direct algebraic or differential processes.
In the range covered by the data of FMT and SK,
thermodynamic functions can be obtained with an
accuracy of the order of a few percent, on the basis of
the data!® employed. Outside this range the fitted func-
tions yield results which are correct in both asymptotic
limits, and their monotonic character gives some as-
surance of approximate validity, at least, outside of the
regions fitted directly. The fitted function for ¢, yields
the equation of state

6
P15 A, (30/4mpd) HOI5= (2262/10mud)¥ls.  (46)
n=2

Pressures from this equation are shown in Fig. 2 for
comparison with the corresponding quantities as calcu-
lated directly from the data of FMT and SK. The
energy # from Eq. (29) is shown likewise; the unit of
energy is the Rydberg, R=e¢?/2a,. A similar comparison
with directly calculated values is shown in Fig. 3 for
vo (directly calculated values are not given for ¢, since
it is a differential parameter). Note that pressure and
energy scale as Z'% and Z73, respectively, while the
volume scales as Z7L.

4. FIRST-ORDER TEMPERATURE PERTURBATION

In this section, the thermodynamic functions de-
rived for the case I'=0 will be generalized to include
terms in 7% The procedure corresponds to retaining
terms through 7?2 in the expansion of the right-hand
side of the asymptotic Thomas-Fermi Eq. (10). Setting
x1=x and {1=¢ in Eq. (19), one can write

b=¢+x{ (RT)? 47

as a solution of the resulting equation, where ¢ is an

unperturbed solution corresponding to 7=0, and the

perturbation x satisfies
O*x/0x*=3(¢/x)}x+aY/g (48)

TasLE I. Coefficients® of fitted functions, zero-temperature case.

n An Ba
2 4.8075X 1071 4.8075X1071
3 7.009 X103 4.3462X10!
4 7.003 X102 6.9203 X102
5 8.901 X103 59472102
6 3.3704X 1073 —4.9688% 1073
7 4.3386X10™
M =17.77200 1.5311X10™8

= The coefficients are given to four or five figures to minimize round-off
error and to yield smoothness in computational work.

18 The coefficient B is negative, but one can show that ¢;’ and
d¢i’/dxy from the tabulated coefficients have no zeros for xs
positive.
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under the initial condition x(0,xs)=0. The coefficient
¢ can be evaluated (with a;=2/8) as 7%u?/8Z%", or as
(2.034Z*3R)~? in terms of the Rydberg. The limitation
(13) on the temperature can be written

Z4E T/ RKS(2/972) ¥pv/ 3. (49)

A particular perturbation x always corresponds to a
definite ¢(x,xs); the atom corresponding to this ¢ will
be referred to as the unperturbed atom to which the
perturbation x corresponds.

In Sec. 4a following, the thermodynamic functions
will be developed in terms of parameters corresponding
to the method of MB. In Sec. 4b following, these pa-
rameters will be expressed in terms of parameters on
the method of FMT, in order to yield the thermo-
dynamic functions in that case. In a final section, nu-
merical results will be presented.

a. Method of MB

In this case, the perturbation leaves the volume v un-
changed. The boundary value xs=x1s satisfies the
boundary condition (21) at the radius x; of the un-
perturbed atom. The initial slope x;'=x1,/ must be
selected by trial so that this condition is met.

It is convenient to introduce two parameters,

w=x4'/ (xs*¢s*?), (50)

in terms of which the boundary value ®, and initial
slope ®;/ of ® can be written

By = 14+0¢ (RT)2], (51a)
<I>;’=¢¢'+xb*¢b5/2w§’(kT)2, (51b)

respectively. With use of Eq. (51a), the pressure P of
the perturbed atom follows directly from Eq. (14), by
retention only of terms through 7% as

