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Perturbation treatments of irreversible processes are shown to rest on the assumption that the rate of
dissipation of disturbances in a system exceeds their rate of input from an external source. This hypothesis is
implicit in the concept of a dissipative system and is formulated mathematically in terms of the relaxation
time of quantum-mechanical correlation functions or in terms of equivalent properties of the matrices that

represent interaction operators in the energy scheme.

1. INTRODUCTION

FFORTS have been directed recently by various

authors towards establishing the theory of irre-
versible processes on a microscopic, quantum-me-
chanical basis. With this goal in mind, it is proposed
here to develop the implications of perturbation pro-
cedures utilized by Callen and co-workers'! and by
Wangsness and Bloch.?

Callen and co-workers considered the reaction of a
“large” system to an external disturbance represented
by a term of the Hamiltonian having the form
>k Vi’Qr exp(iwt), where the Vs are macroscopic con-
stants and the Qs are quantum-mechanical operators
of the system. Specifically, they calculated the effect of
the perturbation on the “mean velocities” (;). The
coefficients Vi of (Q;)=—_x Y1V exp(iwt) represent
a generalized “admittance’ of the system. This calcula-
tion was performed by a first-order time-dependent
perturbation method, but the validity of this approxi-
mation for an indefinite period after the onset of the
perturbation was not discussed.

Wangsness and Bloch developed a microscopic theory
of the relaxation of spin orientation in nuclear induction
experiments. They treated the coupling of the nuclear
spins with the surrounding medium by time-dependent
perturbation method carried to the second-order ap-
proximation (the first order gives no significant contri-
bution in their problem). This approximation procedure
was adopted as reasonable for a sufficiently short time
interval 7. It was then applied to successive time
intervals 7 with the understanding that the state of the
surrounding medium may be regarded at all times as a
state of thermal equilibrium, undisturbed by the
interaction. This assumption was supported by quali-
tative arguments involving the macroscopic size of the
medium and its thermal conductivity.

Indeed, the irreversibility of these phenomena does
not hinge only on the size of the system considered but
also on fransport properties that are implied in the con-
cept of a “dissipative system.” In each of the examples
considered, the perturbing action is understood to be

1H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951);
Callen, Barasch, and Jackson, Phys. Rev. 88, 1382 (1952); M. L.
Barasch and T. A. Kaplan, University of Pennsylvania, Report
Nonr 69800, No. 7, 1954 (unpublished).

2R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).

applied at one point of a large system—more properly,
to a few among the numerous degrees of freedom of the
large system. The disturbance thus applied during a
short time interval is not likely to remain confined to its
point of application, but is understood to propagate
away quickly to other parts of the large system. Ac-
cordingly, the effects of the disturbance should not keep
building up at the point of application in the course of
time. A sort of steady state is presumably attained
within a short time after the onset of the disturbance.
This local steady state is all that matters with regard to
the localized reaction to the disturbance, e.g., for the
purpose of calculating the reaction of the medium to
nuclear induction. Furthermore it is plausible to assume
that the steady state differs but little from the unper-
turbed state because the disturbance gets dissipated
through the large system rapidly as compared to the
rate of the external action. (The very concept of an
“external action” implies, for example, that the effects
of nuclear induction are passed on from the nuclei to the
adjacent particles no faster than they can be dissipated,
i.e., passed on and on to other particles farther away.
Otherwise the nuclei could not be regarded as “‘external”
to the medium.)

Thus, the perturbation procedures of Callen and co-
workers, and of Wangsness-Bloch appear to be justified
by considerations of comparative rates of transport which
were not introduced explicitly in the mathematical
formalism. In fact, the role of rate-of-transport con-
siderations becomes readily apparent when the ana-
lytical treatment is formulated in the manner of
Feynman.? This will be shown through the analysis of a
Callen-type problem; the analogous treatment of a
Wangsness-Bloch problem will be outlined at the end of
the paper.

2. THE CALLEN PROBLEM

As a Callen-type problem, we shall describe the re-
action of a system to a time-variable disturbance V by
calculating the effect of the disturbance upon the mean
value of an operator of the system, F. The Hamiltonian
of the unperturbed system will be indicated by H, and
the complete Hamiltonian by H=H4 V. All energies
are divided by # in this paper, i.e., are expressed in
radians/sec. For simplicity we shall assume a sinusoidal

3R. P. Feynman, Phys. Rev. 84, 108 (1951).
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dependence of V on time, much as in reference 1, namely
V=Qeit (1)

where Q is a time-independent operator. The unper-
turbed state of the system will be assumed to be con-
stant in time, i.e., to be a state represented by a density
matrix diagonal in the energy scheme, for which time-
independent operators have constant mean values.

