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positive and negative. It can be seen that considering
the larger number of metals included, the degree of
separation achieved between the two classes of metals
is still fairly good. The value of y lies between +0.5
and —3.4 for superconductors. The only nonsuper-
conductors for which y lies in this range are transition
elements which are excluded from all the other criteria

except the one by Kikoin and Lasarew which is based
on the value of Ro. A comparison of Fig. 1(a) with
Fig. 1(e) shows that the degree of overlapping for.

y is, however, smaller than that in Eo-. In conclusion
it can be said that the criterion suggested here LFig.
1(d) and 1(e)j is more successful then any of the
others shown in Fig. j..
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An expression is given relating the magnetization dependence of the reversible susceptibility normal to the
field direction to that of the parallel reversible susceptibility. Modification of these susceptibility dependences
due to the trapping of domain walls in metastable positions by potential holes is considered. The macroscopic
magnetization is expressed in terms of a distribution of potential holes by an argument analogous to that of a
"mean free path. " The desirability of further examination of this approach is discussed. The reversible
susceptibilities of three ferrite specimens were measured and found to compare favorably with the theory.

I. INTRODUCTION

'F one defines a susceptibility by the expression

when AH has a sense opposite to that of the change in II
which brought the specimen to the point (M,H), the
parallel reversible susceptibility x„„is de6ned in the
usual manner. When AII is perpendicular to the direc-
tion of H, the transverse reversible susceptibility p„& is
dehned. If DH is in the same sense as the last change in
total H, the di6erential susceptibility g& is defined. x&
contains an irreversible component, g„& and x„„donot.
The initial susceptibility xo is dined as:

xp= llm x„y.
3f~

The parallel reversible susceptibility in ferromagnetic
materials has been the subject of several authors since it
was discussed by Gans' in 1911. A recent paper by
Tebble and Corner' includes a general review. An ex-
pression for the transverse reversible susceptibility,
given by Grimes, Orr, and Winsnes, is developed in this
paper. Experimental data are given for both reversible
susceptibilities.

*Work supported by the Signal Corps Engineering Labora-
tories, Fort Monmouth, New Jersey.' R. Gans, Z. Physik. 12, 1053 (1911).

i R. S. Tebble and W. D. Corner, Proc. Phys. Soc. (London) 63,
1005 (1950).' Grimes, Orr, and Winsnes, Phys. Rev. 91, 435 (1953).

To develop expressions for these susceptibilities in
terms of the magnetic parameters of a specified system,
it is necessary to use diferent models, depending upon
the particular calculation being considered. The models
are altered as necessary in the following discussion. The
justidcation for this procedure is that the suscepti-
bilities depend upon the statistical distribution of po-
tential holes and the relative energy magnitudes in-
volved. It presumably matters little what the specific
assumed model is so long as the proper energy relations
are maintained.

II. THEORETICAL DEVELOPMENT

A. The Initial Susceptibility

From measurements of the permeability spectrum
using particle sizes down to the order of single domains,
Rado, Wright, and Emerson' have shown convincingly
that the low-frequency initial susceptibility of ferrites is
caused primarily by wall movement rather than by
rotational processes. It is therefore of interest to note
how this susceptibility must depend upon the forces to
which the wall is subject.

A plot of the energy of a ferromagnetic body as a
function of position x of a given wall would be, over a
small region, an irregular curve with many hills and
valleys. When no 6eld is present the wall will be found
at a minimum position x~. If the energy is assumed to be
a continuous function of x, then near x1,

V(x) = V(xr)+ (1/2p„) (x—xr)s+
' W. F. Brown, Jr., Phys. Rev. 52, 325 (1937);Phys. Rev. 53,

482 (1938);Phys. Rev. 54, 279 (1938).These will be referred to as
Parts I, II, and III, respectively.

i Rado, Wright, and Emerson, Phys. Rev. 80, 273 (1950).
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where p„ is the radius of curvature of V(x) at x=x~.
When a reversible field dH is applied, the potential of
the wall becomes

V*(x)= V(x) —yM.xdH,

for a wall of unit area. y is a constant depending upon
the type of wall. The wall must move to the minimum of
V*(x), so

dM, =yM, (x—xr) =p,y'M, sdH,

x„=dM„/—dH =p„y'M, s.