=X/,

P=p[1+(5/2) (o +27)¢ (kT)*], (52)
540: é\'\ E:Io'
0 ; \q\ o Data of FMT ?
o° éﬁk oData of SK ;IO"
é loq;_ \u\;Bﬂ\ ;IO" 73;
glo-z %_ \ﬁk —;IO 2 Zé-
10 ;_ — \\:\\ Jio*
10 :_ \ \j 10
10° ;_ b\ ; 10°®
I0:$;|IH 1 11 1111 1 1l 1Ll 1 1L Litl 1 [;IO'G.
510 o"108 ' 10' ! 102 I 10° - 510010

Zv (AY)—

F1G. 2. Scaled pressure and energy from fitted functions for ¢

and ¢i'—¢i.«’, against scaled volume in cubic angstroms; zero-
temperature case.
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e
2.0

G}

€270
n
D
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N o I S 11 R NI N 011 B R
510" 10° 10' 102 10%
Zv(As)—’

111
5010°

F16. 3. Parameters vo and € from fitted functions for ¢ and
¢’ — i, against scaled volume in cubic angstroms; zero-tem-
perature case.

where p is the pressure of Eq. (30) corresponding to the
unperturbed atom, and

7= (%s/P5)* (53)

The parameters o, 7, and » are functions of x3, and
thus of v.

Equations (52) and (51b) provide expansions through
terms in 7?2 of P and ®;, respectively, so that the total
energy can be evaluated from Eq. (18). The energy U is

U=u+(15/2)pv(o+27+3w)¢ (kT)?, (54)
where # is the energy of the unperturbed atom, given
by Eq. (29). The entropy S is

S=15pv(0c+27+43w) k2T, (55)
fro‘m the relation 7°(8S/0T),= (3E/dT),. 1ne enthalpy
o H=h+(5/2)pv(4o+8749w)¢ (ET)2, (56)

where % is the enthalpy of the unperturbed atom. The
Helmholtz function F is

F=u—(15/2) (64274 3w)¢ (RT)?, (57)
and the Gibbs function G is
G=h—(5/2) 2o+47+9w)¢ (BT)>. (58)

One can verify (with the aid of the virial theorem)
that F satisfies the Brachman relation (7).
The parameter v is determined by

v=v0—(5/2) (yo—1)
X[Bvo—4) (6+27)+9(yvo— Do (RT)?,  (59)
where 7o corresponds to the unperturbed atom. The

differential parameter er can be obtained from the
definition as

er=eo— [ (5/6)do/d Inxy+4eor ¢ (RT)2, (60)
where use has been made of the relation
dr/d Inxpy= (12/5) &, (61)
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and ¢ corresponds to the unperturbed atom. To obtain
es, note that the heat capacity C, is equal to S in this
approximation, and that the heat capacity Cp is given
in general by®

Cp=Cy+ (er/v) (9v/0T) p*PT. (62)

From this equation, one can show that
Cp=C,=S (63)

in this approximation, and one obtains
€s=€r (64)

from Eq. (25).

The parameters o, 7, and w are subject to an equation
of connection fixed by the identity (9P/dT),= (8S/9v)r,
which yields the differential relation

d(o+3w)/d Inzs= (30— 2)c
+L(6/5)eo—4]r+9(e0— 1)o.

As one can verify, this relation is necessary and suffi-
cient for the differentials of U, H, F and G, as derived
above, to be exact differentials of their arguments, and
for the Maxwell relations to be satisfied. Equation (65)
implies a differential relation between xs, xi and ¢
which is the analog of Eq. (32) in the zero-temperature
case.

