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In antiferromagnets, because of interplay with exchange energy, a small anisotropy can have a huge eRect
on thermodynamic properties. Detailed calculations are given, using spin-wave theory, of this effect on
sublattice magnetization, specific heat, and parallel susceptibility of a cubic or uniaxial antiferromagnet.
Specific heat data are discussed and experiments are suggested on the relatively large spin specific heats of
antiferromagnets with low' Curie points. The theory is extended to orthorhombic symmetry, and reasonable
agreement found with existing experimental data on CuC12 2H20.

I. INTRODUCTION

ECENTLY Anderson' has revived interest in the
spin-wave theory of antiferromagnetism, first

introduced in 1936 by Hulthen. ' In this theory it is
assumed that the antiferromagnetic ground state may
be described in terms of a two-sublattice picture, the
spins of one sublattice all pointing up, those of the other
all pointing down. Since the actual ground state is a
highly degenerate spin-zero state, it is by no means
clear that a two-sublattice treatment is at all adequate.
However, by a careful study of the zero-point spin-
wave energy, Anderson has shown that the ground state
of a three-d. imensional antiferromagnet approaches
closely the presumed two-sublattice arrangement.
Several authors' ~ have extended Anderson's theory
to higher temperatures, and in particular Kubo" has
presented a detailed discussion of the abnormal Quc-
tuations inherent in the spin-wave approach.

Whether these Quctuations are real properties of
antiferromagnets or are dissembled by the approximate
nature of the theory is not clear at present. Real or
6ctitious, the Quctuations are subdued by the intro-
duction of crystalline anisotropy into the theory; and
probably all antiferromagnets have some anisotropy.
Furthermore, neutron di8raction experiments indicate
that the spins of antiferromagnets are actually arrayed
in sublattices, at least for times longer than 10 "
second.

The two most-studied single crystals, MnF2 and
CuC12 2H20, are believed to have anisotropy energies
of the order of one percent of their respective exchange
energies. Other antiferromagnets seem to have similar
anisotropies. " Thus the thermodynamic properties of
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antiferromagnets at temperatures low with respect to
their Curie points should be accounted for by spin-wave
theory, if this theory is at all meaningful.

In this paper we examine theoretically the expected
temperature dependence of three measurable properties
of antiferromagnets: (1) the magnetization of a sub-
lattice, which may be detected most accurately by its
effect on nuclear resonance;" (2) the spin-system specific
heat, which swamps the lattice specific heat if the Curie
point is well below the Debye temperature; and (3) the
parallel susceptibility, or susceptibility of a single
crystal in a magnetic field oriented along the preferred
spin axis. We show that the presence of a small aniso-
tropy, through a coupling of anisotropy and exchange
energies, has a marked eGect on these thermodynamic
properties, and we consider this eGect in some detail.

kTgtt=sf J fS(2n)&=2(sf J fE)&S, (2)

where S is the spin quantum number of a single atom.
The energy of a spin wave for small wave number k is

Eg ——s
f
J

f
S(bks+2n+n') &. (3)

Here k is referred to the 6rst Brillouin zone of the sub-
lattice, and the constant b is a structure factor depend-
ing upon the type of lattice considered. Equation (3) is

"N. J. Poulis and G. E. G. Hardeman, Physica 19, 391 (1953).
Neutron diftraction may also be used to detect sublattice mag-
netization, but with less accuracy. See R. A. Erickson, Phys. Rev.
90, 779 (1953).
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II. EFFECTS .OF ANISOTROPY

The size of the anisotropy constant E is conveniently
measured in terms of

n=2Z/sfZf, (1)

where J/2 is the exchange integral and s is the number
of nearest neighbors.

