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The theory of multiple scattering of neutrons is developed in cases of interest for di8raction experiments.
Computations of second-order scattering for various plane slab sample arrangements are carried out, under
a quasi-isotropic cross-section assumption. The relevance of recent computations by Chandrasekhar is
pointed out, and these are also applied to the present problem.

INTRODUCTION

HE determination of crystalline and liquid struc-
tures by neutron diGraction depends on meas-

uring single scattering. Higher-order scattering is always
present in addition to 6rst-order scattering, and in some
cases the experimental data should be corrected ac-
cordingly. Although there exists an extensive and
elaborate literature on multiple-scattering problems of
various types, little of it is exactly applicable to the
present situation. Some calculations by Chandrasekhar
may be applied in several cases, and these will be con-
sidered subsequently. Blok and Jonker' have given an
approximation method and worked it out numerically in
a special application to hydrogenous scatterers. Their
method requires rather specific numerical computations
for each case, although it permits one to take account of
anisotropic cross sections which are not too complicated.

We present in this paper an analysis in terms of orders
of scattering. This yields a formal solution to the
problem in terms of a sum of definite integrals, and
applies to arbitrary sample geometries and for arbitral'y
scattering cross sections. Evaluation of the early terms
of the series is possible for simple geometrical conditions,
and gives an adequate approximation whenever the
scattering is sufficiently small. The general solution may
be used to show certain properties of the scattering, and
suggests some approximations which allow one to cope
with the very complex cross sections encountered in
diGraction problems.

o d(s, s )=differential scattering cross section, per unit
volume, for scattering from direction s to direction s';

o.=J'aadQ=total scattering cross section per unit
volume (here and afterwards J'dQ means integration
over a solid angle of 4n- with respect to the obvious
angular variable);

or=total cross section per unit volume (scattering
plus absorption).

0 q is meant to describe the scattering properties of a
portion of the material small enough to involve only
single scattering, yet large enough to include structural
eAects, and, in the case of crystalline powders, to contain
many crystalline grains representing all orientations. It
is thus a macroscopic cross section.

The scattering is governed by a set of transport
equations, '

f
s VP„(r,s)+orP„(r,s) =~ dQ'os(s', s)P t(r, s'),

n= 0, 1, 2, , (1)

(where P r
=—0) which express the fact that scattering of

neutrons of order e—1 provides a source, and scattering
and absorption of neutrons of order e provide a sink. for
the current of eth order neutrons at each point r.
Equations (1) on the interior of the scatterer, together
with boundary conditions prescribing Ps(r, s) at each
point of the surface of the scatterer determine all the
densities I'„.

A formal set of solutions of Eqs. (1) may be shown to
be

GENERAL ANALYSIS IN TERMS OF ORDERS
OF SCATTERING Po(r, s) =Ps(r —Ls) exp( arL), — (2a)

We consider a sample which consists of a crystalline
powder or an amorphous material, so that we can deal
exclusively with densities of neutrons instead of
Schrodinger waves. We also consider the incident neu-
trons to be monoenergetic, and neglect the effect
of any energy changes during scattering. Let P„(r,s),
m=0, 1, 2, 3, be defined as the number of neutrons
per unit volume at r which have already been scattered
just e times and which are now proceeding in the direc-
tion of the unit vector s, within unit solid angle. The
scatterer is described by the following parameters:

*Work carried out under the auspices of the U. S. Atomic
Energy Commission.

' J. Blok and C. C. Jonker, Physica 18, 809 (1952).

d( exp( —o rg)P t(r —ts, s'),
0

n=1, 2, . (2b)

Here L is the distance from the point r to the surface of
the sample in the direction —s. It is assumed that the
sample is nowhere concave. See Fig. 1.

~From the basic article by A. M. Weinberg, U. S. Atomic
Energy Commission Report AEC-3405 (unpublished) "the deri-
vation of these equations should be evident. "
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where

I.=s sec0, 0(m/2; I,=(s—') sec0, 0)x/2, (5)

and 8 indicates the Dirac 8 function. At the bottom of
the slab, (4) gives, with ort=.r,

FH". 1. Geometry of the general case.

Equations (2) state that particles constituting the eth-
order component at r must have suGered their last
scattering act somewhere along a line in the direction
—s, being at that stage members of the component of
order n —1, and must then have proceeded to r without
absorption or further scattering.