In the limit x, — O of vanishing atomic volume, the
thermodynamic functions derived must reduce to the
corresponding functions for a degenerate Fermi-Dirac
gas through terms of order 72 Substitution in the dif-
ferential equation (48) for x of the dominant terms of
Eq. (36) for ¢ in the Fermi-Dirac limit, solution of the
resulting equation, and imposition of the boundary
condition (21) yields

X =— (2/ 35/8) 2

(65)

(66)

for the initial slope. The corresponding solution for x
in the Fermi-Dirac limit is

x=—(2/3*®)xs’x, (67)

which is a straight line in x. The boundary value of x

is thus
xo=—(2/3F)xs* (68)
and the parameters ¢ and w become
o=—(2/3"¥)xpt, w=—(2/398)x", (69)

with use of the first of Eqs. (38). The parameter 7 is
7= (1/343)x;%. (70)

One can verify that, with these asymptotic forms, all
the thermodynamic functions derived reduce to the
corresponding functions for a degenerate Fermi-Dirac
gas through terms of order 72 The inequality (49) in
this case requires that Z~#3k7/R be less than a quan-
tity proportional to 52, so that large temperatures are
permitted.

In the opposite limit of an infinite atom, for 2 — o,
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the corresponding asymptotic forms can be obtained
from the differential equation (48) by substitution of the
approximation for ¢ in this case,

o= (144/2%) (1 —\1122/2522) (71)

which corresponds, in Eq. (39), to replacing the square
bracket by unity and expanding the factor (1-42)—2/2,
The solution for x in this limit is

3128 x5
x=Ax"l—3[1+ ]—I——[H—
4t 24

(4+501) 1280
o
6x
where the constant 4 is fixed by the boundary condi-
tion (21) as
=—[(\1— 3)/108 Jap M 14+ (A — 1) 129‘2/6065)‘2]. (73)
This solution yields
Xo= — [(2)\2— 1)/2 16]xb5[1+)\112§"2/2x1,"2:| (74)
for the boundary value of x. The value of ¢ follows as

o=—[(4\;—3)/2734] .
X8 [ 14 (3+17n) 1282/6x,07],  (75)

with use of Eq. (42), and the value of 7 is

7=[ (33— 40Ns)/2535 s, (76)

The parameter w is determined by the differential
identity (65), and is independent of the first-order
terms of o and 7 in x,%. With inclusion of a second-order
term in ¢ by

o= (10/3)[1— (\+9)12P2/24w™],  (77)
integration of Eq. (65) yields
w=—[(3047X;)/2037]128 2y, 8N, (78)

The corresponding value of the initial slope x.’ is
xi' = — (2/37) (304 7As) (3+211)5212Bag, %, (79)

The inequality (49) limiting the temperature requires
that Z—*%kT/R be much less than a quantity propor-
tional to x5 in this case, and thus demands tempera-
tures approaching zero as x; — .

b. Method of FMT

In this case, the perturbed volume of the atom is
allowed to differ from the unperturbed volume. The
perturbation function x* satisfies Eq. (48), with an
initial slope equal to zero. The radius of the atom
boundary is fixed by the condition (12b).

For a definite zero-temperature solution ¢ and corre-
sponding perturbation x*, the radius x* can be deter-
mined approximately from the boundary condition in
terms of the radius «; corresponding to the unperturbed
atom, if ¢, x* and their derivatives are expanded in
Taylor series about the point x=ux;. Making use of the
differential Egs. (28) and (48) and the boundary con-
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dition on ¢, one obtains in first order

xp*=wp[ 1425 (RT)?], (80)
where the parameter » is defined by
v=(xs*—xexs™)/ (xep0)?, (81)

in which ¢, is the value of ¢ at the boundary x=ux3 of
the unperturbed atom, and x»* and x* are the values
of x* and dx*/9x, respectively, evaluated at the same
point x=x5. The volume v* of the perturbed atom is
accordingly

v*=[1+3u (RT)"],

in terms of the volume v of the corresponding unper-
turbed atom.

