where $C_{l, l+2}$ is as in Thaler, Bengston, and Breit and $Q_{l+1}(l), Q_{l+1}(l+2)$ are modified by replacing them by $Q_{l+1}(l)+C_{l l}, Q_{l+1}(l+2)+C_{l+2, l+2}$. The matrix

$$
(\mathrm{T})=\left(\begin{array}{cc}
Q_{-}+C_{--}, & C_{-+} \tag{11}\\
C_{+-}, & Q_{+}+C_{++}
\end{array}\right)
$$

can then be related to (S) by

$$
\begin{equation*}
(\mathrm{T})=[(S)-1] /(2 i), \tag{12}
\end{equation*}
$$

and (S) is a general unitary symmetric matrix expressible by means of 3 parameters. The subscripts and + are used to indicate the smaller and larger of the two L. The Q as used in Thaler, Bengston, and Breit have a generic meaning in connection with the special model used by them. In calculations, however, the diagonal elements of (T) enter instead in the equations for $\alpha_{1}, \cdots, \alpha_{5}$.

Substitution of Eqs. (2), (3) \cdots, (7) into Eq. (1) enables one to collect coefficients of a product involving two Q 's such as $Q_{1}, Q_{2}{ }^{*}$. These combine with terms in $Q_{2} Q_{1}{ }^{*}$ which can be converted under the Im sign to the order $Q_{1} Q_{2}{ }^{*}$ by taking the complex conjugate and changing the sign. For uncoupled terms,

$$
\operatorname{Im}\left(Q_{2} Q_{1}^{*}\right)=\sin \delta_{2} \sin \delta_{1} \sin \left(\delta_{2}-\delta_{1}\right)
$$

then gives readily the forms needed for numerical work.
In Eq. (1) the sums over L are supposed to be taken over odd values only. The formula can be used for the calculation of $(P \boldsymbol{\sigma})_{p-n}$ provided a coefficient $\frac{1}{4}$ is inserted on the right side, thus changing the 2 in front of $\sin \theta$ to $\frac{1}{2}$ and provided the sum is made to extend over odd and even L employing all triplet states. In both cases the singlet states do not enter.

[^0]${ }^{1}$ Oxley, Cartwright, Rouvina, Baskir, Klein, Ring, and Skillman, Phys. Rev. 91, 419 (1953); L. F. Wouters, Phys. Rev. 84, 1069 (1951); Marshall, Marshall, Nagle, and de Carvalho, Phys. Rev. 93, 1431 (1954); Chamberlain, Donaldson, Segrè, Tripp, Wiegand, and Ypsilantis, Phys. Rev. 95, 850 (1954); Kane, Stallwood, Sutton, Fields, and Fox, Atomic Energy Commission Report NYO-6569, July 6, 1954 (unpublished), to cite some of the many recent papers.
${ }^{2}$ J. Schwinger, Phys. Rev. 69, 681 (1946); 73, 407 (1948); L. Wolfenstein, Phys. Rev. 75, 1664 (1949); 76, 541 (1949); L. J. B. Goldfarb and D. Feldman, Phys. Rev. 88, 1099 (1952); D. R. Swanson, Phys. Rev. 89, 749 (1953); R. H. Dalitz, Proc. Phys. Soc. (London) A65, 175 (1952); A. Simon and T. A. Welton, Phys. Rev. 90, 1036 (1953).

Formula for Polarization in $p-p$ Scattering for P and F Waves*

M. H. Hull, Jr., and A. M. Saperstein Yale University, New Haven, Connecticut (Received September 7, 1954)

AN expression for the calculation of polarization of protons produced by single scattering taking into account P and F waves has been worked out and is
given below. Coupling between ${ }^{3} P_{2}$ and ${ }^{3} F_{2}$ is neglected, but otherwise the most general condition describable by a set of phase shifts for states of definite orbital as well as total angular momentum is considered. The result is written in a form convenient for numerical work.