Although n may be only a few percent, it appears
in the spin-wave energy as 0,&. This tremendous en-
hancement of the eGects of anisotropy comes about
through a subtle coupling of anisotropy and exchange
energies, the nature of which has been discussed in
detail elsewhere. '

We define a temperature T~~ to measure this strong
eGect of anisotropy-exchange interplay:
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derived by Anderson' and by Kubo. ' The total spin-
wave energy is obtained by summing E& over over Bose
distributions in the (equivalent) first Brillouin zones of
both sublattices. For small k this sum is approximated
by an integral to infinity; and by proper normalization,
the variable bk' can be replaced by a single parameter
)'. A similar approximation is used to obtain both the
magnetization of a sublattice and the parallel suscepti-
bility from the free energy. The procedure is given in
detail in Kubo's 1952 paper, ' which we use as a standard
reference.

Thus Kubo finds for the temperature-dependent part
of the total spin-wave energy of E spins:

Thus, for D=3,

(M„/S)
F00

=—2nA i P exp[ —(NT&ii/T) coshy) sinh'ydy
m=1 ~p

~ Ki(NT~ii/T)=—2nAi Q
-=i (eT~~/T)

(7)

Here E1 is a Hankel function and the summation, which
converges rapidly, is known as a Schlomilch series.

We now introduce the variable

where

r
Pz(sex 1)—i),D—id/

Pi, ——(s i J i S/IsT) (7,'+2n+n') &.

(4)

(5)

ted= I T/.
~
S I S= ;(S+1)(T-/T, ),

where the exchange integral J/2 is approximated from
Van Uleck's" molecular field theory of the Curie tem-
perature, T,. Equation (7) may be written

Here A~, the normalization factor discussed above'
depends on the lattice structure; D is the dimen-
sionality of the lattice, which we shall take as 3.

It should be noted that anisotropy is introduced into
this theory as a crystalline field, that is, as involving the
direction cosines between single spins and the crystal
axes. A large part of the anisotropy, however, will

originate in dipole-dipole and in anisotropic exchange
forces, and. hence involve the mutual orientation of
pairs of spins. Ziman' has shown that such terms in the
Hamiltonian lead to severe algebraic complications;
and we shall not consider them in this paper. In making
quantitative comparison of theory and experiment this
limitation should be kept in mind.

Furthermore, we have restricted ourselves to calcu-
lations of sublattice magnetization and specific heat in
the absence of an applied field.

A. Magnetization of a Sublattice

The temperature-dependent part of the sublattice
magnetization, Mqz, in terms of the magnetization for
complete alignment, M„, is given by

M»= M„(s~vt/J T)—A(1+ )

with

AP (~'/—6)M (T/T ps),
(M„/S)

6 T» w 1 (NT»'l
M(T/T») =—

~2 T n=i~ 0 T

(9)

(10)

Equation (9) is also given, but not plotted, in Kubo's
paper we have derived it here to make clear some new
relations which follow. In the absence of anisotropy
M (T/T~s) go'es to 1, and Eq. (9) reduces to the T'
law given by Kubo. The variation of M(T/Tzz) with
T/T~~ is plotted as the dashed line in Fig. 1.

B. Speci6c Heat

By the same process which led from Eq. (6) to Eq.
(7), we may bring Eq. (4) into the form (for D=3):

O' Ki(iiTgg/T)
=4n'Ai Q

=i d(nT»/T)s (NT~s/T)

(
Ks(nT~s/T) K, (eTg g/T)

=4n'Ar Z '

(eTgs/T) (nTgs/T)'

(12)Cr/Nk =A P (47r4/15) C (T/Tg~),
with

We may evaluate Eq. (6) by expanding the Bose
function,

15 (T»1' ~
C(T/Tg )= I

—

I P (K (nT /T)
Ss.44 T ) n-i

The specific heat, Cs, is the derivative of (11) with

p„—i(p&, 1)—il o-id' (6) respect to e and has the value
Jo

(gP) 1)
—i=+—g~Pi

%~1

and integrating term by term. Dropping n~ as small
compared to 2n, we make the substitution

(2n)& coshy= OP+2n)&.

+K4(eT»/T) ). (13)

In the absence of anisotropy C(T/Tzz) goes to 1, and
Eq. (12) reduces to the T law given by Kubo. ' The
variation of C(T/T~~) with T/T~~ is plotted as the
solid line in Fig. 1.

