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The functions ¢ (x,7), Yo(x,») are analytic in x for all

|x| <»,ie., |o—p1] <p1. Note that by (18) py—o with
n while ps—0 as 7—, L being fixed.

The above results are contained in a general represen-
tation theorem for the solutions of an #nth order linear
ordinary differential equation with analytic coefficients.5

5H. A. Antosiewicz and M. Abramowitz, “A Representation
for Solutions of Analytic Systems of Linear Differential Equa-
tions,” J. Wash. Acad. Sci. (to be published).
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Asymptotic representations are obtained for the regular and irregular Coulomb wave functions and their
derivatives for p=29. A table of these functions is given, and a discussion is given to show how values may

be obtained for p72n by using Taylor’s formula.

N a recent paper Barfield and Broyles' evaluated the
Coulomb wave functions Fo, Go, and Fo’ from their
contour integral representations for p=27 and gave a
short table of these functions. They made the observa-
tion that a knowledge of the functions for p=27 per-
mitted the efficient use of local Taylor expansions for
numerical computation. It is the purpose of this paper
to exploit these suggestions and demonstrate a sys-
tematic method of computation over a wide range of
values of p and %. Specifically, we provide in Table I
values of these functions for 2y ranging from 0 to 50 and
develop an asymptotic formula which may be used for
larger values of the argument, The tabular values were
computed on the National Bureau of Standards
SEAC with the aid of programs prepared by Dr. C. E.
Froberg of Sweden during his stay at the Computa-
tion Laboratory of the National Bureau of Standards.
The results were obtained to nine decimal places by
numerical quadrature of integral representations of the
functions and checks were applied by differencing and
calculation of the Wronskian. The table as given to
seven decimals is correct to within a unit of the last
place. The intervals were chosen so that the five-point
Lagrangian interpolation formula will yield the full
accuracy beyond p=3. For larger values of 2, the repre-
sentations obtained will yield equivalent results.

We restrict our discussion to the case L=0 since there
is a convenient method of generating the functional
values for L>0 for the pertinent range of values of p
and 7 with the aid of the recurrence relations.

We start with the integral representation? employed

* This work was supported (in part) by the U. S. Office of Naval
Research.

1 W. D. Barfield and A. A. Broyles, Phys. Rev. 88, 892 (1952).

2 T. D. Newton, Chalk River Laboratory Report 526, December,
1952 (unpublished).

by Newton,
Fo—1iGo=pCy (n)f exp(2ns arctanbs—ips)ds, (1)
—1

where Co(n)= (2m)~#(1—e 2~} in order to obtain
asymptotic expansions for Fy and Gy and their deriva-
tives for p=27. In this case, we have

Fo(2n) —iGo(2n)
=2C, f exp[ 29i(arctanhs—s)Jds, (2)
—1

and evaluate this integral by the method of steepest
descents. We note that if f(s)=arctanhs—s, then f’(s)
has a double zero for s=0 and f(s)=3%s+Ls5+---.
Thus, if s=e¢%, is® is real and negative for 8= 5r/6 and
6=—m/2, the paths of steepest descent. We conse-
quently deform the path from s=—1 to s=—4% into
the equivalent path

¢t s=e¥ w>0>51/6;
c2t s={etmI8 12>¢2>0; )
c3: s=fem? 0<¢< >,

It can then be shown that the contribution from the
integral along ¢, is smaller in absolute value than
& exp{—n(3m—1)}. The integral along c; is

o= —i f exp[2n(arctang —9)Jd,  (4)
0

and this can be represented asymptotically by the
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TasLE I. Coulomb functions for p=27.

