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Expressions are obtained for the differential cross sections for inelastic scattering of fast electrons with
excitation of various nuclear multipole transitions. The most probable transitions are those that involve
collective motion of many nucleons, and in this case the term arising from the transition charge density
dominates those that come from the current and magnetization densities. There is then a close relation be-
tween the probability for inelastic electron scattering and the probability for the corresponding radiative
electric multipole transition, although an assumption must be made as to the shape of the transition charge
density. This is illustrated with a detailed discussion of the collective electric quadrupole transitions, using
the model of Bohr and Mottelson. When the transition is produced by one or a small number of nucleons, or
when it is of magnetic multipole type, there is likely to be little relation between inelastic scattering and
radiation probabilities. The electric monopole transition (0+—&0+) is also discussed. It is shown how the
elastic scattering can be corrected for unresolved inelastic scattering as well as elastic quadrupole scattering
before an analysis is made in terms of the spherically symmetric part of the static nuclear charge density, and
also how the strength as well as the shape of the transition charge density can be determined experimentally
when only relative measurements of inelastic scattering are available.

I. INTRODUCTION

KCENT experimental work of Hofstadter and
collaborators" has demonstrated the possibility

of obtaining precise distributions in energy and angle for
electrons of very high initial energy scattered by nuclei,
and has yielded speci6c results in a number of cases.
Analysis of the angle distributions of such elastically
scattered electrons' has already provided information on
the radial dependence of the static charge density in
various nuclei. There are two main reasons why a
similar analysis must be made for the inelastically
scattered electrons. First, with imperfect energy resolu-
tion, some inelastically scattered electrons correspond-
ing to excitation of low-lying nuclear states will be
included in the measurement of elastic scattering, and
may affect the charge density inferred from these
measurements. Second, when inelastically scattered
electrons can be resolved in energy, it is anticipated that
their distribution in angle can often be used to determine
the strength and multipole character of the correspond-
ing nuclear transition.

The information concerning nuclear transitions that
can be obtained from inelastic electron scattering is very
similar to that which can be obtained from Coulomb
excitation by heavy charged particles that are slow
enough so that they do not penetrate the nuclear
Coulomb barrier appreciably. 4 In both cases, the
interaction between incident particle and nucleus is es-
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sentially all electromagnetic and is calculable. Thus far,
Coulomb excitation experiments have yielded total ex-
citation probabilities as a function of the charge, mass,
and velocity of the incident particle, which can be used
to determine the strength and multipolarity of nuclear
electric multiple transitions. Accurate measurements of
the angle dependence of inelastically scattered electrons
can determine these quantities independently and can,
in addition, give the radial dependence of the transition
charge density. In principle, such experiments can also
provide similar information concerning magnetic multi-
pole transitions; it will be shown, however, that such
transitions are likely to be less probable than electric
multipole transitions, and that they are more dificult to
interpret.

In the present paper, the nucleus is described by
charge, current, and magnetization densities p, j, and M,
which are treated as classical quantities. Actually, they
should be regarded as quantum-mechanical operators of
the type discussed by Foldy, ' in which case appropriate
matrix elements between initial and final nuclear states
must ultimately be calculated. However, for all except
the very simplest nuclei, the nuclear wave functions are
not known well enough to warrant such detailed calcu-
lations. We shall, therefore, be satisfied with a semi-
classical treatment, according to which p, j, and M are c
numbers which represent the static densities (expecta-
tion values for the nuc1ear ground state) in the case of
elastic scattering, and the transition densities (matrix
elements between nuclear ground and excited states) in
the case of inelastic scattering. It is then expected that
the resulting formulas can be used phenomenologically,
perhaps with a hydrodynamical model for the combined
contributions of nucleons and mesons to these densities
(see Sec. VIII).

It is inherent in the present work that the dynamic
interaction between electron and nucleus is treated by

' T.. 1.. Foldy, Phys. Rev. 92, 178 (1953).
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6rst-order perturbation theory, and this seems to be a
reasonable approximation. In addition to this, we shall
assume that the static interaction is also small, and use
plane wave functions for the incident and scattered
electrons; this is justified only for light elements, and is
equivalent to the use of the Mftller potentials and fields. i

This latter approximation can be improved by using
Coulomb wave functions for. the electron like those
calculated numerically in connection with elastic scat-
tering, ' and such calculations are now under way.

The work reported here diAers from other recent
calculations of radiative transitions ' and of inelastic
electron scattering" in one or both of two respects: the
reduced wavelength 1/q associated with the change of
momentum kq of the electron is not necessarily large in
comparison with nuclear dimensions, and this wave-

length is usually much smaller than hc divided by the
energy loss of the electron. "The first point means that
there may be retardation within the nucleus, so that the
radial dependences of the transition densities may be
significant. Also, the transition probabilities do not
necessarily decrease as the multipole order increases; the
expansion in multipoles is nevertheless useful since
nuclear selection rules often limit possible transitions to
one or two multipole types. The second point means
that the probability for inelastic electron scattering is
fundamentally diferent from that for radiation, since in
the latter case the reduced wavelength of the photon is
equal to kc divided by the energy of the photon. It turns
out that there is a close relation between the leading
terms in the probabilities for the two processes in the
case of electric, but not in the case of magnetic multipole
transitions.