Since this expression applies to a wall of unit area, the
problem of explaining the initial reversible susceptibility
becomes that of determining the distribution of the wall
area per unit volume located at minima of all possible
radii p„, and hence also the distribution of such minima.

B. Reversible Susceytibilities

Gans' first suggested the parametric equations,

where rj was an adjustable parameter and f(r)) =L(r)),
the Langevin function:

L (g) = Lcothri —(1/r)) j.
The prime indicates d/dg.

These equations were found to fit quite well the data
for iron and nickel. They were first derived by Brown4 in
1938by assuming ferromagnetic material to consist of E
domains per unit volume all of fixed and equal volume.
These domains were considered to be subjected to
random but fixed forces in such a manner that the
ordinary techniques of statistical mechanics could be
applied.

If the parallel reversible susceptibility is given by
Eq. (4), where f(r)) is a continuous function of q, x,c/xo
can be developed' by assuming that the change in
magnetization dM accompanying a change dH„ is such
as to keep the total magnetization always parallel to the
total field. Then

x„=dM/—dH„, =M/H„

where H„ is defined by

0 Xry

and is proportional to ri (r)=A. M,H, .) Therefore,

1 dH, d t'M

dM dM (x,g]

Upon substituting for M and x„„from Eq. (4) and
integrating,

x.~/xo = 3f(~)/n,

since x„t,=y„„=go, when 3f=0.
Brown obtains Eq. (4), from which Eq. (5) follows,

for spherical and cubic symmetries. The form of f(rl)
varies with the exact anisotropy type. He found f(rl)
=cothr) —1/r) for isotropic material, and more compli-
cated expressions for L111j and [100) anisotropies.
These three expressions, when expanded for small values
of g, are identical up to the seventh order. For the
specialized anisotropy types the magnetization vectors
are assumed to lie only in the specific easy directions of
magnetization. Experimental data should approximate
this case only for rather small applied fields, for at
higher fields domains will begin to leave these directions
to become more nearly aligned with the field. The
resulting behavior approaches that of the isotropic case
so the isotropic equations should be a good approxima-
tion throughout. x„~/xs and x,~/xs are plotted es M/M,
in Fig. 1; the data are given in Table I, column (a).

Brownr later derived Eq. (4) by using a model
allowing wall movement and a variation in domain size.
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C. Extension of Reversible Theory

For a perfect single crystal with zero demagnetizing
factor the application of a small field parallel to an easy
direction of magnetization should result in an infinite
susceptibility. That it is not infinite in polycrystalline
material can be considered to be a result of two diGerent
types of forces acting to retard wall movements: re-
versible and irreversible.

The reversible forces can be considered to arise from
intragranular potential minima and from intergranular
demagnetizing factors. In the discussion of Sec. A the
forces were described in terms of an energy function that
was a continuous function of spatial coordinate. The
exact nature of this force distribution cannot be known.

FIG. 1.The parallel and transverse reversible susceptibilities versus
magnetization for f(e)=cothy-1/v.

W. F. Brown, Jr. (private communication).' W. F. Brown, Jr., Phys. Rev. SS, 568 (1959).
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It would be desirable to be able to predict the qualities
of the material which do not depend upon the precise
distribution.

That Brown's W of Part I is very stable with respect
to di6erent distributions can be seen by observing that
in the neighborhood of the extremum value given by
r) lnW/81V, =O higher derivatives of inW with respect
to E~ form a polynomial in negative powers of X~. An
illustration of the stability of this equation would be an
application of the equations for isotropic material to
[111]or L100] oriented material. The equality to high
values of p can be directly attributed to the slowly
varying character of 8'.

We therefore consider the distribution of magnetic
moments in a ferromagnetic material when only random
reversible forces are applied to be described by Brown's4

Kq. (9) of Part I without further definition of the specific
"randomness" involved. The resulting magnetic dis-
order could be considered analogous to a magnetic
entropy and should be considered when dealing with
magnetic energy problems.