By iterating Eqs. (2), one can next express P„as a
multiple integral of Pp. In principle the problem is then
solved, although the evaluation of these integrals for all
but the simplest geometries and cross sections and for
e&2 proves to be exceedingly tedious. Hereafter, atten-
tion will be mainly restricted to samples in the form of a
plane slab.

INSTANCE OF THE PLANE SLAB

Suppose the sample to be a slab of indefinite lateral
extent and thickness t. Suppose the incoming neutrons
to be collimated and incident at an angle 80 with the slab
normal. For convenience we suppose the incident beam
to be of large cross-sectional area, uniformly distributed
and containing unit density of neutrons. See Fig. 2.

The neutron densities now become functions of z,
the depth below the surface, and 8, the direction of the
vector s. We find from Eqs. (2),

Ps(s,0) =exp( —a rs sec0s) (2m) '5(cos0 —cos0s), (3)

and
exp( —o rs sec0p)

P, (s,0) =o s(s, sp)
OT COSH

exp( —r sec0s)
P, (t,0) = o s(s, sp)

0-z cos8

expLr (sec0s —sec0)]—1
X 0&~/2, (6)

sec80—sec8

and at the top,

expL —7 (sec0s —sec0)j—1
Pt(0,0) =~s(s, sp)

o r cos0(sec8s —sec0)

0&~/2. (7)

To calculate the current density in nth-order scat-
tering which leaves the surface of the slab, it is only
necessary to multiply P„, evaluated at the surface, by
the velocity of the neutrons. The current is the current
density multiplied by the cross-sectional area of the
beam, and if J„(0)is the nth-order scattered current, per
unit incident current, transmitted through the slab at
direction 8, per unit solid angle, we find

J„(0)= (cos0/cos0s)P (t,0), N=O, 1, 2, . . . (8)

In the following, second-order scattering will be
computed for three specific cases s (a) angle of incidence
equal to angle of transmission, (b) angle of incidence
equal to zero, and (c) refiection at an angle equal to
angle of incidence, sample infinitely thick.

Case (a): 6=8p

Equation (2b), with n =2, applied to Eq. (4) gives

Ps(t,0) =or ' sec0e '-" dQ'o&(s, s')o&(s', ss) f(0'), (9)

exp(o rI.(sec0s cos0—1)j—1
X

sec80—sec8

where s' is a unit vector making angle 8' with the
(downward) slab normal, and

4
[sec0'/

f(0') = {expLrtsec0'~(sec0 cos0' —1)g
(sec0—sec0')'

7. sec8'—1)—
sec8—sec8'

FIG. 2. Geometry of the plane slab.

In general, this integral can be handled only by numerical
methods. However, for most liquid and crystalline

' With the quasi-isotropic approximation it does not matter (in
second- and higher-order scattering) whether the direction of
emergence is co-planar with the slab normal and the direction of
incidence. In developing the 8-function approximation this further
restriction will be assumed.
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samples, 0.
& is a rapidly varying function of angle which,

if averaged over a small range of angles about any angle,
would be virtually a constant, equal to o/4tr. f(8') is a
relatively slowly varying function, and we thus find
that a good approximation to I'2 is given by replacing
the two differential cross sections by o/4n and removing
them from the integral. This approximation is inade-
quate for 8 very small, or for the case of x-ray scattering
where, at not too long wavelengths, the atomic structure
factor imparts a pronounced secular trend to 0.~. We call
it the quasi-isotropic approximation.

With the quasi-isotropic approximation the integral
in (9) may be evaluated, to give:

where
dQ'= sin8'd8'0 tF'= I(g,{)dgd{,

(cos28—cosg cos{'q '
I(g{)= 1—

I

sing sing

(12)

Inserting (11) and (12) in (9), we find

Pp($ 8) = olp ~ sec8e

X g p* o„~„I(b.,b.)f(8„„'), (13)
n=i m

The solid angle dQ' can be written: (when 840)

fo)'e" ( s
Ip(8) =&p(l 8) =

I

—
I I I(1—e' "')

(o,) 8~s Es—13

+ (sr+1){Ei([s—1]r)—ln([s —1]7))

+I I (1—e '+"')+(1—sr)
( s

Es+ 1)

X{Ei(—[s+1]r)—ln([s+1]r))+2 lnr

—(e"+e ")Ei(—r),
where s= sec8,

(10)

where 8„'means 8' at g =b„,{=b, and P *means sum-
mation over all m for which

I
b„—28

I
&b &

I
b +28I.