~ J. H. Vsn Vleck, J. Chem. Phys. 9, 85 (1941).
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C. Parallel Susceptibility

In calculating the parallel susceptibility XII one must
restrict the applied field B'0 to values less than
kT~z/gI4p. Otherwise the spins can lower their free
energy by Bopping over to the hard axis, and one will
find oneself confronted with y~.

As shown by Kubo'
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FIG. 1. The temperature variation of the three thermodynamic
quantities for cubic or uniaxial symmetry showing the effect of
anisotropy. The solid line is the s ecific heat C(T/Tzz), the
dashed line is the magnetization M T/Tgz), and the dotted line
is the susceptibility x(T/T~z).

and comparison with Eq. (6) shows that

1 c) (Msr )
(Ng')4p'/kT) (1+n) r)(zJS/kT) I M„/S)

(2n)'* 4) ( Msr q

(1+n) r)(Tgz, /T) (M„/S j
Applying the above to Eq. (9) we find

I» z' (=A, —0'x]
ET„zj

'
(Ng'I4p'/k T) III. DISCUSSION OF SPECIFIC HEATS

with

At low temperatures (small 8) the denominator of Eq.
(18') is approximately 1 and, in the absence of anisot-

(15) ropy, Van Vleck's relation agrees with the spin-wave
Eq. (15). (The correction for anisotropy is negligible. )
Since the molecular field approximation is more ac-
curate near the Curie point, Eq. (18') might be valid
at all temperatures.
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with
SBs(yp) = (Msp+Msr)/(M /S),

yp= S&s/t).

Thus, Van Vleck's relation may be brought into the
form

[c)/8 (1/8) ][SMsY/M„]

(Ng'pp'/kT) I [(Msp+Msr)/M„]
' +(2/S8) [c)/r)(1/0)][SMss/M„]I

(18')

( T ) 3 ('Tgzl' ~ (nTg
Xl

— I=—
I I E &s(

&.T..) (T&-- & T )
In the absence of anisotropy y(T/Tzz) goes to 1, and
Eq. (16) reduces to the T' law given by Kubo. The
variation of z(T/Tzz) with (T/T+z) is plotted as the
dotted line in Fig. 1. For temperatures well below T~~
the susceptibility rises exponentially, a result obtained
by Tessman. ~

Equation (15) gives a general relation between the
parallel susceptibility and the magnetization of a sub-
lattice. It is interesting to compare this with the general
relation given by Van Vleck's-. molecular field theory:"

S'~s'(yp)
(18)

(Ng'I p'/kT) 1+(S/e)~s'(yp)

Here, for comparison, the Brillouin function represents

T.&-O/5. (21)

However, in the region T&T~~ the spin-wave specific
heat will be sharply reduced by C(T/Tzz) [see Fig. 1].
Values of T~~ simply are not known at present. The
value given in Table I for MnF2 is a theoretical
estimate" based chiefly on magnetic-dipole anisotropy.

'4 F. Eever, Phys. Rev. SS, 608 (1952).

Postponing until the next section the interesting case
of CuC12 2H20, we discuss here the specific heats of a
few antiferromagnetic salts. First, the condition under
which the spin-wave specific heat will be larger than the
lattice specific heat should be pointed out. In the usual
Debye approximation the lattice specific heat at low
temperature is given by

Cr,/N'k= (12/5)4r4(T/0)s, (19)

where 0" is the Debye temperature. Comparison with
Eq. (12) yields

Cr/Cr, ——(A i/243) (S+1)'(0/T,)'
XC (T/T/z) (N/N'). (20)

Here N/N' is the ratio of paramagnetic ions to total
number of ions.

