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Atomic Heat of Bismuth between 1' and 4'K*
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(Received July 19, 1954)

Between 0.96 and 2.3'K the atomic heat of a polycrystalline ingot of bismuth (99.99 percent) can be
represented by: c=(1.213+0.006)T'+(0.078&0.03)T millijoules/mole deg. The lattice contribution,
given by the cubic term, corresponds to 117'K for the low-temperature Debye 8. Between 2.3 and 4.2'Ke de-
creases to 105'K. The electronic contribution is much smaller than for normal metals.

I. INTRODUCTION

ISMUTH is unique among the metals in the variety
of electric and magnetic properties for which it

exhibits anomalously large eGects. Among these are re-

sistivity, Hall constant and change of resistivity in a
magnetic field, diamagnetic susceptibility, magnetic
anisotropy and its magnetic Geld dependence (de Haas-
van Alphen effect). The large diamagnetism can be
accounted for at least qualitatively by a theory pro-
posed by Jones."

Jones' band picture can be summarized briefly as in-

volving an overlap between the fifth and sixth bands,
the latter containing a small number of electrons and
the former, a small number of holes. This structure im-

plies that the nonlattice contribution to the atomic heat
at very low temperatures will be a very small linear
term. However, it was not possible to determine whether
such a term is present from the measurements of Keesom
and van den Ende' in the liquid helium temperature
region. We have therefore repeated these measure-
ments, carrying them to somewhat lower temperatures,
in order to determine the magnitude of this contribution
to the atomic heat.

The scatter of the earlier data makes the calculation

of the Debye 8 uncertain below 4'K. We were therefore
also interested in determining an accurate value for
80, the constant value for 8 in the "true T' region. "
From the calculations of Slackman, 4 which show that
the true Ts region extends from O'K to t)/100 or 8/50,
and the rough values measured by Keesom and van den

Ende, ' this region would be expected to have its upper
limit around 1' or 2'K. The variation of 0 with T im-

mediately above the true T' region is also of interest
because of its connection with the vibration spectrum,
which has not yet been calculated theoretically for the
lattice in which bismuth crystallizes.

TABLE I. Resistivity ratio for bismuth sample.

T ('K)

R/RpoO

77.3

0.383

20.0

0.154

14.2

0.135

4.2

0.112

II. EXPERIMENT

A. Sample

The sample was a polycrystalline ingot of bismuth
weighing 521.8 grams, with a stated purity of 99.99
atomic percent. ' When the calorimetric measurements
were completed, a piece was cut from the middle of
the ingot and its resistance was measured at several
temperatures from 4' to 273'K. The ratio R(T)/
R(273'K), where R is the resistance, is given in Table I.
These values are comparable with some of the higher
values found by Schubnikow and de Haas in their
measurements on a large number of single crystals of
bismuth. Since our ingot was polycrystalline, it appears
that it had a purity of the order which was- stated. In
order to check further on its purity, Mr. R. Van Veld
of this department made a spectrographic analysis
which could have detected metallic impurities present
in concentrations as low as 10 ~. No impurities were
found.

B. Apparatus and Procedure

The bismuth ingot was hung by nylon thread in a
vacuum can. Cigarette paper was glued to the ingot
with Glyptal varnish, and on it were wound a constan-
tan heater wire and a phosphor-bronze thermometer
wire. v In part of the calibrating procedure, the measure-
ments were carried out in the manner reported pre-
viously, except for a diR'erence, described below.

Since it was anticipated that the linear term in the
atomic heat, if present at all, would be small relative to
the cubic lattice term, we added a booster pump9 in
the bath pumping line, so as to be able to reach lower
bath temperatures. At the lowest temperature reached,

* This work was supported by Signal Corps Contract.
' H. Jones, Proc. Roy. Soc. (London) A147, 396 (1934).' N. F. Mott and H. Jones, The Theory of the ProPertses of Metals

aud Alloys (Oxford University Press, London, 1936), p. 212.' W. H. Keesom and J.N. van den Ende, Communs. Kamerlingh
Onnes Lab. Univ. Leiden, No. 203d: Proc. Koninkl. Ned. Akad.
Wetenschap. 33, 243 (1930); Leiden Communa. 213c, Proc.
Koninkl. Ned. Akad. Wetenschap. 34, 210 (1931).

e M. Blackman, Repts. Progr. Phys. 8, 11 (1951).