The calculation will be carried out in a Heisenberg
representation, where the operators are variable in
time, i.e., are automatically transformed back from the
time ¢ to the time /=0, which marks the onset of the
disturbance and at which the state was still unperturbed.
The operators indicated above by F, Ho, V, Q pertain to
the ordinary (Schroedinger) representation. The oper-
ator of the Heisenberg representation which corresponds
to F will be indicated by

SF(t) =il tFg—iHt= pi(Ho+V) tRo—i(Hot V)t (2)

The specific purpose of the calculation is to express
the mean value of F(#) in terms of the mean values of
F, V, and their combinations, all averages being taken
over the unperturbed state. Utilizing the Feynman
procedure® of disentangling operators by a sequence of
infinitesimal unitary transformations, we write

exp[i(Ho+V)L] t
— exp(iH o) exp[iefwt f dt’V(t—t’)], 3)

where , o o )
V(t_t )= — tw(t—¢ )e—zHo(t—t )QezHo(t—t ), (4)

and a similar formula for exp[ —4i(H,+ V)t]. Because H,
commutes with the density matrix of the constant
unperturbed state, the factors exp(4=:Hof) do not con-
tribute to the mean of &, which can be written as

(if(t))=<exp[iei""£t dt’V(t—t’)]F
Xexp[—iei""j;tdt'V(t—t’)]>. 5)

Expand now the exponentials in (5) into power series,
which still involves no approximation. The terms of the
same order in V operating part to the left and part to
the right of F can be grouped into a single multiple
integral, and the averaging can be performed before the
integration, so that (5) becomes

O)=(E)ric [ arCva—1), FY

~et [t [ ar e, 17—, 71~ (6)

U. FANO

where the square bracket indicates, as usual, ‘“‘com-
mutator of.”

The integrands in this equation are the mean values
of products of operators ‘“shifted in time” with respect
to one another by intervals (—#, #/—¢’, etc. They
represent correlation functions analogous to those used
in the analysis of fluctuations according to classical
physics.* As pointed out earlier in this paper, a dissi-
pative system is imtuitively characterized by the fact
that a disturbance applied at one point quickly travels
away. Accordingly one would expect that the value of &
at the time ¢ would be unaffected by a disturbance V
applied at a time # much earlier than ¢, and, therefore,
that V(¢—¢) and F would be uncorrelated, if i—# is too
long. Lack of correlation means that (V({—¢)F)
=(V (t—t)XF) and, hence, that {{V(¢—¢), F])=0. (It
is implied here that F operates approximately at the
same point as V; otherwise the correlation would be
highest for a value of ¢{—¢ which allows for the dis-
turbance to propagate from one point to the other.)
According to this argumentation, we suggest that a
dissipative system is characterized mathematically by the
property that the correlation functions of (6) vanish
rapidly whenever the time intervals {—¢ etc., exceed
some suitably defined relaxation time 7.5

Under this assumption, the entire contribution to the
integrals arises from intervals of the order of 7. There-
fore, as we surmised in the initial qualitative discussion
the effect of the disturbance does not keep building up in
time. Moreover, each successive term of the expansion
(6) differs dimensionally from the preceding one by an
additional factor V (expressed in frequency units) and
by an added integration extended over an interval of the
order of 7. Equation (6) is thus seen to be an expansion
in powers of the rate of action of the disturbance—the
commutator of V—integrated over the relaxation time
7. A first order perturbation treatment, which disregards
all terms on the right of (6) after the second, is thereby
justified when the commutator of V7 is much smaller
than one. (As mentioned before, the opposite assump-
tion would imply that the source of the disturbance V is
so intimately coupled with the system under study as to
be virtually a part of it.)