Equation (13) can be explicitly evaluated without
much trouble for reasonable values of E. From its form
one sees that the peaks in tT& do not appear directly in
Jp. The individual terms of (13) are not monotonic
in 8, however, since I(b„,b ) becomes infinite when
28= Ib &b j. The resulting infinities in I', are caused
by the infinitely sharp peaks assumed for 0&. Allowing a
small but finite width to (radians) for each peak of o d,
and keeping the areas of each peak unchanged, one finds
that at these infinities one should replace I(b,b ) in
(13) by

[(9/32) Icotb„&cotb Ito] *',

Ei(x) = —dg, x&0,
~ Q

and Ei(x) is defined by the same integral as Ei(x), with
x&0; the integral is understood in the sense of the
Cauchy principal value. '

There is another form of o.~, the 8 function approxima-
tion, which allows rather simple evaluation of (9) and
which approximates a variety of situations, including
both isotropic and highly anisotropic examples. Let

od(x) = E tt-b(x —b-),
n=i

corresponding to the cases I b„&b
I

= 28, respec-
tively. Correction of I is unnecessary whenever
28—Ib.+b I))m.

For zan=0. 01 radian, b„=80', b =90', this gives a
peak only about 4 times as high as the minimum point
on the curve of I(b„,b ) vs 8. Thus, in typical crystalline
cases these peaks are low and broad, and the superposi-
tion of all of them leads to a rather smooth curve
resembling that of the quasi-isotropic approximation.

Case (b): 6p=O

A precisely similar calculation, again making the
quasi-isotropic approximation, reveals that

1 1
X —('+.—) E (-.)+ E (—2.)

s s—1

e'&'—0 Ei(—r[s+ 1])—
s(s—1) s(s—1)

X{Ei(r[s—1])—ln(r[s —1])+1nr)cosy = cos8' cos9—sin8' sin8 cosy',

cos| =cos8' cos8+sin8' sin8 cosy',

8'=cos '[(cosg+c sop) 2/cos8]
+ e't' '& 1n(-', yr)—+

s—1 s(s—1)

where x is the scattering angle, and a„and b„are t'o )'e "
arbitrary. This form is well suited to the cross section of
a crystalline powder, for example. Let the pole of a 8~

spherical coordinate system coincide with the downward
slab normal. Let s, so, and the slab normal be co-planar.
Let s' have polar angles 8' and q', where p' is measured
from the plane of s and so. Let the angle between s' and
sp be g, between s' and s be l. One finds, assuming 8= 8p,

(x=»),

' E. Jahnke and J.Etnde, Table of Fttrtott'orts (G. E. Stechert and
Com any, New York, 1938),pp. 1-3.A. Hammad, Phil. Mam. 38,
515 1947).

(e (8—1)—1)Xe't' '~ ln(s+1)+I I
ln2, (14)

s—1 )
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FrG. 3. Second scattering coefBcient, B vs scattering angle,
28 Lease (a)j.

where y = 1.78107

Case (c): Re6ection at the Syecular Angle,
Thick Slab

This is the only case giving simple results. Kith the
same procedure, and the quasi-isotropic approximation,
we find

J&(0)= Es(0,0) = (a/a. r)'(8~ sec9) ' In(1+secg). (15)

Ji ——(a/a r)A4rrag (y)/a, .

Js = (a/ar)'8, .

(16)

(17)

Io-'

Ip

ip-4
0 20 40' 60 80 IOO l20' I40' 160 ISO'

SCATTERING ANGLE, )(=I80 -28~
FIG. 4. Case (c) (back reiiection) second scattering coeiircient,

B es scattering angle, ~—28,

Here, contrary to the previous convention, 0 has been
measured from the upward normal, as pictured in

Fig. 4.