In Table I we apply Eq. (20) to a few antiferromag-
netic salts with low Curie points. It is seen that, as a
general rule of thumb, the spin-wave contribution to
the specific heat will be larger than that of the lattice if
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Presumably T&z of the other Ruorides may go even
higher than 15'K."The two values given for CuC12 ~

2H20 will be discussed in the next section.
Stout and his collaborators have measured the

speci6c heats of the fluorides in the vicinities of their
Curie points. ""Their published curves show the fol-
lowing temperature dependences for spin-plus-lattice
speci6c heats just below the Curie points: MnF2, T";
FeF2, T'; CoF2, T";NiF2, T'. Westrum and his col-
laborators'6'~ find a temperature dependence of T'~
for Np02 in the region between 15 and 24'K. Admit-
tedly all these measurements are in a region where spin-
wave theory is inapplicable; we quote them to indicate
the general trend of specific heats and to emphasize the
importance of obtaining measurements at lower tem-
peratures. The measurements on MnF2 were carried
down to 15'K (vicinity of T&z) with no appreciable
change in the curious T'~ dependence. However,
Np02 in the region between 15 and 11'K shows a
marked drop in specific heat, perhaps indicating effects
of anisotropy.

Mention should be made of FeC12, CoC12, and par-
ticularly MnC12 which have very low Curie points and
should have large spin specific heats.

4-
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Fro. 2. The temperature variation of the two thermodynamic
quantities for orthorhombic symmetry showing the e8ect of
anisotropy. The solid line is the specific heat C(T/1)+C(T/2),
and the circles are the experimental points (see reference 19).The
dashed line is the magnetization M(T/1)+M(T/2), and the
crosses are the experimental points (see reference 11).

'4 J. W. Stout and H. E. Adams, J. Am. Chem. Soc. 64, 1535
(1942).
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IV. ORTHORHOMBIC SYMMETRY

In an orthorhombic crystal, taking the s axis as
preferred, the anisotropy is different for displacements
towards the x and the y axes. As a measure of these
anisotropies we introduce n(1) and o.(2), to which cor-
respond the two temperatures T~z(1) and T~z(2). The

spin waves split into two sets, with approximate
energies

Za(i) —s( J(SLbk'+2cr(i)]&, (22)

as shown by Nakamura. 4

The magnetization of a sublattice is obtained by a
summation over all spin waves, and we now merely sum
over the two independent sets. Thus

j/Iar (x' )= —-'APi —
i

ys„/s)
T ) T

x wl I+wl I
. (»)

I T~z(1)/ i Tgz(2)i

Similarly, the specific heat is given by

I+(:I I (24)( 15) t Tgz(1)) E Tgz(2))

One might expect the parallel susceptibility to be
obtained on applying Eq. (15) to Eq. (23), but it turns
out to be a much more complicated expression. Intro-
ducing

e=f&sEEs/sl J IS (25)

rs Van den Handel, Gijsman, and Poulis, Physica 18, 862 (1952).

as a measure of the applied 6eld Bo, we may distinguish
two cases:

(A) e') rr(2) —n(1).

Here the applied 6eld is large compared to the dif-
ference between the two anisotropy-exchange 6elds, and
hence the normal modes of the spin waves are essentially
determined by the applied field. The two sets of spin
waves may be thought of as precessing, respectively,
clockwise and counterclockwise about Bo. The energies
of the spin waves are given approximately by4

E —z (J ( S(Lbk'+n(1)+n(2) j&+e). (26)

Accordingly, zn will be given by Eq. (16) with Tzz
replaced by —,'LT~z(1)+ T~z(2) j.

(8) E'&o.(2)—o.(1)

Here the normal modes are essentially determined by
the two widely different anisotropy-exchange Gelds. The
spin-wave energies are given by adding terms in e' to
Eq. (22). The parallel susceptibility is field dependent
in a complicated way. In the absence of a more precise
introduction of anisotropy terms (especially since we
are here dealing with a large difference in anisotropies),
it hardly seems worthwhile to go further.