p=279 Fo Fo' Go Go” p=29 Fo Fy Go Go
0.0 0.0000000 1.0000000 1.0000000 0.0000000 15.0 0.9847202 0.3052996 1.7171606 —0.4831337
0.5 0.3485125 0.7251403 1.1482085 —0.4802921 15.5 0.9902704 0.3033518 1.7263386 —0.4809919
1.0 0.5166015 0.5929246 1.1974870 —0.5613235 16.0 0.9956675 0.3014834 1.7352810 —0.4789166
1.5 0.6065420 0.5232290 1.2379327 —0.5807968 16.5 1.0009207 0.2996885 1.7440008 —0.4769040
2.0 0.6617816 0.4815575 1.2757788 —0.5827288 17.0 1.0060382 0.2979621 1.7525097 —0.4749507
2.5 0.7004111 0.4535470 1.3106041 —0.5790591 17.5 1.0110275 0.2962996 1.7608186 —0.4730536
3.0 0.7301291 0.4330004 1.3422906 —0.5735802 18.0 1.0158956 0.2946968 1.7689374 —0.4712097
3.5 0.7544607 0.4169974 1.3711212 —0.5676187 18.5 1.0206486 0.2931499 1.7768754 —0.4694163
4.0 0.7751972 0.4040078 1.3974834 —0.5616710 19.0 1.0252926 0.2916555 1.7846412 —0.4676709
4.5 0.7933518 0.3931476 1.4217412 —0.5559273 19.5 1.0298329 0.2902104 1.7922428 —0.4659712
5.0 0.8095520 0.3838640 1.4442027 —0.5504558 20 1.0342745 0.2888118 1.799 -
5.5 0.8242151 0.3757900 1.4651204 —0.5452732 6876 04643149
6.0 0.8376341 0.3686700 1.4847003 —0.5403739
6.5 0.8500228 0.3623195 1.5031110 —0.5357429
7.0 0.8615430 0.3566012 1.5204917 —0.5313615
7.5 0.8723199 0.3514106 1.5369583 —0.5272109 22 1.0511411 0.2836314 1.8280303 -
8.0 0.8824527 0.3466662 1.5526082 —0.5232725 24 1.0667458 0.2790155 1.8543437 —~8i§§2?g§
8.5 0.8920214 0.3423035 1.5675239 —0.5195291 26 1.0812800 0.2748610 1.8789213 —0.4472086
9.0 0.9010915 0.3382706 1.5817760 —0.5159650 28 1.0948936 0.2710901 1.9019960 —0.4424062
9.5 - 09097174 0.3345251 1.5954254 —0.5125659 30 1.1077061 0.2676425 1.9237558 —0.4379512
10.0 0.9179449 0.3310321 1.6085246 —0.5093189 32 1.1198147 0.2644708 1.944354. —
10.5 0.9258127 0.3277625 1.6211196 —0.5062124 34 1.1312995 0.2615371 1.9%3202 —gﬁgﬁ?}i
11.0 0.9333539 0.3246917 1.6332507 —0.5032358 36 1.1422273 0.2588106 1.9825608 —0.4262657
11.5 0.9405973 0.3217989 1.6449537 —0.5003796 38 1.1526543 0.2562659 2.0003662 —0.4228279
12.0 0.9475677 0.3190663 1.6562601 —0.4976353 40 1.1626285 0.2538820 2.0174148 —0.4195792
12.5 0.9542871 0.3164785 1.6671980 —0.4949953 42 1.1721911 0.2516411 2.0337740 - 11
13.0 0.9607746 0.3140223 1.6777927 —0.4924524 44 1.1813778 0.2495282 2.0495020 —84%}2:2(7)76
13.5 0.9670473 0.3116858 1.6880668 —0.4900003 46 1.1902198 0.2475306 2.0646501 —0.4107947
14.0 0.9731203 0.3094591 1.6980407 —0.4876333 48 1.1987442 0.2456371 2.0792632 —0.4081403
14.5 0.9790072 0.3073330 1.7077331 —0.4853460 50 1.2069751 0.2438382 2.0933811 —0.4056037
expansion The procedure may be carried out in an entirely
similar manner to determine Fy’ and Gy, since from 1)
© a,,I'(sn—l- 3) . we get
3= F( )+Z g ) ﬂ=§n7 (5)
"~ dF, dG 1
where the coefficients @, are given recursively by 7 - z—d— =—(Fo—1Gy)
P P P
as= (3/5),83, (16:0, ar=— (3/7):831 ,
— 200
as=0, a9=(1/3)B%, (6) —1pCy f exp(2ni arctanhs—ips)sds.  (8)
—1

(n+2) @niatna,= 380, ;.