II. GENERAL FORMULATION AND MAGNETIC
MULTIPOLE CALCULATION

We start from the interaction energy H' between the
nuclear densities p, j, M, and an arbitrary external
electromagnetic field that is described by the potentials
cp, A or the field strengths @,@:

and the equation of continuity is

divj = Bp/itt—= —itep.

Substitution into Eq. (1) and integration by parts leads
to

II'= ~$(i/s))j (& M@—5dr; (2)

the partial integration assumes that the nuclear densities
have a finite extension in space, so that boundary terms
at infinity vanish.

We wish to decompose II' into parts that correspond
to electric and magnetic mu, tipole transitions of all
possible orders. Since the treatment of the magnetic
transitions is the same whether the external field is a
free radiation field (emission or absorption of photons)
or arises from external sources (inelastic electron excita-
tion), we start with this case. For magnetic multipole
radiation of order /, the electric Geld is transverse and
has the parity (—1)'. We therefore substitute for @ in
Eq. (2) from one of Maxwell's equations which is valid
whether or not there is an external charge and current
density,

curl 5= —8@/i)et = (ice/c) @,
to obtain

H'= f(s/to)j 5+(ic/~)M curl$5dr

t= (i/~)) (j+c curl M).%dr. (4)

In order that H' result in a transition that conserves the
energy, the time variations of the nuclear and field
quantities must cancel, so we assume that the nuclear
quantities vary like e'"' and the field quantities like
e ' ', where Lr is the energy of the transition. The
electric held strength may be expressed in terms of the
potentials in either of the forms

5= BA—/r)ct gra—d y= (i~/c)A grad p—,

II'=, (pie —c 'j A—M @)d-r.

' An order of magnitude estimate of the second-order dynamic
interaction (nuclear dispersion) indicates that it is relatively small.
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Phys. 29, 393 (1951).' Amaldi, Fidecaro, and Mariani, Nuovo cimento 7, 553, '757
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Now as discussed by Blatt and Weisskopf, ' any vector
function of the polar angles e, @ can be expanded in
terms of three kinds of vector spherical harmonics. The
first kind, of total angular momentum /, is

where V~ is the ordinary scalar spherical harmonic.
X& is transverse and has the parity (—1)'; the other
two kinds of the same total angular momentum have the
parity (—1)'+'. The three kinds together, for all l,
constitute a complete orthonormal set of vector func-
tions with respect to integration of 8 and p over the
sphere. Ke can therefore write for the part of II' that
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gives rise to magnetic /-pole transitions:

H'i„™=(i/oi) (j+ccurl M) Xi„~(f),y)

Here, j, is the transition current density that arises from
the change in state of the electron; it is zero for a
radiative transition and is given by

j,= et,"ae' i' (10)

Xi (0',g') (%(r,8',y')dQ' dr. (6)

Summation of Eq. (6) over l and m, with. inclusion of the
corresponding terms that come from the other two kinds
of vector spherical harmonics will, because of the
completeness of these functions, yield Eq. (4). These
other two classes of terms give rise to electric multipole
transitions, and are more conveniently expressed in
terms of an integral that involves Xi and a different
combination of nuclear densities (see Sec. III).

We now evaluate the square-bracketed integral in
Eq. (6), assuming that the electric field has the form

in the case of electron scattering, where a is the matrix
element of the Dirac n operator between initial and final
electron plane wave states of momenta po and p, and
"I=PO—P

The first integral in Eq. (9) can be reduced in pre-
cisely the same way as Eq. (4). We put @=he'&', and
obtain for the electric l-pole part of this integral, which
is the entire interaction energy for a radiative tran-
sition:"

H" i y ' '=i'+'$ (2l+1)/l(l+1)]&(h +ih„)

5= ee' i'= e +t 4ir(2l+1) j**i'j i(qr) 7'io(0', P'). (7)

The vector Aq is the photon momentum in the radiation
case, or the momentum change of the electron in the
electron scattering case; the way in which Eq. (7) is
written assumes that the direction of q is the polar or s
axis with respect to which the spherical harmonics are
defined. Substitution of Eqs. (5) and (7) into the
square-bracketed integral of Eq. (6) yields, after a
partial integration,

r curl $M+ (c/oP) curl jjdr (11a')