The vanishing of a correlation function for large
values of the time interval may be regarded as the result
of destructive interference between harmonic com-
ponents of the function that oscillate with different
frequencies. When the operator (4) is represented by a
matrix in the energy scheme, with rows and columns
labeled by values (¢',¢’") of the energy and by other

4 See, e.g., N. Wiener, Extrapolation, Interpolation, and Smooth-
ing of Stationary Time Series (John Wiley and Sons, Inc., New
York, 1949). Quantum-mechanical averages are taken over the set
of eigenvalues of the operator product concerned, whereas in
classical physics each function is regarded as having a definite,
albeit unknown, value at each instant and one resorts to dealing
wfith averages over the values corresponding to extended intervals
of time.

5This time interval = corresponds to the reciprocal of the

“characteristic frequency” w* of reference 2.



QUANTUM THEORY OF IRREVERSIBLE PROCESSES

quantum numbers (¢/,a’’), if any, each matrix element
is a sinusoidal function of the time interval,

oo/ | V(=) |e"e")

=e_i(w,+_¢/_¢ll)(t_tl) (a'qa'lQlot"(ON)- (7)
All matrix elements having the same value of ¢’ — ¢'= ¢
oscillate in phase. They constitute together the matrix

of an operator that may be regarded as a harmonic
component of V. Therefore we write

V== [ o0 e, (8)

—o0

where Q, is the operator with the matrix (o’ ¢’ |Q,|a” ¢"')
=('¢'|Q|a’¢")5(¢'— ¢’ — p). Substituting (8) in the
correlation functions of (6), we have

=0, 7= [ defQrdeseroeo, (o)

V=, V=0, F1D
- [ &f aeoifonrT

—o0 —0
S g il (=t )+t (=]

These Fourier integrals show that the correlation func-
tions vanish for time intervals exceeding 7 when, and
only when, the mean values ([Qy,F]), ([Qx[QF1])
etc., are constant as functions of ¢, x- - - over ranges of
these variables of the order of 7. Therefore the
mathematical characterization of a dissipative system in
terms of the early vanishing of correlation functions is
equivalent'to a characterization in terms of properties of
the operators Q and F. Thus a system has dissipative
properties whenever the matrix elements of the perti-
nent operators Q and F have values independent of the
row and column indices (¢’,¢’’) over a sufficient range
of these variables.* This requirement does not look
unreasonable for operators acting on a few degrees of
freedom of a large, tightly knit, system, because energy
eigenfunctions of the system corresponding to rather
different eigenvalues may well be effectively equal over
the pertinent portion of the system.$

* Footnote added in proof —Dr. M. S. Green kindly points out
that the criterion indicated here for the matrices of Z and F is
unnecessarily restrictive and indeed unrealistic. The properties of
Q and F, which characterize the system as dissipative and which
should probably be the object of further study, are properties of the
averages ((Qe,F ), ({Qx, [Q¢,F1)). .. rather than of the matrices
Qe and F per se.

8 This discussion is admittedly sketchy and one ought to examine

more closely the correspondence between the presumable me-
chanical properties of dissipative system and the mathematical

properties of operators Q,. In this connection it might be relevant .

that matter has usually a rather homogeneous structure on a semi-
macroscopic scale, i.e., it is invariant, in a limited fashion, with
respect to translations in space. Because of this invariance, rows

and columns of matrices might be labeled simultaneously with -

energy and momentum quantum numbers. The operators could
then be resolved into components Q,q that change the energy of
the system by ¢ and its momentum by q.
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Substitution of (9) into (6) renders the integrations
over time elementary. We have, for example,

[ argre—o,m
- f ([0 F]) (=99 /i(wt¢). (10)

The remaining integral over ¢ is familiar from perturba-
tion theory. For large values of ¢ the exponentials
oscillate very rapidly as functions of the frequency and
yield destructive interference, except within a narrow
band of width ~1/¢ about the resonance ¢= —w. The
integral of the term with the exponential equals
[ Q—o,F]), provided {{Q,,F ) is constant over a range
larger than 1/ about ¢= —w. This result, independent
of ¢, confirms that the effects of the disturbance do not
keep building up locally. The term in the integral that
contains the factor 1/#(w+ ¢), without an exponential,
represents the off-resonance effect of the disturbance,
which may be negligible as compared to the resonance
effect but has been included in the more recent papers
by Callen ef al. We shall not consider the off-resonance
effects explicitly, but merely remind the reader of their
possible effects by adding a prime to the symbols that
represent the resonance effects. With this convention, all
the successive terms of the expansion (6) take a very
simple form and (6) becomes

(F@)=(F)+etim((Q-",F])
+ee (mX[Q-, [0~ F D)+ -+ (11)