To relate x* with x for the same volume v*, where x
is the perturbation function computed by the method
of MB, one notes that x must satisfy Eq. (48) with a
¢=¢* chosen to correspond to the perturbed atom
radius «;*. The value of ¢* is, accordingly,

%= (x,25)+[ 3¢ (w,45) /x5 | (ws* —5),  (83)

where ¢(x,x5) is the unperturbed solution to which x*
corresponds. Substitution of ¢* into the perturbation
Eq. (48) to obtain the differential equation for x, and
comparison of the result with the differential equation
for x*, yields

(82)

x*=x+vxs9¢/dxs (84)

with use of Eq. (80).
The function d¢/dxs is a solution of the homogeneous
equation,

02(3¢/0ux)/ 0> =5 (¢/ x) ¥/ O, (85)

corresponding to the inhomogeneous perturbation equa-
tion, as one can verify by differentiating the zero-
temperature Eq. (28) with respect to xs. At the origin,
the function vanishes and its slope satisfies the initial
condition,

[0(9¢/0x5) /0% Jomo=d' / dics,

where ¢, is the initial slope of the zero-temperature

solution ¢(x,x5). The function ¢* then satisfies the

boundary condition (12b) at x,* automatically.
Evaluation at x=x; of Eq. (84) for x*, with use of

depw/ doce= v/ %[ 9 (,5) / 32t Jo =20, (87)
yields the relation
xv=x5*+ (6/5) eovepp (88)

between boundary values computed under the two
methods. Differentiation of the same equation with
respect to x and evaluation at =0 yields the further
relation

(86)

welpuixet 3x = xodduixs* - dvasis®?, (89)

when Egs. (86) and (32) are employed. The last two
equations give

xi =[4/3— (2/5) €0 Jrasepn?2. (90)
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TasirE II. Boundary and initial parameters,
temperature-perturbed case.

£ xv* xo* xb xi’
9.5651 1747.3 834.82 —812 —13.4
10.8038 3068.2 1315.7 —1320 —15.7
15.8698 18731. 5689.1 —6420 —24.8

Equations (88) and (90) fix completely the significant
parameters x5 and x;’ on the method of MB in terms
of quantities computed by the method of FMT. In
terms of the parameters o and w, one obtains, from Eq.
(83),

o=0*+(6/5) e, (91)
where o*=xs*/¢», and one obtains
w=[4/3—(2/5)eo v, (92)

from Eq. (90).

Thermodynamic functions for the volume v are avail-
able from preceding results in terms of the parameters
o and w corresponding to the method of MB. To deter-
mine a thermodynamic function for the volume 9* in
terms of the parameters ¢* and » corresponding to the
method of FMT, it is necessary merely to take account
of the perturbation in the temperature-independent
term due to the volume change, v*—v, and to transform
o and w into ¢* and » by the preceding equations. Thus,
if P* is the pressure corresponding to the volume v*,

one has
P*= P+ (dp/dv) (v*—), (93)

if P corresponds to v. With use of Eq. (82) for v*—wv and
the defining equation for €, one obtains

Pr=p[1+(5/2) (e*+27)¢ (RT)*]. (94)

In a similar manner, it can be shown that the energy
U* corresponding to v* is

U*=u+3pv(5¢%4-107+18»)¢ (RT)2, (95)
and that the entropy .S* is
S*=15pv(c*+27+4v) k2T (96)

It is clear that these results are easily modified to
take account of the use of an arbitrary initial slope
(rather than zero) in the method of FMT.

¢. Numerical Results

Three solutions by their method of the first-order
temperature-perturbation equation have been tabu-

TasBLE III. Coefficients® of fitted functions,
temperature-perturbed case.

n Cn n Dy
3 —3.205X107! 1—2X.=0.22800 —5.805X10™3
4 —4.021X1072 1 —-3.755% 107!
5 —2.519X1073 2 —3.120

@ The coefficients are given to four figures to minimize round-off error
and to yield smoothness in computational work.
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FiG. 4. Fitted functions for xs and x;’ against boundary
radius in temperature-perturbed case.