'Kindly supplied by J. Crawford of the Oak Ridge National
, Laboratory.

6L. Schubnikow and W, J. de Haas, Communs. Kamerlingh
Onnes Lab. Univ. Leiden, No. 207c (1930):Proc. Koninkl. Ned.
Akad. Wetenschap. 33, 350 (1930).

7 Kindly supplied by Dr. K. Taconis of the Kamerlingh Onnes
Laboratory, University of Leiden.' N. Pearlman and P. H. Keesom, Phys. Rev. 88, 398 (1952).

9 Distillation Products Model KB100.
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Fzo. 1. C/T vs T for bismuth in liquid helium region. ~—our
results; poirits with vertical line are those of Keesom and van
den Knde.

0.95 'K, the evaporation rate was 30 liters of helium
at NTP per hour.

Because of the viscous gas Bow, a pressure drop will

arise in the cryostat, so that vapor pressures measured
at the top.of the cryostat according to our usual practice
will- be significantly lower than the corresponding pres-
sures at the surface .of the liquid, at the lowest tempera-'
tures. The existence of this pressure drop can be seen from
the following observation. The lowest bath temperature
obtainable without using the booster pump was about
1.2 'K, and this temperature could also be reached with
the booster pump by heating the bath. The pressure at
the -top of the cryostat was found to be smaller in the
latter case for a given thermometer resistance, corre-
sponding to the fact that since the gas Qow was larger
due to the higher evaporation rate, the pressure drop
in the cryostat was greater.

The correction for this pressure drop is not easy to
calculate, since it depends on the temperature distribu-
tion of the gas io the cryostat, which is not known. To
overcome this difhculty, we condensed some helium in
the vacuum can and measured its vapor pressure with
a sloping oil manometer. The pressure drop mentioned
above, between liquid surface and manometer, does not
occur with this arrangement because the vapor is not
being pumped away. The liquid helium film, however,

creeps up the sides of the container and the connecting
tube, evaporates, and condenses at a lower point. This
effect will lead to a higher measured pressure than the
vapor of the liquid, but calculation shows that for our
connecting tube (14-mm i.d.) the difference is negligible.
Above 1.2 'K the pressure measured at the top of the
cryostat was equal to that inside the vacuum can. The
differences below this temperature increased as the
temperature was lowered, and corresponded to 0.04'K
at the lowest temperature.

The thermometer resistance between 1.3' and 2 'K
could be represented to within 0.001 'K by a parabola.
This parabola also agreed with the calibration points
below 1.3 'K with the same accuracy, if temperatures
based on vacuum can pressures were used. The parabola
was therefore used below 2 'K to convert resistance to
temperature. Another parabola, which joined on
smoothly to the first at about 2 'K and represented the
calibration points to within several thousandths of a
degree between 2 ' and 4.2 'K, was used in the higher-
temperature interval ~

III. RESULTS

The results of our measurements are collected in
Table II. From these data, we have plotted, in Fig. 1,
C„/T verses T, together with the points of Keesom
and van den Ende' in the helium, region. It can be seen
that their points scatter around ours in a random
fashion. Below T'= 5 or T= 2 .3'K a straight line can
be fitted to our points. In Fig. 2 the data below T' =5
are plotted on a larger scale, again in the form of C,/T
versus T'. The line drawn in Fig. 2 was calculated by
the method of least squares'; it gives for the atomic heat
the expression:

C„= (1.213&0.006)T'+ (0.078&0.013)T
Xmillijoules/mole degree. (1)

The errors given in Eq. (1) are standard errors, calcu-
lated on the assumption that all errors in the measure-
ment are random. A possible source of systematic error
is the vapor pressure curve, which is based on thermo-
dynamic arguments below 1.6 'K, '0 "where the prob-
able error is estimated to be +0.003'K. Taking this into
account, we estimate the total standard error in the
linear term to be about 0.03 millijoule/mole degree. s
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FIG. 2. C/T vs T' for bismuth in true T' region.

