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g while p2~0 as g~~, I being fixed.
The above results are contained in a general represen-

tation theorem for the solutions of an nth order linear
ordinary diGerential equation with analytic coeKcients. ~

n=0, 1, 2, ~ SH. A. Antosiewicz and M. Abramowitz, "A Representation
for Solutions of Analytic Systems of Linear Di6'erential Equa-

The functions QL, (x,o), pl, (x,o) are analytic in x for all tions, "J. Wash. Acad. ScL (to be published).
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Evaluation of Coulomb Wave Functions along the Transition Line*
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Asymptotic representations are obtained for the regular and irregular Coulomb wave functions and their
derivatives for p =2g. A table of these functions is given, and a discussion is given to show how values may
be obtained for p~2q by using Taylor's formula.

'
N a recent paper Barfield and Broyles' evaluated the

~ ~ Coulomb wave functions Ii p, Gp, and Fp' from their
contour integral representations for p=2q and gave a
short table of these functions. They made the observa-
tion that a knowledge of the functions for p=2g per-
mitted the scient use of local Taylor expansions for
numerical computation. It is the purpose of this paper
to exploit these suggestions and demonstrate a sys-
tematic method of computation over a wide range of
values of p and q. Specifically, we provide in Table I
values of these functions for 2g ranging from 0 to 50 and
develop an asymptotic formula which may be used for
larger values of the argument, The tabular values were
computed on the National Bureau of Standards
SEAC with the aid of programs prepared by Dr. C. K.
Froberg of Sweden during his stay at the Computa-
tion Laboratory of the National Bureau of Standards.
The results were obtained to nine decimal places by
numerical quadrature of integra1 representations of the
functions and checks were applied by diGerencing and
calculation of the Wronskian. The table as given to
seven decimals is correct to within a unit of the last
place. The intervals were chosen so that the five-point
Lagrangian interpolation formula will yield the full
accuracy beyond p =3.For larger values of 2q, the repre-
sentations obtained will yield equivalent results.

We restrict our discussion to the case I.=O since there
is a convenient method of generating the functional
values for I.&0 for the pertinent range of values of p
and q with the aid of the recurrence relations.

We start with the integral representation' employed
*This work was supported (in part) by the U. S.Once of Nava1

Research.
' W. D. BarGeld and A. A. Broyleo, Phys. Rev. SS, S92 (1952).
~ T. D; Newton, Chalk River Laboratory Report 526, December,

1952 (unpublished).

by Newton,

Po iGo =—pro(rt) exp (2rti arctanhs ips) ds, —(1)

= 2rtCp expL2rti(arctanhs —s)]ds, (2)J —1

and evaluate this integral by the method of steepest
descents. We note that if f(s) =arctanhs —s, then f'(s)
has a double zero for s=0 and f(s) =rps'+ors'+.
Thus, if s= e", is' is real and negative for 8=5~/6 and
8= —pr/2, the paths of steepest descent. We conse-
quently deform the path from s= —1 to s= —i~ into
the equivalent path

cr s=e', m &e&Sor/6.

s Ps~co 1 ~g ~0. —

c s=le '" 0&t & op

It can then be shown that the contribution from the
integral along c~ is smaller in absolute value than
oror exp{—rt(prorrt —1)).The integral along co is

J3= —i
dp

exp[2q (are tani g) jdt", —

and this can be represented asymptotically by the

where Co(rt) = (2srrt) &(1—e o~o) &, in order to obtain
asymptotic expansions for Pp and Gp and their deriva-
tives for p= 2q. In this case, we have

Pp(2rt) —iGp(2st)
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TAsLE l. Coulomb functions for p=2g.

p =297

0.0
0.5
1.0
1.5
2.0

2.5
3.0
3.5
4.0
4.5

0.0000000
0.3485125
0.5166015
0.6065420
0.6617816

0.7004111
0.7301291
0.7544607
0.7751972
0.7933518

1.0000000
0.7251403
0.5929246
0.5232290
0.4815575

0.4535470
0.4330004
0.4169974
0.4040078
0.3931476

Gp

1.0000000
1.1482085
1.1974870
1.2379327
1.2757788

1.3106041
1.3422906
1.3711212
1.3974834
1.4217412

Go'