The integral along ¢, can be evaluated in exactly the

same manner.
If we collect our results, making use of the fact that

Co==(2n/m)t= (3/m) B}

we get

puay OB 2T 18 L]
2/r | 35T(R) 8 2025 88 -

a0, 2O 8 1)
W/r 35T(2) 8¢ 2025 B8

The coefficient of 378 in these expansions is zero, so that
the error is smaller than 879

The results are

I [ 4T()1
Fo'(29)= 1— —
= vl e &
272 1 ] 1 .
rre R ey
. ©)
—V3r 4T 1
. (): ®
2v/mgt | 15T (@) B2
272 1 iG ) :
14175 g8 '}+333 (2.
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For the convenience of the reader, the results in (7)
and (9) are given in a form suitable for computation.

Fo(29)=0.70633263737!/¢

(1 0.04959570165  0.0088888889 T
x|1— — oo,

| 73 7 ]

Go(2n) =1.2234040167/°
. 004050570165 0.0088888889 ]

X lT T s
| 7t 7 i
, 0.4086957323" 0.6913041477
Fo'(2n)= e |_1 - s (10)
0.04317460317 0.5
4 -~]= Fo(2n),
7 7
—-0.7078817734" 0.6913041477
Go'(2n)= 1+
1’1/6 I_ 7’2/3
0.04317460317 0.5
- ‘f ---]+—Go<2n).
7 7

An examination of (7) and (9) shows that the ex-
pressions are useful for large values of 5. Actually, they
may be used even at =1 to obtain results good to a few
percent.

Let us now consider the problem of determining the
functional values in the neighborhood of »=2n by
means of Taylor series.

To employ the Taylor expansion, one must compute
the successive derivatives of Fo and Go. Thus, if #=F,
or Go, we have

) 62 8
u(p+9, 1) = u(P)‘l‘;“'—l‘;u"‘i‘;’“""*‘ )
! ! ! 1
5 e 8
w' (o6, m) =2 (p)—l-I;u"—i-?’u”’-l—;u“’-l— e
However if we define . ' .
6 d™u
On=——" (12)
n! dp™

(11) can be written

w(pH,m) =3 ou,

n=0

For hand computation the form (11) may be pre-

ferred. However, if a computer is available, (13) may
be used advantageously.

W (8, m) =51 % non. (13)
n=1

The successive derivatives follow immediately from
the differential equation for the Coulomb wave func-
tions, namely,

p%”+ (P_ 277)“ =0,
o+ "+ (o— 2m)u' +u=0, (14)
prt D4 (n— D uM 4 (p— 29)u "D+ (n— Du*2 =0,
In terms of the quantities o,, (14) may be rewritten
2pa2+6*(p—2n)0=0,
(15)
on(n+1)o 1148 (12— n)on+82(o— 29) 7 n_1+8%0_2=0;

and since oo=1u, o1=05%’, one may generate as many o¢,’s
as are needed. We note that when 8 is not small, %(p+8)
may be computed in successive steps which are fractions
of 6 by a procedure which is essentially a numerical
integration of the differential equation starting from
p=2n. We shall demonstrate the method in the case of
#=G, to obtain the value for p=6, =4. From Table I
we have

Go(8,4)=1.5526082, Gy’ (8,4)=—0.5232725.
With the aid of (14), we get

Gy’ =0,

Gy'""'=—0.1940760,
Goiv=0.1793371,
Go'=—0.0672514,
G¢'1=0.1306637,

Gyii=—0.1937505,

Giii=0.1957515,
Goix=—0.2856133,
G==0.4793638,
Goxi=—0.7595047,

Go¥ii=1.3063974.

We thus find with é=1, G(7,4)=2.1164851, G'(7,4)
= —(.6544076 and with §=2, G(6,4) =3.01378. Starting
with G(7,4) and G’ (7,4) with =1, we arrive at the same
value for G(6,4). The value of Go(6,4) obtained by an
independent method is 3.013787. The technique de-
scribed is adapted for use with a large-scale computer.
The table as given or the expressions in (10) would
provide starting values for the stepwise procedure de-
scribed. The recurrence relations could be used to obtain
values for L>0. In applying the Taylor formula the
truncating error can be controlled at each step by
restricting the magnitudes of § and ¢,. The integration
may be extended to the regions where the asymptotic
expansion for large values of p or the representation in
terms of Bessel-Clifford functions for large n may be
used conveniently.