IV. DISCUSSION

A. Lattice Atomic Heat

From the coefiicient of the cubic term in Eq. (1) we
calculate the value (117&1)'K for 8s, the constant
value of the Debye 0 in the temperature region im-

R. Bleaney and F. Simon, Trans. Faraday Soc. 35, 1205
(1939)."W. H. Keesom and W. P. J. Lignac, Communs. Kamerlingh
Onnes Lab. Univ. Leiden, Suppl. 90c (1939):See also TemPera
tere, AIP Symposium (Reinhold Publishing Corp. , New York,
1941),p. 757.

'2 J. Kistemaker, Communs. Kamerlingh-Onnes Lab. , Leiden,
No. 269c (1946); Physica 12, 272 (1946).
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TABLE II. Data on atomic heat of bismuth.

Point

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

T
( K)

1.299
1.301
1.300
1.302
1.299
1.297
1.549
1.562
1.562
1.688
1.712
1.913
1.921
2.128
2.159
2.385
2.409
2.704
2.731
2.960
3.009
3.246
3.282
3.453
3.497
3.534
3.576
3.640
3.679
3.716
3.751
3.782
3.817
3.850
3.888
3.952
3.989
4.019
4.060
4.106
4.146
4.183
4.220
4.252
4.287
4.347
4.376
4.485
4.507
4.601
4.635
4.781
4.819
5.008
5.036

1.344
1.358
1.371
1.374

hT
('K)

27 April 1953

0.04877
0.05007
0.04978
0.04986
0.04877
0.04856
0.03009
0.05325
0.05305
0.04120
0.03997
0.02872
0.02821.
0.04019
0.03910
0.02804
0.05506
0.03800
0.03640
0.04737
0.04491
0.03416
0.03307
0.04258
0.04098
0.03948
0.03762
0.03550
0.03373
0.03314
0.03180
0.03112
0.02986
0.03689
0.03534
0.03307
0.03182
0.04058
0.03817
0.03657
0.03575
0.03434
0.03327
0.03287
0.03128
0.03000
0.02885
0.02592
0.02534
0.02363
0.04586
0.04062
0.03893
0.03303
0.03141

18 May 1953

0.04041
0.04075
0.04000
0.03986

2.982
2.839
2.817
2.811
2.849
2.885
4.586
4.778
4.758
6.172
6.236
8.700
8.792

11.84
12.15
17.01
17.88
25.27
26.38
33.81
35.70
46.88
48.67
60.88
63.29
65./3
69.05
73.14
/7.06
78.39
81.59
83.43
87.08
88.84
92.85
99.01

103.1
105.3
111.8
116.8
119.4
124.6
128.4
129.9
136.6
142.5
148.5
165.1
169.0
181.2
186.4
210.6
219.8
259.1
272.4

3.121
3.095
3.153
3.163

Point

12
13
16
17
18
19
20
21
22
23
24
25

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
45
46
47
48
49
51

1.026
1.029
1.056
1.036
1.028
1.034
1.053
1.062
1,079
1.090
1.095
1.111
1.129
1.138
1.167
1.190
1.193
1.215
1.221
1.255
1.291
1.295
1.319
1.346
1.357
1.396
1.437
1.470
1.505
1.533
1.606
1.639
1.710
1.752
1.804
1.839
1.907
1.958
1.987
2.027
0.953
0.968
0.982
0.994
1.008
1.023