0.0000000—0.4802921—0.5613235—0.5807968—0.5827288

—0.5790591—0.5735802—0.5676187—0.5616710—0.5559273

15.0
15.5
16.0
16.5
17.0

17.5
18.0
18.5
19.0
19.5

pp

0.9847202
0.9902704
0.9956675
1.0009207
1.0060382

1.0110275
1.0158956
1.0206486
1.0252926
1.0298329

0.3052996
0.3033518
0.3014834
0.2996885
0.2979621

0.2962996
0.2946968
0.2931499
0.2916555
0.2902104

1.7)71606
1.7263386
1,7352810
1.7440008
1.7525097

1.7608186
1.7689374
1.7768754
1.7846412
1.7922428

Gp'

—0.4831337—0.4809919—0.4789166—0.4769040—0.4749507

—0.4730536—0.4712097—0.4694163—0.4676709—0.4659712

5.0
5.5
6.0
6.5
7.0

0.8095520
0.8242151
0.8376341
0.8500228
0.8615430

0.3838640
0.3757900
0.3686700
0.3623195
0.3566012

1.4442027
1.4651204
1.4847003
1.5031110
1.5204917

—0.5504558—0.5452732—0.5403739—0.5357429—0.5313615

20 1.0342745 0.2888118 1.7996876 —0.4643149

7.5
8.0
8.5
9,0
9.5

0.8723199
0.8824527
0.8920214
0.9010915
0.9097174

0.3514106
0.3466662
0.3423035
0.3382706
0.3345251

1.5369583
1.5526082
1.5675239
1.5817760
1.5954254

—0.5272109—0.5232725—0.5195291—0.5159650—0.5125659

22
24
26
28
30

1.0511411
1.0667458
1.0812800
1.0948936
1.1077061

0.2836314
0.2790155
0.2748610
0.2710901
0.2676425

1.8280303
1.8543437
1.8789213
1.9019960
1.9237558

—0.4580862—0.4524127—0.4472086—0.4424062—0.4379512

10.0 0.9179449
10.5 0.9258127
11.0 0.9333539
11.5 0.9405973
12.0 0.9475677

12.5 0.9542871
13.0 0.9607746
13.5 0.9670473
14.0 0.9731203
14.5 0.9790072

0.3310321
0.3277625
0.3246917
0.3217989
0.3190663

0.3164785
0.3140223
0.3116858
0.3094591
0.3073330

1.6085246
1.6211196
1.6332507
1.6449537
1.6562601

1.6671980
1.6777927
1.6880668
1.6980407
1.7077331

—0.5093189—0.5062124—0.5032358—0.5003796—0.4976353

—0.4949953—0.4924524—0.4900003—0.4876333-0.4853460

32
34
36
38
40

42
44
46
48
50

1.1198147
1.1312995
1.1422273
1.1526543
1 ~ 1626285

1.1721911
1.1813778
1.1902198
1.1987442
1.2069751

0.2644708
0.2615371
0.2588106
0.2562659
0.2538820

0.2516411
0.2495282
0.2475306
0.2456371
0.2438382

1.9443548
1.9639206
1.9825608
2.0003662
2.0174148

2.0337740
2.0495020
2.0646501
2.0792632
2.0933811

—0.4337994—0.4299144—0.4262657—0.4228279—0.4195792

—0.4165011—0.4135776—0.4107947—0.4081403—0.4056037

expansion

p'= pn (5)

The procedure may be carried out in an entirely
similar manner to determine Fp' and Gp', since from (I)
we get

where the coefficients a„are given recursively by

a, = (3/5) p', ap ——0, ap ———(3/7) p',

dFp dop
i =-(Fp iGp)— —

dp dp p

(m+2) a„+p+pea„= 3p'a„p

—$00

;pG, I
~~

exp(2qi arctanhs ips)sds —(8).
The integral along c2 can be evaluated in exactly the
same manner.