Summary of Plane Slab Results

In all three cases, we find that the first- and second-
order scattered currents can be written, respectively,

where A and 8 may be called the first- and second-
order scattering coefficients, and are defined by Eqs.
(10), (14), and (15) in conjunction with the preceding
expressions. The angle g is the scattering angle, equal to
28, 0, and s.—20, in cases (a), (b), and (c), respectively.
Equation (16) has been cast into such a form that the
mean value of the dif'ferential cross-section dependent
factor, 4rro&(z)/a. , is unity. A and 8 each depend on 7

and secg only.
Equations (16) and (17) indicate at once the role of

the ratio a/az, which may be termed an "albedo, " in
fixing the magnitude of the various orders of scattering.
One may further show, by a simple change of variables
in the second integral of Eq. (2b), that I'„ is quite
generally proportional to (a/a. z)". From this it is clear
that a su%ciently large absorption cross section can
always reduce higher-order scattering indefinitely com-
pared to first order scattering. With x-rays the albedo is
typically from 0.1 to 0.01 and thus multiple scattering
corrections are generally less important for x-rays than
for neutrons.

The second scattering coeflicient 8 (under the quasi-
isotropic approximation) is plotted vs the scattering
angle y in Figs. 3 and 4, for cases (a) and (c), respect-
ively. In Fig. 3, various values of the thickness parame-
ter 7 lead to the various curves. Here, a tendency of
second-order scattering to be isotropic is apparent,
especially for v- in the vicinity of 1.

In Fig. 5 is plotted the ratio of second-order scattering
coeflicient 8 to first-order coeflicient A, for case (a),
with quasi-isotropic approximation. The thickness pa-
rameter v is abscissa. For modest scattering angles the
ratio is nearly independent of scattering angle. From the
curves, one sees that ~ must be as small as 0.05 to make
8/A equal —,'o. With vanishing thickness, the ratio
vanishes, but as ~ lnv, rather than linearly with r, as one

might have at first supposed.

LIMITS OF VALIDITY OF THE RESULTS

The implicit assumption of the foregoing work has
been that second-order scattering forms such a large
share of the multiple scattering that third, fourth, etc.,
orders may be ignored. This assumption is valid only
under special circumstances. Rough calculation shows

that third-order scattering is about as much smaller
than second order as second order is smaller than erst,
and this proportion extends to all higher orders as well.

Consequently, if second-order scattering is much less
than erst order, we may generally conclude that second
order is well representative of all higher orders. Two
conditions, as has been noted, favor this: smallness of T,

and smallness of the albedo, a/a. z. From the curves

given here one can immediately determine whether this
condition is satished.

To demonstrate more fully the relative magnitudes
of the various higher orders of scattering, suitable rela-
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tions of inequality can be found. Define I.O

Q (r)=)t dQP„(r, s),

the eth-order neutron density at r. Kith the quasi-
isotropic approximation, Eq. (2b) may be rewritten

L

P„(r,s) = (o/47r) t d$ exp( o—r()Q„ i(r $s—)
0

Now if the maximum value of Q„(r), for all r, is denoted

Q„,we have

0.8

07

0.6

0.5
B
A

0.4

0.5

P„(r,s) & (o/4s. )Q„ im dP exp( —o rg)
ai p

= (o/4s-ar)Q„, ' [1—exp( —ori)7. (19)

O. I

O. I 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 I.O I. I

FIG. 5. Ratio of 2nd to 1st scattering coe%cients,
&/A ss r Lease (a)).

Q-(r) & (o/~r) [1—P(s)7Q--i -,
TABLE I. Test of approximations.

1
1
0.5

0.1
D.S
0.5

Error in
using Js

Error in using
Eq. (23)

—4%
+s%
+&~%

where

F(s) = s{exp[—ors7+exp[ —or(t —s)7
+o rs Ei( ors)+or(t—s) Ei[—or—(t—s)7).

Specializing now to the plane slab case, I. is given by
Eq. (5). Next, integrate Eq. (19) with respect to the
solid angle associated with s. One 6nds

From this it is clear that smallness of (o/or)g(r) com. -

pared to unity insures that second-order scattering is a
close approximation to all of the multiple scattering.
Comparison of Fig. 6 and Fig. 5 shows that this criterion
is nearly the same as the previously described criterion
that (o./or) (B/A) be small.