We now wish to discuss susceptibility using statistical
arguments to describe the irreversible trapping of do-
main walls in metastable positions by potential holes.
Each hole is to be characterized by a single number,
loosely called its "depth" f Awall .encountering such a
hole will be trapped if the total net force of the field plus
reversible forces on the wall is less than f, but will break
free irreversibly if this force exceeds f. Actually these
potential minima must surely, for 6nite wall areas, have
a finite radius of curvature. However, for purposes of
this discussion we consider them to be in6nitely sharp
"snags, " i.e., a wall is held rigidly when trapped by a
potential hole. A wall thus held would contribute
nothing to the susceptibility. The true behavior of a
ferromagnet must lie somewhere between this model and
the model assuming only reversible behavior.

Ke de6ne n; to be the fraction of the total number of
atoms whose permanent dipole moments are oriented in
the direction of the unit vector y;. (This is not the same
definition Brown uses for e.'.)

If no potential holes are present when a field H is
applied, according to the reversible equations:

I;=expLAM, (H y;)]/g; exp[A3I, (H y;)]. (6)

In terms of wall positions, this must also be equal to

+Qua;;x,
'b 0'

where a;; is the area of a particular wall separating do-
mains oriented in the directions y; and y;, respectively,
x is the spatial coordinate of the wall relative to a
position at which the total net magnetization is zero and
Brown's' Eq. (9) Part I is an extremum, and P is a
sum over all walls of class ij in unit volume.

8 See reference 4, part I, p. 326.

TAsxz I. Parallel and transverse reversible susceptibilities verses
magnetization for (u) isotropic material, (b) all atoms either
parallel or antiparallel with the applied fiel, and (c) no atoms
making angles greater than s./2 with respect to the applied fiel.
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0.725 1.98
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dr. (x)= X(x)a;;.dx ~(—f)df,
~ f(-)

1V (x)=1Vp exp —a;;
0()

k(f)df

If there were no snags, x would be a function, for a
given wall, only of the pressure which the applied 6eld
exerts, given by

p'&=M, LH (y;—y;)].
The wall would find an equilibrium position for which
the reversible forces just balanced this pressure.

When snags are present walls will become trapped in
them, and x will no longer be a simple function of pres-
sure. We can express the average x for a large number of
walls in terms of the size distribution of these snags by
arguments of the nature of a "mean free path" dis-
cussloli.

Let the number of snags per unit volume whose depth
lies between f and f+df be given by $(f)df. Let there
be an initial state in which there is a field Hp present,
and all the walls occupy positions xo determined only by
this field and the reversible forces, i.e., no walls are
snagged in metastable positions. When the 6eld is
changed to Hi, there will be a net force on each wall
which will diminish again to zero when the wall reaches
a new equilibrium position x~. As a wall of area a moves
over an interval dx, it sweeps over a volume udx. And if
this volume contains a snag "deeper" than the net force
of the field plus reversible forces at that place, then the
wall will be caught and held there.

Of all the walls in unit volume, let us select for atten-
tion the group consisting of all walls of class ij with area
between a~+ and ag +da@ . By choosing the coordinates
so that xo is zero for each wall, then in first approxima-
tion the final "reversible" position xy of every wall of
this select group is equal to the average value x&, and
the net force f(x) of field plus reversible force at each
value of x for every wall is equal to some f(x) averaged
over all the walls.

Let Xo be the number of walls in this group, and
X (x) the number not yet caught after moving a
distance x from xo. Then clearly
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The fraction of the original group of walls that be-
comes snagged in the interval x to x+dx is then

4'(x)dx=
~
dX'(x)

~

/1VO' ——
~

exp —a,,' ~~
dx'

X k(f)df a" ((f)df ldx,
f (~)

and the average position at which the walls of the group
considered become snagged and stop is

$$

x = ' x@'(x)dx.

Apart from the idealization of the potential holes as
sharp snags, the most tenuous point of the above dis-
cussion is the use of the average net force function f(x)
The reversible forces actually may vary greatly from
wall to wall. In keeping with the original idealization, all
local irregularities in the f(x) of any individual wall may
be lumped in with the snags, leaving only a smooth
curve which decreases from a maximum at x=o to zero
at x&. There still remains the possibility of large diGer-
ences in f(0) from wall to wall. But this is no difhculty
in principle, for one could merely further subdivide the
groups of walls into subgroups according to the value of
f(0), assume a distribution in numbers of walls in the
subgroups, and sum the results over the subgroups. The
same comments apply to the use of the average x& in the
calculation.