1 June 1953

0.05574
0.05716
0.10794
0.05844
0.03580
0,03596
0.03342
0.05400
0.05248
0.04947
0.0486/
0.04728
0.04575
0.04401
0.04086
0.03881
0.03903
0.03688
0.03692
0.06853
0.06264
0.06209
0.05880
0.05506
0.05435
0.04943
0.04534
0.04264
0.04020
0.03727
0.04404
0.04096
0.05238
0.04836
0.04477
0.04203
0.05834
0.05368
0.05191
0.04878
0.01951
0.04097
0.03882
0.03790
0.03605
0.03659

T b, T
('K) ( K)

18 May 1953—Continued

1.374 0.03979
1.363 0.03993
1.410 0.05096
1.434 0.04979
1.462 0.04726
1.469 0.04685
1.530 0.03713
1.572 0.03713
1.611 0.03471
1.659 0.06392
1.689 0.0610/
1.710 0.05944

3.169
3.158
3.525
3.608
3.801
3.835
4.839
4.839
5.177
5.598
5.863
6.027

1.483
1.446
1.532
1.415
1.373
1.366
1.470
1.531
1.573
1.671
1.699
1.749
1.807
1.879
2.024
2.131
2.119
2.242
2.239
2.43/
2.666
2.690
2.842
3.036
3.075
3.381
3.689
3.923
4.162
4.492
5.148
5.535
6.203
6.719
7.262
7.736
8.638
9.388
9.714

10.336
1.150
1.206
1.272
1.303
1.370
1.350

mediately above O'K. The variation of 8 with T at
higher temperatures is given in Fig. 3, in the form of a
plot of 8/ep versus T/Hp, in which the data of Keesom
and van den Ende, ' of Armstrong and Grayson-Smith, "

"L. D. Armstrong and H. Grayson-Smith, Can J. Research
A27, 9 (1949).

and of Anderson" are included. These variations in 8
correspond to deviations from parabolic form of the
vibration spectrum. They occur as a resu1t of the dis-
crete nature of real lattices, as contrasted with the
continuum considered by Debye. Hence these devia-

'4 C. T. Anderson, J. Am. Chem. Soc. 52, 2720.(1930).
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120 . percent of the first. Thus T3, the upper limit of the true
T' region, is given by

Ts' ——0.02 (np/as). (4)
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FIG. 3. 8/ep ps T/8 for bismuth. ~—our results; points with
vertical line, those of Keesom and van den Ende; points with
horizontal line, those of Armstrong and Grayson-Smith.

tioos will depend on the specific character of the inter-
atomic forces in particular lattice.

Unfortunately, the calculation of the vibration spec-
trum for a lattice is a very tedious task, which has been
accomplished for only a small number of lattices. Much
useful information is provided by such calculations,
however. For instance, it makes possible the determina-
tion of the lattice contribution to the total atomic heat
of a metal so that the electronic contribution can be
found by subtraction (see, e.g. , the recent work of
Clement and Quinnell's on indium). Hence, information
about the general form of vibration spectra, which can
be obtained without detailed calculation on the basis of
lattice theory, is of interest. Blackman has suggested"
that the general form of the initial deviations from the
parabolic spectrum will be the same for all three-
dimensional lattices. This suggestion, which has ap-
parently never been confirmed in the general case, is
that the spectrum may be written in the form

g(v) =csv'+ 84v', (2)

so that the Debye parabolic spectrum is a valid approxi-
mation at very low frequencies. This form of the spec-
trum has been verified by Blackman" for the simple
cubic lattice and by Leighton" for the face-centered
cubic lattice (f.c.c.). This was done by considering the
form of the secular determinant (from which the fre-
quencies are calculated) when its elements are approxi-
mated by expressions valid for long wavelengths.

When Eq. (2) is a good approximation for the vibra-
tion spectrum at low frequencies, C„(lattice) can be
approximated by

C„(lattice) =crsT'+crpT', (3)

in which the n's depend on the a's and hence on the
nature of the lattice. Blackman has defined, as the
"true T' region, "" temperatures immediately above
O'K for which the second term in Eq. (3) is less than two

's J. R. Clement and E. H. Quinnell, Phys. Rev. 92, 258 (1953)."M. Blackman, Proc. Roy. Soc. (London) A159, 416 (193'7)."R. B. Leighton, Revs. Modern Phys. 20, 165 (1948).