From these calculations a rough tendency for the
ratio J„+i/J„ to be independent of e is apparent. This
suggests an improved approximation for the multiple
scattering. Assume J„+i/J„=Js/J i, rt =2, 3, , where
Ji means the average of Ji over angles. Employing (16)
and (17), we have Js/Ji ——( o/or)( B/A). Then

Js+Js+J4+ ' ' ' Js[1+(o/or) (B/2)
+ (~/~r)'(B/~)'+

01
J,+J,+J4+ —J&/[1 —(o/or) (B/A) 7. . (23)

where

The minimum value of P(s) occurs at s= t/2, so final}y, Equation (23) is an aPPreciable imProvement over Js
itself, as long as (o/or)(B/2) &1. A test of this is

Q max& (O/& )g(r)Q max (20) afforded by Chandrasekhar's exact calculation for
isotropic scattering [case (b)7. For 8=0, one finds
errors as listed in Table I.

g(r) =1—F(t/2)
= 1—exp( —r/2) (r/2) Ei(—r/2)—. (21)

g(r) is plotted in Fig. 6.
Iterating the inequalities (20), we find

CHANDRASEKHAR'S COMPUTATIONS

The problem of multiple scattering without energy
loss has already had considerable attention from

Q-- &C(~/or)g(r)7" "Q- -. (22)

Z C(~/~r)g(r)7" 'Qs '"
n=3

The general level of higher than second-order scattering
cannot exceed g s" Q '";so by (22), this level cannot
exceed

1.0
9—

~8
f .7
t .6

5
.4

~2
.I

0
LO 1.5 2.0 2.5

=Qs '"C(~/~r)g(r)7[1 —(~/~r)g(r)7 ' Pro. 6. g(r) es r, plane slab case I see Eq. (21)g.
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astrophysicists, to whom it is of interest in connection
with problems of radiative equilibrium in stellar and
planetary atmospheres. Chandrasekhar' ' has shown
that the total scattering (all orders) for plane-slab
scatterers with isotropic cross section is determined by
two functions satisfying integral equations which,
though nonlinear, are adapted to numerical computa-
tion. He and co-workers have recently published tabula-
tions of these basic functions. ~

Within the realm covered by the published tabula-
tions, and after justification of the quasi-isotropic ap-
proximation, this work is clearly superior to an analysis
in terms of orders of scattering. Its advantages are
especially great for cases of thick. scatterers. There is the
disadvantage that the scattered intensity appears as the
ratio of certain di6erences of the tabulated functions
and the quantity cosHp —cosH, where 80 and H are incident
and emergent angles, respectively. For the case most

,OI0

.005-

0-

CASE b

'//////ji

I04 204 304 40' 504 60' 704 80 904-e-
.050 Fro. 8. Multiple scattering, Z„2"J„,from Chandrasekhar.

a/az =0 5Ldot.ted lines give Js, Eq. (14)j.

.040

.050

.020

gl0

important in neutron diffraction Lour case (a)] this
ratio is 0/0, and the limit as fl approaches ee cannot be
found with accuracy from the tabulated values.

We have employed Chandrasekhar's tables to com-
pute multiple scattering in our case (b), where, for the
parameter ranges tabulated they are superior to our
Eq. (14). Computing Jt from Eqs. (4) and (8), we
subtract this from the Chandrasekhar values (which
give P =t" J„),and present the results in Figs. 7 and 8.
Again the approximate isotropy for angles which are not
too large can be seen, particularly for thin samples.

Also plotted in Figs. 7 and 8 are curves of J2, com-
puted from Eq. (14) for v=0.1 and r=0.5. Quali-
tatively, the second-order curves are entirely similar to
the curves which include all higher orders. For v. =0.5,
o/or=1, the quantitative agreement is poor, for the
other cases it is fair to good, as has been predicted by the
foregoing considerations.

20' 30 404 50' 604 T04 804 90'
—8

Fro. 7. Multiple scattering, Z„2"J„,from Chandrasekhar.
o/or=1 Ldotted lines 'giv'e Js, (Eq (14)g.

s S. Chandrasekhar, Radsafvve Trarssfer (Clarendon Press,
Oxford, 1950), Chap. IX.

'A multiple-scattering treatment somewhat similar to that
presented here, but not carried beyond the abstract stage, has also
been given by H. C. van de Hulst, Astrophys. J. 107, 220 (1948).

7 Chandrasekhar, Elbert, and Franklin, Astrophys. J. 115, 244,
269 (1952).
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Chandrasekhar has also given analytic approximations to his
two functions (reference 5, pages 202—207), and from these one can
treat the case 8=80 with an accuracy comparable to that of the
present work. The formulas seem to be more cumbersome,
however.