The point is that if the sole object of the formula were
the explicit calculation of magnetization curves, one
could undoubtedly build enough assumptions and pa-
rameters into it by re6nements of this type to 6t any
amount of experimental data. It is surely doubtful if
this would be sensible in view of the extreme idealization
of the model. It remains of some interest to see if some
rough quantitative agreement could not be obtained
with the expression in its simplest form, using reasonable
assumptions for $(f). Such a check is desirable to see if
this type of analysis does have any real validity, but
this has not yet been done.

However, one important conclusion follows from the
form of Eq. (8) independent of these details. To the
same approximation as that contained in Eq. (8), the
quantity x to be used in Eq. (7) for the strictly re-
versible case is exactly the average "final reversible"
coordinate xi that appears as the upper limit in Eq. (8).
Now xi must have a certain (perhaps quite complicated)
dependence on the relative directions of y;, y;, and the
applied field H that is consistent with the existence of
Eq. (6) for the reversible case. Without any detailed
analysis it is clear that x has additional dependence on
these directions arising in the expression for 4' (x). So
the distribution in numbers of atoms oriented in the

various possible directions, in the presence of "snags"
and metastable wall positions, is different from that
implied by an expression of the form of Eq. (6). This
amounts to saying that it is not possible to define any
simple vector "effective field" H' that allows a descrip-
tion of the system in terms of Eq. (6).Brown' has shown
that only if such a vector field exists do the parametric
Eqs. (4) hold. Therefore we do not expect them to be
strictly true.

The understanding that the aGect of the irreversible
forces on Eqs. (4) and (3) arises through a redistribution
of populations in the various possible directions suggests
a simpli6ed approach. One can say that e6ectively the
material has certain peculiar unsymmetrical anisotropy
properties that will also lead to a redistribution of atomic
moments. It is shown below that certain qualitative
features can be correctly predicted very simply in this
way for a few special circumstances for which the
direction of this redistribution is apparent.

D. Modi6catiorj. s of the Reversible Model

Comtributiom of 3Eetastable Volume

The reversible susceptibility of a ferromagnetic ma-
terial is decreased from the value predicted by the
reversible equations by the presence of intragrain po-
tential holes. In general, the greater the depth of a
minimum the smaller is its radius of curvature, and
therefore the less a wall occupying it will contribute to
the susceptibility. The decrease should become larger as
the peak 3f reached during a cycle increases, causing
walls to cross potential barriers capable of retaining
them in deep metastable states. In general, it would not
be the same holes that would decrease the two diGerent
susceptibilities.

High 3II/M„Decreasigg ~M~

When ~M~/M, =1, all the material is necessarily
aligned with the applied Geld. As ~M~ is decreased
from 3E, the metastable volume will be predominantly
oriented in the direction of M, . The remainder we take
to be oriented in accordance with the reversible equa-
tions. Since the number of atoms with their magnetic
moments parallel with the biasing field is increased by
the action of the potential holes, at a specihed value of
M there must also be more atoms aligned antiparallel
than would otherwise be the case. Since the number of
atoms is fixed this must also mean that the number of
atoms oriented in all other directions is diminished.

To And qualitatively how this aGects the suscepti-
bilities, consider an extreme case where all magnetic
moments are oriented either parallel or antiparallel with
the Geld. Brown's' Eq. (3) of II then becomes

3E/cV, = tanhg,

where, as usual, g=AM, H„.
' See reference 7, p. 574,
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This leads to "
x../xo= sech'n; x.r/xo= ta~n/n (9)

Values of g, „/xs and x„~/xs es M/M, are given in
Table I. Both curves are higher than the corresponding
curve for isotropic material, but are of the same order
and of the same general form.