For bismuth we find that (Ts/Hp) is 0.019. Blackman
found" that in the simple cubic lattice (Ts/Hp) is 0.01,
while Leighton found'r that (Ts/Hp) is 0.021 in the f.c.c.
lattice with nearest neighbor forces only, and 0.025 when
the force constant for second-nearest neighbors is one-
tenth that for nearest neighbors.

In order to see the extent to which Eq. (3) describes
the low-temperature' atomic heat of the bismuth lattice,
our data are plotted in Fig. 4 in the form C„(lattice)/T'
versus T'. It is clear that while there does appear to be
a term proportional to T' in the atomic heat, the coeK-
cient of this term is not constant over the entire range
plotted, but increases rather abruptly at a temperature
which corresponds roughly to the upper limit of the
true T' region. Hence Eq. (3) is not a good approxima-
tion in this case.

Exact calculations for various spectra show (as has
recently been pointed out by de Launay" in another
connection) that Eq. (2) can be expected to apply over
only a limited range of frequencies. Equation (3) will
therefore be limited in its applicability to a restricted
temperature range. The reason for this limitation is
that the vibration spectra have maxima at frequencies
much below the cut-off frequency, and these maxima
are preceded by a frequency range in which g(v) may
increase much faster than v'. At any rate, Eq. (2) can-
not apply at frequencies near the peak in the spectrum.

Although no simple expression such as Eq. (2) is
available for this part of the spectrum, the position of
the maximum can be estimated by the method of Katz."
He treats vibration spectra as being made up of Einstein
frequencies with positive or negative weights super-
imposed upon a parabolic Debye spectrum. No physical
basis is claimed for this mode of description; it is

proposed, to quote Katz, "". . . as a way of describing
mathematically any empirical C(T) in a rapidly con-
verging series. " The positions and magnitudes of the
Einstein frequencies having positive weights can be
found from the dips, and of those having negative
weights from the peaks, in the graph of 8/Hp versus T/8 p,

the pertinent relation being v=5kT/h. Katz shows
that this may be done with reasonable accuracy for
T/8 p less than 0.1. It is then reasonable to suppose that
the positions of the fictitious Einstein frequencies corre-
spond to those of the maxima of the peaks and dips in
the vibration spectra. For bismuth, the minimum in

8(8/Hp ——0.81) at 8'K(T/Hp ——0.068) thus corresponds
to a peak in the spectrum at v/v, equal to 0.34. From
Leighton's calculated spectra for the f.c.c. lattice we
find the value 0.70 in the case of nearest-neighbor forces

"J.de Launay, Phys. Rev. 93, 661 (1954)."E. Katz, J. Chem. Phys. 19, 488 (1951).
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B. Nonlattice Atomic Heat

Since the coefficient of the linear term in Eq. (1) is
only between two and three times its total standard
error, it is significant only in setting an upper limit to
the carrier contribution to the heat capacity. The
carrier contribution depends on the density of states at
the Fermi level, which can be related to the concentra-
tion of carriers and their eGective masses. This relation
can be written

yT=0.137p(V'I,)tT millijoules/mole degree, (5)

where p is the ratio of eGective carrier mass to free
electron mass, V is the atomic volume (21.4 cm'/mole
for bismuth), and is, is the number of carriers per atom.
From the value of p in Eq. (1), we find

~.p'= 4.0X10—4. (6)

This expression assumes the presence of only one kind
of carrier. In the case of overlapping bands such as
postulated bv Jones, ' ' however, the thermal excitation
of electrons in the sixth band will result in a shift of
the Fermi level, so that the number of holes and elec-

w I. C. Fine, Phys. Rev. 56, 355 (1939).
s' Brown, Zemansky, and Boorse, Phys. Rev. 86, 134 (1952).