The parameter of the expansion of (F(#)), which we
had identified loosely as the commutator of V', be-
comes now defined somewhat more precisely as the
commutator of 7Q_,’. Notice from (8) that, since V has
the dimension of a frequency, Q, has the dimensions of
a pure number. Notice further from (9) that, for a given
value of the rate of disturbance

OFD= [ del0nrD,

the larger is the range over which ({Q,,F]) is constant,
the smaller must be the values of {{Q,,F]) in this range.”
Thus the commutator of Q_,/ appears to constitute a
suitable comparative index of the rate of transport of
mechanical action from the outside to a point of the
system vs the rate of transport from this point away to
the rest of the system. When this index is much smaller
than one, the expansion (11) may be broken off after its
term of first order in Q and the Callen perturbation
treatment is justified.

Some additional points may be noted. The evaluation
of (10) assumes that {[Q,,F]) is constant over a fre-

7 Similarly, for a given value of Tr((Q?), the larger is the area of-
the matrix (¢'|Q| ¢”) over which the elements are constant, the
smaller must be the matrix elements themselves.
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quency band width ~1/:. This condition implies, in
turn, that ¢ is much longer than the relaxation time r,
which is the reciprocal of the band width over which
{{Q,,F])is constant; for {X 7 no steady state is attained.
The band of constant {[Q,,F]) extends presumably,
barring unusual circumstances, from ¢=0 upwards.
Accordingly, it should be understood in the derivation
of (11) that the driving frequency w lies within this
band, that is, that the disturbance varies but little
within the relaxation time of the system. This require-
ment appears plausible for reasonably slow irreversible
processes and has been explicitly postulated by
Wangsness and Bloch??® though not by Callen et al.

To verify that the main result of Callen, Barasch, and
Jackson is contained in (11), one should set Q=2_"% Vi°Qx
and F=Q,. The first-order term takes the form
exp (i) 2r Vilin([Qr—o',Q;]), and the expression of
w{((Qr_o’,Q;]) for an unperturbed state of thermal
equilibrium actually coincides with the admittance
matrix Vj;(w) of reference 1.

3. THE WANGSNESS-BLOCH PROBLEM

The problem of nuclear spin relaxation is closely
similar in essence to the Callen problem but sufficiently
different in formal structure to deserve a brief treatment.
Further details and a discussion from a different point of
view will be given in another paper.

The spin relaxation process involves two systems:
system No. 1, with unperturbed Hamiltonian H,, con-
sists of the nuclear spins, and system No. 2, with
unperturbed Hamiltonian H, consists of the surround-
ing medium and is regarded as large and dissipative.
The coupling of the two systems is indicated in the
Schroedinger representation by a time-independent
operator V, which operates on both systems. The com-
plete Hamiltonian is H=H;+H,+V.

We are interested here in the effect of the coupling
upon the dynamics of the nuclear spins. This effect is
described by the influence of V' upon operators F that
operate on the nuclear spins (system No. 1), the effect
being averaged over the unperturbed state of system No.
2, the surrounding medium. This unperturbed state is
assumed to have been constant in time prior to the
onset of the disturbance, as in the Callen problem.
Therefore the quantity to be calculated is

(F ()= (eMHTHHI V) tF g iHLHHZEV i),

(12)

The operators in the exponents are conveniently
disentangled here by

t
e HITHEV) ¢ — exp{ i f V("at' }ei(H1+H2) t (13)
0

and an analogous formula, where

V () = g HrtHD t g—iHrHt,

(14)

U. FANO

The operator exp(iHqf) commutes with H; and F and
therefore cancels with exp(—iHf) in (12), after dis-
entanglement, so that (12) reduces to

(5(1)>2=<exr>['i f ‘ V(t’)dt']emupe—ime

Xexp[—-i f ’ V(t’)dt']>2. (15)

0

The factor exp(¢H1)F exp(—iH:t) does not operate
on the system No. 2 and can be removed from the
averaging procedure provided one keeps track of the
ordering of operators. To this end we introduce a dummy
symbol I which serves as an ordering parameter such
that operators formally on the left of I act on the left of
F and operators on the right of I act on the right of F.
Accordingly (15) can be written in the form

(F(i))g=Feitan t<eXp[i fo t[V(t’),I]dt’}) . (16)

2

The mean value of an operator of the form exp4, such
as we have on the right of (16), can be expressed in
terms of the “cumulants,” C,, of 4 according to the
theorem of probability,?