High M'/M„ Increasing
~
M~

In the randomly oriented state, none of the volume is
in a metastable condition, but after the application of an
external 6eld a 6nite fraction of the material will be.
Those domain walls which are located between atoms
with moments parallel and antiparallel to the field will

move the farthest when a field is applied. Therefore the
fraction of the atoms which find themselves in meta-
stable positions should be greatest for those atoms
oriented antiparallel to the 6eld, and zero for those
oriented parallel. As the magnetization increases, how-

ever, the amount of material available to be heM. in
these metastable states is least for antiparallel and
greatest for parallel alignment. Therefore at all values of
magnetization greater than a certain minimum, the
number of atoms whose magnetic moments are held in
metastable positions must go through a maximum at
some angle between 0 and x, and so for a given g the
normal component of magnetization is increased. It then
follows that for a speci6ed M the total magnetic moment
both parallel and antiparallel with the 6eld is decreased,
while the difference remains constant.

In the limiting case, the number of atoms antiparallel
decreases to zero, i.e., no atoms possess magnetic mo-
ments making angles greater than z/2 with the applied
field. For this case the magnetization would be given by:

Values of M/M„y, „/ys, and y„&/ys are given in
Table I.

Obviously z„&/zs is much greater for this model than
for the isotropic model.

III. EXPERIMENTAL METHOD

Experimental data were taken to (u) check the
validity of the equations describing x„& es M, and (b) to
see if deviations from the predicted values of y„„and
x„~ es M using f(q) =I.(ri) can be explained in terms of
the discussion of the previous section.

The gross magnetization of the samples is excited by a
battery-powered dc 6eld, and is measured by the change
of Aux through windings on the sample when this "bias
field" is abruptly changed. This measurement is made
with a General Electric Auxmeter. Susceptibility was
measured by observing, with a vacuum tube voltmeter
the voltage developed across a winding on the sample
when a 5 kc/sec current of small known amplitude was
driven in the same winding. The Aux is assumed to be in
phase with the current, so that the induced voltage lags
the ohmic voltage by 90'.

A toroidal specimen shape was chosen so that the
convicting requirements for both the parallel and trans-
verse susceptibility measurements could be met by the
same sample as far as possible. Closed Aux paths around
the ring eliminate demagnetizing effects for 6elds in this
direction, while the lateral extent of the specimen is
con6ned so that homogeneous transverse 6elds may be
more readily applied. Susceptibility is measured in both
cases around the ring using a toroidal winding. For the
parallel case, the bias field is applied by a second
toroidal winding, while for the transverse case it is
applied along the toroidal axis by an external elec-
tromagnet.

For small 6elds,

M/M, =—,'+ri/12+

The resulting susceptibilities are given by:"

12 e'l 1

Xo g e~—1

(10)

gp is the value of the parallel reversible susceptibility
when q=0. From this model, x„&/g„„, when g=0.

's The integration constant in x,g/xp must be zero for symmetry
to exist about g=0.

"To evaluate the integration constant note that x, t, must
become infinite at some value of 3f/M, . It will be positive above
that value and negative below. The only point where such a
discontinuity can exist is for g=0. Thus the integration constant
must be zero.

Magnetization Measurements

In the parallel case, the applied field varies with
position but its average value can be accurately calcu-
lated, except for small leakage effects, from the current.
The sensing winding detects the total change in flux
which is proportional to the average induction. The
difference is 4x times the average magnetization. There
is considerable difficulty in the determination of the
saturation magnetization. The plot of M is still in-

creasing at 6elds over 200 oersteds, at which value
leakage is becoming important and ohmic heat ex-
cessive. %e obtained the plot this far, and then fitted a
Langevin function to the last two points to obtain an
estimate of M, that is believed good to 10 percent.
Error in this value affects the normalization of the
abscissas of the y„„vs M curves.

In the transverse case the applied 6eld is not known
from the bias current, here applied to the electromagnet,
because of reluctance and hysteresis of the magnet. It is
taken equal to the Aux density through the hole in the
center of the toroid. This value is measured relative to a
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reproducible starting point by observing as the magnet
current is cycled, the Aux changes in a search coil which
embraces the hole. The total Qux through the core
volume is measured using a girdle winding placed snugly
about the inner and outer peripheries of the toroid.