If we collect our results, making use of the fact that

2gCo= (2g/pr) & = (3/pr) lp",

The results are

r(-') 4 I'(-', ) I
Fp'(2g) =

2+prp& 15 r(—) p'

we get

r(-', )pi 2 I'(-', ) I 8 I
Fp(2q)= 1—— ~ ~ ~

2+pr 35 I'(-', ) P4 2025 P'

%Br(-',)p't 2 r(-;) I 8
Gp (2pt) = 1+— ——— —+ ~ ~ ~

35r(-,') p' 2o25 p'

(7) (p
Gp'(2g) =

2+~p~

272
+ Fp(2))

14175 p' 3p'

The coeKcient of p-' in these expansions is zero, so that
the error is smaller than p 'p.

272 1
+ —+ . + Gp(2q).

14175 p' 3p
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0.04959570165 0.0088888889
X 1+- ~ ~ ~

7

0.4086957323 0.6913041477
Fp'(2g) = 1—

~2/3
(10)

0.04317460317 0.5
Fp(2))

Gp'(2g) =
—0.7078817734 0.6913041477

1+
~2/3

For the convenience of the reader, the results in (7)
and (9) are given in a form suitable for computation.

Fp(2q) =0.7063326373vP~

0.04959570165 0.0088888889
X 1—

~4/3

Gp(2g) = 1.223404016'"'

The successive derivatives follow immediately from
the diGerential equation for the Coulomb wave func-
tions, namely,

pu"+ (p —2g)u=0,

pu"'+ u"+ (p —2')u'+ u =0, (14)

pu "+"1(I—1)u'"'+(p —2g)u "-"+(e—1)u'" "=0
In terms of the quantities o.„, (14) may be rewritten

2po p+8'(p —2g)o p
——0,

(15)
pe(v+ 1)p ~+g+ 8 (e'—u) 0„+b'(p —2') p.~g+8'0 ~p =0;

and since o-0= I, 0 &= bg', one may generate as many 0-„'s
as are needed. We note that when 5 is not small, u(p+8)
may be computed in successive steps which are fractions
of 5 by a procedure which is essentially a numerical
integration of the differential equation starting from
p=2y. We shall demonstrate the method in the case of
I=GO to obtain the value for p=6, q=4. From Table I
we have

Gp(8, 4) = 1.5526082, Gp' (8,4) = —0.5232725.0.04317460317 0.5
+ . + p(2g)

With the aid of (14), we get

G f/ 0

Go'" = —0.1940760,

G ' =0.1793371,

Gp
———0.06'72514,

G '=0.1306637,

G "=—01937505

An examination of (7) and (9) shows that the ex-
pressions are useful for large values of p. Actually, they
may be used even at p = 1 to obtain results good to a few
percent.

Let us now consider the problem of determining the
functional values in the neighborhood of p=2g by
means of Taylor series.

To employ the Taylor expansion, one must compute
the successive derivatives of Fo and Go. Thus, if I=F0
or Go, we have

G "'=0.1957515,

Go' = —0.2856133,

Gp =0 4793638,

Gp '= —0.7595047,

G x"=1 3063974

We thus And with 8= 1, G(7,4) =2.1164851, G'(7,4)
= —0.6544076 and with 8= 2, G(6,4) =3.01378.Starting
with G(7,4) and G'(7,4) with 8= 1, we arrive at the same
value for G(6,4). The value of Gp(6, 4) obtained by an
independent method is 3.013787. The technique de-
scribed is adapted for use with a large-scale computer.
The table as given or the expressions in (10) would
provide starting values for the stepwise procedure de-
scribed. The recurrence relations could be used to obtain
values for 1.&0. In applying the Taylor formula the
truncating error can be controlled at each step by
restricting the magnitudes of 6 and 0.„.The integration
may be extended to the regions where the asymptotic
expansion for large values of p or the representation in
terms of Bessel-CliBord functions for large p may be
used conveniently.

62 63

u(p+8, g) =u(p)+ —u'+ u"+ u"'+- —
if 2f 3f

$2 $3

u'(p+5, g) =u'(p)+ —u"+—u"'+—u' +
1! 2! 3f

However if we define

(12)0 'n 7

ef. dp"
(11) can be written

u(p+h, g)=P p„, u'(p+b, q)=8 ' Q eo„. (13)
n=o n=l

For hand computation the form (11) may be pre-
ferred. However, if a computer is available, (13) may
be used advantageously.