only, and the value 0.65 for the case in which the second-
nearest-neighbor force constant is one-tenth as large
as the nearest-neighbor force constant. The latter
value agrees fairly well with 0.61, the value found from
the minimum in the 8 versus T curve for silver, which
Leighton calculated with a somewhat smaller ratio of
second-nearest-neighbor to nearest-neighbor force con-
stants. Fine's calculation of the vibration spectrum of
tungsten" (body-centered cubic lattice, b.c.c.) gives
the first peak at v/v, equal to 0.57. Hence, in the
bismuth vibration spectrum, the distance between the
end of the low-frequency parabolic region and the first
peak is only about half that in the other spectra dis-
cussed. It is likely that this circumstance is responsible
for the fact that the atomic heat of bismuth makes an
abrupt transition from the true T' region to one in which
its variation with T is dominated by the approach to a
maximum in the vibration spectrum, without an inter-
vening region in which the second term (and perhaps
higher terms) in Eq. (2) can be seen.

As has been pointed out, it appears that the form of
the vibration spectrum immediately above the low-

temperature parabolic portion depends strongly on the
nature of the lattice. Although all the vibration spectra
calculated so far have a peak in this region, it is not
inconceivable that in some cases a dip might precede
this peak. Such a spectrum would, for instance, account
for the behavior of the atomic heat of niobium (b.c.c.),
which has been found" to increase more slowly than T'
immediately after the true T' region.
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Fio. 4. C/T vs T for bismuth in liquid helium region.

trons is changed as well. This leads to an additional
contribution to the heat capacity, which can be taken
into account by replacing p in Eqs. (5) and (6) by p,
defined by

r =1 2(p.+w), (7)

where p, and p~ are the eGective mass ratios for elec-
trons and holes, respectively. Since Jones estimated'
that e, is of the order of 10 4, it would follow from Eq.
(6) that p is of the order of unity. However, he also
estimated that p, is about 1/30. Although he could
not make a quantitative estimate of p&, data oo the
magnetic anisotropy led him to surmise that it is even
smaller than p, . If this is the case, the theoretical value
of e p' is much smaller than the right-hand side of
Eq. (6).

It should be emphasized, however, that the latter is
an upper limit to the true value for bismuth, not only
because it is not large compared with its standard error,
but also because the possibility exists that part, or all,
of the observed linear term in the atomic heat is due to
impurities in the bismuth. If the impurity atoms enter
the lattice substitutionally, the electrons or holes they
contribute would be expected to have the small eGective
masses associated with this lattice. Therefore, they
could not greatly increase the value of n, ,p'. On the
other hand, if the impurities were among those whose
solubility in bismuth is very low, such as copper, tin, or
iron, so that they did not enter the lattice appreciably,
even small concentrations with p equal to unity (or
greater, as for iron) could account for the relatively
large value of e,p,'. The spectrographic analysis men-
tioned earlier sets an approximate upper limit of 10 ~

on n from metallic impurities, so that it is not im-

possible that at least part of the value given in Eq. (6)
can be accounted for in this way. A more quantitative
investigation of this point would require an even purer
sample, and also the attainmeot of lower temperatures.

We can therefore conclude only that, as far as the
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magnitude of the non-lattice contribution to the atomic
heat is concerned, Jones' theory' ' is not in disagreement
with our experimental results. The complexity of the
model which Adams" presents as an alternative to
that of Jones makes a calculation of the expected

~ E. N. Adams II, Phys. Rev. 89, 633 (1953).

carrier contribution to the heat capacity very dificult.
Such a calculation might, however, offer a useful test
of its applicability.