The difference of these two readings we call the ap-
parent magnetization M . By an elementary calculation
M, = (1—E/4s. )M, where E/4s is the demagnetizing
factor. If the geometry is such that the magnetization is
homogeneous, then X/4s. will be constant independent
of M, and the ratio of M to the apparent saturation
value M„will be strictly equal to the true ratio M/M, .
We thus obtain the properly normalized abscissa with-
out having to determine the demagnetizing factor or the
true 3f,. To this end, the magnet was built with
accurately parallel plane pole faces and a continuously
adjustable gap that can be 6tted snugly against the
windings of the sample. The magnet readily provides
very high fields that yield a well defined value of the
apparent saturation iV„.

Susceptibility Measurements

In the transverse case the bias magnetization is as-
sumed to be homogeneous, so that the susceptibility is
constant throughout the sample. In the parallel case,
however, the bias field varies inversely as the radius
from the axis of the toroid, so the magnetization and the
susceptibility also vary. The observed average of the
susceptibility is 4s.x= (pz —1), where pa is proportional
to the ratio of an induced voltage to a current, and hence

Thus,

where r~ and r2 are the inner and outer radii of the toroid,
respectively.

It is necessary to calculate this average from the
theoretical curves in order to compare with experiment.
Because the theory gives only the dependence of X on M,
one must know how M depends on H, which varies as
1/r, to evaluate the integral. We have made two
different simplified assumptions for the M—H loop
which represent opposite extremes of observed be-
haviors. We calculated the integral (11) numerically for
each, using the theoretical X—M relation. The resulting

X vs M curves are found to be much alike, and each
differs from the uncorrected curve in essentially the
same way. Since the result is so insensitive to the details
of this assumption, and in view of the uncertainties in
our data, it is felt that the labor of preparing a separate
curve especially fitted to the experimental 3E—H loop
of each sample would be excessive, particularly since
this latter curve is itself only a relation of averages.
Therefore a compromise curve displaying the general
features of the two special cases has been used for
comparison with experiment in all cases.

This compromise curve appears as the theoretical
transverse curve in Fig. 2. The two cases for which it
represents the average are.: .

(1) The M H loop is a para—llelogram:

pa AB/8 H'= ——IJAHdr AIIdr. M=PM, (H/H, % 1); —M, &M&M, .

Since AB is applied by a toroidal winding, it varies as
i/r, so

(2) The M H loop is two —displaced Langevin
functions:

M =M,L$E(H/H. + 1)),

pg I df
I' 1

—dr.
r

where H, is the coercive force. The free parameters P
and E are given the values 0.2 and 0.615, respectively,

Xr
5

Xp
'

Fzo. 2. Parallel and transverse
reversible susceptibility es mag-
netization. The dashed curves are
the theoretical curves, with f(rl)= coths —I/v. The solid curves
represent experimental measure-
ments. (Core E-3, 25'C.) Curves
OI and 02 are for transverse, Og and
04 for parallel susceptibility. Curve
Og incorporates the corrections due
to geometric averaging (Sec. III).

-8 -,6 ,2 .2 .8 I.O
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to fit these assumptions to the criterion that remanent
magnetization Mg=0.2M, . The result is further spe-
cialized in that the ratio rr//rs is taken as 0.5.

Hmax - It.4oer-

"mox = 455oer

Hmox= ~.~4oer-

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORY

Data were taken mainly on three cores purchased
from the General Ceramics and Steatite Corporation,
Keasby, New Jersey, representing their types E, G, and
I ferrites. Most measurements were made at room
temperature, but some were made up to 100'C. The
interesting features of the data were virtually identical
in all cases.

For two of the samples the apparent saturation
magnetization was about 20 percent less than the
extrapolated parallel value, indicating an effective
demagnetizing factor of about 0.2 for the transverse
geometry. The third sample was about 50 percent
thicker than the others, and gave equal values of M, for
both cases. Evidently the increased thickness sharply
reduces the demagnetizing factor. As expected, this
produces no noticeable eGect on the normalized x„~vs M
curve.

In Fig. 2 are shown the parallel and transverse curves
for a typical case compared with the corresponding
theoretical curves. In Fig. 4 the same curves are shown
separately plotted on a folded abscissa for comparison of
the ascending and descending branches of each, together
with a similar plot of y„„vs the applied field. In Fig. 3
are shown the parallel curves from three diferent minor
loops, in which the peak value of M reached in the cycle
is varied.