A remarkable series of measurements has recently
been made at Leiden on single crystals of the ortho-
rhombic CuC12 2H20. From susceptibility measure-
ments" it is possible to deduce values of T~z(1) and
Tzz(2). The smaller of these may be found from the
critical Geld, that is, from the value of IIO which is suf-
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ficient to overcome the anisotropy-exchange energy
holding the spins to the preferred, axis and to allow them
to Qop to the second-preferred xais. This is detected by
an immediate jump of susceptibility from x„ to p~.
Inserting the measured value of 6SOO oersteds for the
critical Geld into

&T~z(1)=gpo(&o)., i, (27)

we obtain T~e(1)=1'K.
There exists a critical field for Qop from the preferred

to the third-preferred axis, and Tze(2) is given by this
field. Since the spins will have Bopped to the second-
preferred axis before this field is reached, it cannot be
measured directly, but must be inferred from measure-
ment of the Qop from the second- to the third-preferred
axis when IIO is along the second axis. This flop takes
place at 10 690 oersteds. Now from Eq. (2) we see that
the anisotropy is proportional to the square of the
critical Geld, and since to first order the anisotropy
constant for 6rst- to third-preferred axis is the sum of
the constants Grst- to second-preferred and second- to
third-preferred, the critical fields will sum in the square.
This yields a field of 12 500 oersteds corresponding to
Tg~(2) =2'K.

The Curie point of CuC12 2H2O is 4.3'K; thus the
values of T&z are very large, and e6ects of anisotropy
will be strong. In Fig. 2 we have plotted 3E(T/1)
jM(T//2) as the dashed line and C(T/1)+C(T/2) as
the solid line. Experimental measurements of Poulis and
Hardeman" on sublattice magnetization and of Fried-
berg' on speciGc heat are indicated; in plotting these
points we have used the value 5/(2~') for the geo-
metrical factor A~, and we have evaluated J from
molecular field theory, Eq. (8). Slight changes in J
move all the points large distances up or down, but
have little effect on the shape of the curves. None of the
data are at su%ciently low temperatures for one to
expect the spin-wave theory to be valid; nevertheless
the general trend of things is encouraging. It is inter-
esting to note the much stronger effect of anisotropy on
sublattice magnetization than on specific heat.

Poulis and Hardeman" find that the sublattice mag-
netization closely follows a T4 law over most of their

"S.A. Friedberg, Physica 18, 714 (1952).

TanLz I. Application of Eq. (20) to some representative
antiferromagnetic salts.

Salt

MnF2
FeFg
CoF2
NiF2
Np02

CuC12. 2H20

('K) Tc
approx. ('K)

450 70
420 78
3602 37
450 73
360 25
250 4.2

TAE
(oK)

2and2

CT/CL
from Eq.
(20) (for

S N/N' T )TAE)

5/2 1/3 7
2 1/3 3

3/2 1/3 8
1 1/3 1

3/2? 1/3 10
1/2 1/9 70

range. We are unable to account for any such simple
behavior.

The anisotropy in CuC12 2H20 is due partly to aniso-
tropic exchange, partly to magnetic dipole interactions,
and partly to the anisotropy of the g factor (crystalline
fields). "As noted in Sec. II, the theory used in this

paper assumes the anisotropy can be represented as a
sum of terms involving single spins only. Some of the
detailed behavior of the thermodynamic properties may
be lost in this simplification. However, since we have
used the experimentally determined critical fields in
the above, and these represent a sort of activation
energy for spin waves, we doubt that a more involved
treatment would change things significantly. We should
note that one can obtain the critical Gelds from antifer-
romagnetic resonance frequencies, that is, from the
activation energies of it=0 spin waves. Using the data
of Ubbink ef a/ "Naga. miya" has deduced fields of
7200 and 13 000 oersteds, in good agreement with the
susceptibility determination.

On the other hand the detailed nature of the anisot-

ropy may be of considerable importance in the theory
of parallel susceptibility, especially for applied fields of
the same order of magnitude as the critical Gelds. The
measurements" are in fields of this size and furthermore
are all at 1.6'K or higher. Because of this, and since the
susceptibility is field-dependent in such a complicated
way, we shall drop the problem at this point.

~T. Moriya and K. Yosida, Progr. Theoret. Phys. (Japan) 9,
663 (1953).See also discussion remark of F. Keffer, Revs. Modern
Phys. 25, 337 (1953).

s' Ubbink, Poulis Gerritsen, and Gorter, Physica 18, 361 (1952).
~ T. Nagamiya private communication).