(expd)=exp[ >, Cn/nl]. 17

The first cumulant, Cy, is simply the mean value (4);
the cumulants Cs and C; are the mean square and cube
deviations of 4 from its mean; the higher cumulants C,
are simple functions of mean deviations ((4—{4))"
with »<#n. The theorem can be proved by expanding
expA into powers of 4, taking the mean of each power,
and manipulating the series thus obtained. The first
cumulant of the exponent of (16) is

cmi [ arverm,
=i f T (Ve 1], (18)

In the expression on the right, V' (¢') has been replaced
with its expression (14), the factors with H; have been
removed from the averaging and the factors with H,
have cancelled because they commute with the unper-
turbed density matrix of system No. 2. Because (V)2 is
constant in time, it represents a constant interaction
energy due to the average electric and magnetic forces
exerted by the medium on the nuclear spins.

The second cumulant and the higher ones are func-
tions of the deviation of V from its mean (V)s. Therefore

8See, e.g., H. Cramér, Mathematical Methods of Statistics
(Princeton University Press, Princeton, 1946), p. 186. The mean
of an operator behaves in this respect like the mean of an ordinary
random variable because it can be calculated in the scheme where
the operator is diagonal and reduces to its set of eigenvalues.
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it simplifies the formulas to introduce the operator
V=V —(V); whose mean vanishes and whose second
and third cumulants are simply (V2) and (V). The
second and third cumulants of the exponent of (16) are
given by

Cyp=— [ at [ argren v,

. t ¢
Cy/31=—4 f dt’ f at"
0 0

x f a7 @)LV @), L7 (), 111D

(19)

Multiple correlations in the successive cumulants repre-
sent the effects of fluctuating electric and magnetic
fields on the spins. Owing to their presence, the series of
cumulants of the exponent of (16) must converge
rapidly if system No. 2 exhibits the properties of a
dissipative medium indicated in Sec. 2. Accordingly we
shall break off the series after the term C;/2!, an
approximation equivalent to that of Wangsness-Bloch,
and write
(F(8))o=FeilH1 I tgCrt4C2 (20)
The integration over #’ in (19) can be handled as the
integration over # in (10), but V(#") must be first
changed into V(¢#’—¢) by a regrouping of the expo-
nentials in (14) which brings the correlation function to
the form
eIV ("' =), [V,I]Dee i1t eay)

The integration then yields
t
Cu=— [ atemia( (7,71 Tmm0¢, (22
0

where, as in Sec. 2, the subscript characterizes a
harmonic component of the operator V, which in this
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case oscillates with zero frequency, i.e., conserves
energy, and the prime reminds one of the possible addi-
tional contribution of off-resonance transitions.

The integrands of Cyand C; contain now explicitly the
transformation exp(¢H:£). Therefore, C; and C, can be
conveniently brought back in the same exponential as
H, by a transformation inverse to that of (14), which
yields

(FO)=F expli(CH,I1+[(V)2,1]
+in( (Vo ,[V,I1]2)8.  (23)

Equation (23) shows that the mean interaction (V).
may simply be added to the unperturbed Hamiltonian
H,. The next cumulant, however, takes the form of an
imaginary contribution to Hy, which is in line with the
dissipative character of the effect it represents.

Wangsness and Bloch have represented their result in
the form of a Boltzmann equation which is, in essence,
the differential counterpart of (23) and may be regarded
as a generalization of the Schroedinger equation for the
operator F, extended to include the effect of the
dissipative interaction with system No. 2. Differentia-
tion of (23) with respect to ¢ yields

&UF>(1))/di=i([H1+(V)s,F] .
+in((Vo,LV,F1]:) exp{---}, (24)

where the exponent is the same as in (23). As empha-
sized in reference 2, the integration performed over ¢’
when deriving (23) assumes that the duration of the
disturbance from #=0 to ¢ greatly exceeds the relaxation
time 7 of system No. 2. Therefore the differential law
(24), and also (23), cannot be extrapolated back to =0,
in principle, but holds only for the steady state, which
becomes established after the interaction has been in
effect for a time longer than 7.

In practice, however, extrapolation back to {=0 in-
volves a negligible error because the effect of interaction
during 7 is assumed to be small.