The curves of Fig. 2 are normalized to the value of y
at M=O on the loop in question, for convenience in
comparison with the theoretical curves. The actual gp
obtained when the sample is fully demagnetized is
always larger than this, and in fact always exceeds the
peak values of all these curves as expected. Note that
the experimental curves lie generally below the theo-
retical curves, although with this normalization they lie
higher in the region of the maximum. This is in keeping
with the previous remark that potential irregularities
always act to decrease the susceptibility.

In Fig. 2, the maximum in both cases lies to the left of
zero, on the side of decreasing

~
M

~
. We can understand

this in terms of the trapping of walls by snags. The
contribution to the reversible susceptibility of any wall

caught by a snag is always diminished. Idealizing this,
imagine that on a given loop a certain fraction D of the
volume of the sample be held in metastable condition by
snags, and contributes nothing to g„. Then the total
susceptibility of the sample will be maximum when the
magnetization of the remaining free volume (1—D) is
zero. The metastable volume D will, however, still
contribute a net magnetization in the direction of the
last previous maximum of M.

The shifting of the susceptibility peak with 3E of
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Xrp

Xo

-.8 -.6 ,4 12 .6 .8
M

s

FIG. 3. Variation with peak
~
M

~
of the value of M/3E, at which

maximum x„~ occurs. (Core K-3, 25'C. )

Fig. 3 can be understood in the same way. As the peak
3f of the cycle is increased, the fraction D which is
forced over into deep metastable positions would evi-
dently also increase. This will obviously shift the sus-
ceptibility peak further to the left and diminish its
height, as observed. The given curves apply to the
parallel case. The same behavior is expected for the
transverse case, but minor loop curves could not be
accurately obtained with our procedures.

The location of the susceptibility peak on the de-
creasing ~M~ branch causes this whole branch to lie
generally higher than the ascending ~M~ branch. In
Fig. 4 it is seen that this is true everywhere for the
parallel case, and also at low values of magnetization in
the transverse case. However, the discussion of Sec. II
indicates that for the transverse case, larger values of y
are to be expected on the ascending branch than on the
descending branch. In Fig. 4 one sees that the curves do
cross over at high M/M, . The location of this crossover
would be expected to shift to lower M/M, as M,„was
decreased.

According to Tebble and Corner, ' the peak in
susceptibility occurs at values of M less than remanence.
Thus, a plot of x vs the applied 6eld B has its maximum
where H is increasing from zero, but is less than the
coercive force. Our data for the parallel case, illustrated
by the last graph of Fig. 4, agree with this. Note in the
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M/3/I, equal to or perhaps a little greater than the
parallel remanence.

The accuracy of our susceptibility measurements was
limited by the noise reading on our instrument for
measuring the voltage drop across the toroid, (Hewlett
Packard 400C VTVM) and our ability to read the
meter. The normalized data are considered accurate
within &5 percent, the absolute values accurate within
~8 percent.

With the exception of the parallel field measurement
of M„our magnetization data are limited in accuracy
by Quxmeter drift and errors in meter reading. These are
considered to be well within &5 percent.

V. SUMMARY AND CONCLUSIONS

Xrp

figure that although the x es 3f and g es H loops look
much alike, the directions of travel around them are
opposite.

In the transverse case we know the net applied fj.eld

only very uncertainly, as a small difference of very large
terms. Therefore we do not have any good measure of
transverse remanence. For two of the samples the
transverse susceptibility peak occurs at a value of M/M,
less than the corresponding parallel remanence, but for
the third sample the peak is broad and occurs at an

As far as the authors are aware, the statistical ap-
proach to the dependence of macroscopic magnetization
on magnetic history that is presented herein has not
been suggested previously. While the result quoted is
still too general to permit any direct evaluation against
experiment, it is felt that it might form a worth-while
basis for more detailed analysis. Of more immediate
interest is the fact that the general arguments provide
basis and motivation for the simple special models
devised to predict various general features of the be-
havior of a ferromagnet. The quoted experimental
results indicate that, idealized though they are, these
models do provide a qualitative basis for understanding.

While the experimental results presented were all
obtained from ferrites, the general theory of course
applies to all ferromagnets. However, the more special
parts of the discussion would not apply to crystals of
lower symmetry without modification.
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