lated by FMT. The corresponding values of x;* and x*
have been determined by quartic interpolation from
their data and are tabulated in Table II against the
unperturbed radius x to which they correspond. The
corresponding values of x5 and x;’ on the method of MB
have been determined by use of Egs. (88) and (90)
respectively and tabulated likewise. Since these equa-

6

| P
B
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/ o Data of EMT
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F1G. 5. Perturbation parameters o, 7, and w from fitted func-
tions for xs, xi’ and ¢s, against boundary radius in temperature-
perturbed case.
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tions involve the differential parameter e, which has

* been determined from the fitted function (44) for ¢,

the accuracy of x; and xi/ cannot be guaranteed as
better than a few percent.

As in the zero-temperature case, it is desirable to
represent the pertinent quantities, which the differen-
tial equation yields, by fitted functions having the
proper asymptotic behavior in the two limits x,— 0
and x;— o. It is convenient to use parameters corre-
sponding to the method of MB, in order to avoid the
complication of a perturbation in the volume. The
quantity xs can be represented by

x6=2_ Catts", 97)

if =3, 4, 5, and the coefficients C; and Cj; are chosen
to agree with the corresponding coefficients in' the
asymptotic forms (68) and (74), respectively. Similarly
xi can be represented by

X' =02 D], (98)

if » ranges over the sequence 1—2X,, 1, 2 and the coeffi-
cients D, and Di-», are fixed by Egs. (66) and (79),
respectively. The coefficients C, and D, tabulated in
Table III reproduce® the values of Table II within
about 1 percent in the case of x, and within about 3
percent in the case of x;/. It can be shown that x, and
x: are monotonic functions of s, as are the fitted func-
tions. The fitted functions and the data points are

2.0 200
o Data of FMT

16 160
1 1
- -
] sy
o L
o o
gl.z 120 2
2 —\ [— E
L os 80%.
E g
: x
g pd <
N4 a0 ™

Ll b
ono2 10° |o"0

Zv(A3) —

F1c. 6. Scaled pressure perturbation and energy perturbation
from fitted functions for xs, xi;" and ¢s, against scaled volume in
cubic angstroms; temperature-perturbed case.

2 By adjusting the exponent as well as the coefficient of the
middle term in Egs. (97) and (98), one can obtain a much closer
fit. The accuracy obtained is considered sufficient, however, since
x» and x;’ are perturbation parameters. Note further that r
(known only to a few percent from the fitted function for ¢;) ex-
ceeds —g by a factor of about two and —w by a factor of five or
six, over the range of xy corresponding to the data (Fig. 5).
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shown in Fig. 4. Values of the parameters ¢ and w com-
puted from the fitted functions, as well as values of 7,
are shown in Fig. 5 with directly computed values
(omitted in the case of 7).

In Fig. 6, the effect of the first-order temperature
perturbation on the equation of state is shown graphi-
cally by plotting Z—*(kT/R)~2(P—p), which is inde-
pendent of T, as a function of Zv. The energy per-
turbation U—# in units of the Rydberg is shown simi-
larly. The entropy .S is not shown, since the value of
Z¥kT/R)7LS in R/°K differs from Z¥(kT/R)~2(U—u),
as plotted, by the numerical factor 1.27X107%. The
parameters er and +y are shown in similar fashion in
Fig. 7. The quantity 8(2/97%)%ps/xs, relative to which
Z~PET/R must be small, is shown by the dashed
curve in Fig. 7. Note that the perturbation in a thermo-
dynamic function scales with Z differently than does
the unperturbed function (for fixed temperature).

5. CONCLUSION

As mentioned in the Introduction, neglect of ex-
change makes the results obtained valid only in the
limit of high Z and high compression. It is hoped to
extend this work by including exchange to remove this
limitation. Since initiation of this work, extensive
numerical results obtained by Dr. R. Latter indicate
some systematic errors in the published data used; it is
planned in the future to give fitted functions for the
solution parameters which are based on more accurate
data.
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