If P is the polarization, defined as twice the expectation value of the y component of the spin, ${ }^{1}$ then

\[

\]

where $\boldsymbol{\sigma}$ is the single scattering cross section, k the wave number of the incident protons. Other quantities are: $e_{L O}=\exp \left(2 i \sigma_{L O}\right)$, where σ_{L} is the Coulomb phase shift and $\sigma_{L O}=\sigma_{L}-\sigma_{O} ; Q_{J}(L)=\exp \left(i \delta_{J}^{L}\right) \sin \delta_{J}{ }^{L}$, where $\delta_{J}{ }^{L}$ is the phase shift in a state of orbital angular momentum $L \hbar$ and total angular momentum $J \hbar$;

$$
\begin{align*}
\alpha_{c}=(\eta / 4)\left[-\mathbf{s}^{-2} \exp \left(-i \eta \ln \mathbf{s}^{2}\right)\right. & \\
& \left.+\mathbf{c}^{-2} \exp \left(-i \eta \ln \mathbf{c}^{2}\right)\right] \tag{2}
\end{align*}
$$

where $\eta=e^{2} / \hbar v, \mathbf{s}=\sin (\theta / 2), \mathbf{c}=\cos (\theta / 2), \theta$ is the scattering angle in the center-of-mass system, v the relative velocity;

$$
\begin{align*}
a= & 9\left\{\left(P_{1}, P_{2}\right)+\frac{2}{3}\left(P_{0}, P_{2}\right)+(7 / 12)\left(F_{3}, F_{2}\right)\right. \\
& -(77 / 12)\left(F_{4}, F_{2}\right)-(35 / 24)\left(F_{4}, F_{3}\right)+\left(F_{2}, P_{1}, 31\right) \\
& +\frac{2}{3}\left(F_{2}, P_{0}, 31\right)-(10 / 3)\left(F_{2}, P_{2}, 31\right)-(7 / 12)\left(F_{3}, P_{2}, 31\right) \\
& +(5 / 3)\left(F_{4}, P_{0}, 31\right)+(5 / 2)\left(F_{4}, P_{1}, 31\right) \\
& \left.-(23 / 12)\left(F_{4}, P_{2}, 31\right)\right\} ; \tag{3}\\
b= & (1 / 16)\left\{-420\left(F_{3}, F_{2}\right)+6020\left(F_{4}, F_{2}\right)+1540\left(F_{4}, F_{3}\right)\right. \\
& +1200\left(F_{2}, P_{2}, 31\right)-840\left(F_{4}, P_{1}, 31\right)+420\left(F_{3}, P_{2}, 31\right) \\
& \left.\left.-220\left(F_{4}, P_{2}, 31\right)-560\left(F_{4}, P_{0}, 31\right)\right]\right\} ; \tag{4}\\
c= & (25 / 8)\left\{140\left(F_{2}, F_{4}\right)+49\left(F_{3}, F_{4}\right)\right\}, \tag{5}
\end{align*}
$$

where
$\left(L_{J}, L_{J^{\prime}}\right)=\sin \delta_{J}{ }^{L} \sin \delta_{J^{\prime}}{ }^{L^{\prime}} \sin \left(\delta_{J}{ }^{L}-\delta_{J^{\prime}}{ }^{L^{\prime}}\right)$,
$\left(L_{J}, L_{J^{\prime}}, 31\right)=\sin \delta_{J}{ }^{L} \sin \delta_{J}{ }^{\prime} L^{\prime} \sin \left(\delta_{J}{ }^{L}-\delta_{J}{ }^{L^{\prime}}+2 \sigma_{31}\right)$,
and

$$
\sigma_{L L^{\prime}}=\sigma_{L}-\sigma_{L^{\prime}}, \quad \text { with } \quad \sigma_{L}-\sigma_{L-1}=\tan ^{-1}(\eta / L)
$$

This result agrees with that of Goldfarb and Feldman ${ }^{1}$ up to second order in $\cos \theta$ if coupling is neglected in their work and Coulomb terms are neglected in Eq. (1). It has been checked throughout with the zero-coupling limit of the result of Breit and Ehrman. ${ }^{2}$

* Assisted by the Office of Ordnance Research, U. S. Army.
${ }^{1}$ L. J. B. Goldfarb and D. Feldman, Phys. Rev. 88, 1099 (1952).
${ }^{2}$ G. Breit and J. B. Ehrman, preceding Letter [Phys. Rev. 96, 805 (1954)].

[^0]: * Assisted by the Office of Ordnance Research, U. S. Army.