We would like to express our appreciation for the
support and encouragement provided by Dr. K. Lark-
Horovitz during the course of this work.
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Magnitude of Excitation Energy and Energy Transfer by Collision*

MILTON FURST AND HARTMUT KALLMANN

Physics Department, Sex York U'niversity, Washington Square, Xem York, Sew York

(Received July 23, 1954)

Energy transfer by collision in fluorescent solutions is found to drop sharply when the excitation energy
of the solute molecule is very close to or below that of the transferring molecule. The results indicate that
energy is transferred only when molecules are close to each other as in collision.

IGH-ENERGY-INDUCED Quorescence in liquid
solutions has been shown to be associated with a

transfer of energy from an excited solvent molecule
to a solute molecule. ' ~ We are now reporting a special
instance where such energy transfer takes place between
added napthalene and various solute molecules.
Napthalene is a solid at room temperature, but it can
electively be used as a solvent for high-energy Quores-

cence by dissolving large amounts of it in a solvent
which may by itself have only mediocre ability to
transfer energy. About 300 grams per liter of napthalene
in e-butylphosphate is such a system. ' Various highly
efficient solutes (in xylene) such as n, n'-binaphthyl,

2, 5-diphenyloxazole and 9, 10-diphenylanthracene were
studied in this "solvent" combination. The energy
transfer to the solute takes place almost exclusively
from the excited napthalene molecules; such a "solvent"
combination is found to be almost as eGective as
xylene for the solutes mentioned. p- and m-terphenyl
behave quite diGerently; when these substances are
put into this "solvent" combination, only small
Quorescence occurs, although in xylene both of these
materials are highly eKcient. This result is interpreted
by assuming that no energy transfer takes place from
napthalene to p- or m-terphenyl. If one of these latter
molecules is added to a Quorescent solution containing
one of the above-mentioned solute molecules, the light
output is scarcely changed. This result can be inter-
preted in the same way.

The explanation proposed here for this behavior is
based on the assumption that the energy jump from
the ground state to the first singlet state in the ter-

*This work was supported by the Signal Corps Engineering
Laboratories, Evans Signal Laboratory, Belmar, New Jersey.

r H. Kallman and M. Furst, Phys. Rev. 79, 857 (1950).
s M. Furst and H. Kallman, Phys. Rev. 94, 503 (1954}.
3 A more complete discussion of this system will be given in a

paper now in preparation.

phenyls is slightly too great to enable frequent transfer
from napthalene. Judging by the published absorption
curves of napthalene and m- and p-terphenyl one can
only say that their lowest excited states are very close. '
n, n'-binaphthyl, to which a very good energy transfer
occurs in this "solvent" combination, also has an
absorption edge close to that of napthalene. From the
absorption curves, one concludes that the lowest
excitation energy for n, n'-binaphthyl probably does
not differ by more than I/10 of an electron volt from
the respective excitation energy of napthalene.

The difference in behavior between the terphenyls
and n, n'-binaphthyl would be understandable if the
absorption curve of the n, n'-binaphthyl extended to
longer wavelengths than those of the terphenyls.
Therefore, by means of a monochromator and photo-
multiplier arrangement, a more complete check of the
absorption curves of m-terphenyl and n, n'-binaphthyl
was made in a range where pertinent data were not
previously available. (M-terphenyl was chosen because
of its greater solubility. ) The concentrations were
chosen in such a way that both the nz-terphenyl and the
n, n'-binaphthyl solutions had practically equal absorp-
tion at shorter wavelengths where a maximum in the
absorption curve occurs. Then the relative absorption
was observed at a series of longer wavelengths. These
experiments showed that the absorption spectrum of
n, n'-binaphthyl extends to slightly longer wavelengths
than that of m-terphenyl, which in turn shows that
the lowest excitation energy of m-terphenyl is greater
than that of n, n'-binaphthyl. This supports our
explanation that energy transfer to terphenyl from
napthalene does not occur because the excitation energy
of terphenyl is too high. The occurrence of the small
Quorescence of m-terphenyl in the solvent combination

4 R. A. Friedel and M. Orchin, Ultraviolet SPectru of Aromatic
ComPomeds (John Wiley and Sons, Inc. , New York, 1951}.