= —i'
t+m (2l+1)/l(l+1))f(h, aih„)

j iF'i, +i*div(rXM)dr

j—(ic/oi) (j i+rdj i/dr) Vi, ~i*pdr

= [~(2t+1)]&i'(e,+ie„)j i(qr),

if m, =&1, and zero otherwise. Equation (6) now be-
comes, after use of Eq. (5) and integration by parts,

H'i '= (i'/oi)[m(2t+1)/l(l+1)]&(e, +ie„)

X j &(qr) I &, +i*r curl(j+c curl M)dr. (8)

III. ELECTRIC MULTIPOLE TRANSITIONS

For electric multipole radiation of order l, the mag-
netic field is transverse and has the parity (—1)'. We
therefore substitute for @ in Eq. (2) from another of
Maxwell's equations,

In the latter form, use has been made of the equation of
continuity to replace divj by —icop.

In the electron excitation case, we must also de-
compose the second integral of Eq. (9) into electric
multipole contributions. We cannot now use the sym-
metry of the magnetic field as a guide, and must rely on
the symmetry of the nuclear charge-current density
instead. Inspection of the first integral of Eq. (9) and
the second integral of Eq. (11b) shows that the Xi part
of curl j and the I i part of p give rise to electric l-pole
transitions. We therefore transform the second integral
of Eq. (9) so that only these combinations of nuclear
densities appear. The electron current density can be
written as the sum of the gradient of a scalar (irrota-
tional part) and the curl of a divergenceless vector
(solenoidal part):

curl @= 8$/Bct+4vrj, /c= ( ioi/c) 5+-47rj,/c,

to obtain

From this
j,=grad x+curl i', divot =0.

divj, = V'y, curl j,=—V'Q.

With the form (10) for j„we find that

+(4m/co')) j jar. (9) "Some relations given in reference 8 are useful in deriving Eq.
(11b) from (11a).
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Thus with the help of some partial integrations and the
equation of continuity, we obtain .

+(p/q') "curl) (qX),)dr. (12)

We give here the interaction energies for electric and
magnetic l-pole transitions in the electron excitation
case. Equation (13) has been changed slightly by
making use of the Dirac equation to write q a+(&oao/c)
=0, or a, = —(hap/q), and a substitution has been made
for e,~ie„ in Eq. (8).

H'i, o&e&= —(4~i'eap/q')[4&r(2l+1) J&

X ~j &(qr) I'i, ppd~; (13)
Equation (12) can now be broken down into multipole

parts in analogy with the decomposition of Eq. (4) into
terms of the type (6). The result for the contribution of
the second integral of (9) to the electric i-Pole transition H&, +,(&& = [4&ri&eq(a ~ia )/(qo P)]
1S

H"'i, &e&= (4~/~q') pYi '(e,y) X [or(2l+1)/l(l+1) j&J"j&(qr) I'i, ~i*

I"&„(0'y') (il j,)dQ' d7.

+ (4ori/op q'p) curl j X i,„*(0,@)

Xi (O',P')(qXj.)dQ' dr.

r curl[M+(cq') 'curljfdr; (16)

H'& ~i™~[47&.i+'e(a +iap)/c(qo ko)j—

X[or(2l+1)/l(l+1) j'* i"j&(qr) Yi „i'

r curl [j+ecurlM jd7. (17)
Since the s axis is along q, the first square-bracketed

Equations (16) and (17) can of course be further

bracketed integral vanishes unless m=~1 Use of the transformed in analogy with the change from Eq

form (10) for j, leads to the following results:

H"'i, p&e& = (Smi 'e ea, /p&q) [or(2l+1) j&

X~ j i(qr)Fi. opd&, (13)

H'", & '= —(4 i'+'ec/ 'q) (a„Wia,)[ (23+1)$&

X)~jX,„*(cu 1 j)d . (14)

The external fields @and @ may be found from solu-
tion of Maxwell's equations with the electron current
(10). The results are the M5&ilier fields, ' which have the
forms used above, with

e = 4~i e(ha+ qao)/(q' J'p'), —

e,+ie„=4orie7p(a, +ia„)/(q' lp'), —

h = 4m ie(qX a)/(q' —0'),

h.aih„= 4nieq(a„gaia—.)/(q' lp'), —

where k= p&/c and ap is the matrix element of the Dirac
unit operator between initial and final electron states. It
can now be shown without difliculty that Eq. (14) is just
equal to —(q' —k')/q' times the l»p part of the curl j
term in the first integral of Eq. (9).Thus when Eqs. (11)
and (14) are added together, the result is to leave the M
integral in (11a) or (11b) unchanged, and multiply the
other integrals by a factor k'/q'.

IV. ORDERS OF MAGNITUDE

Ke now estimate the relative orders of magnitude of
the various terms in the above three equations. For this
purpose, we note that ao, a and a„are of order unity
and that k&(q for situations of current interest, and
assume that all integrals over nuclear densities can be
represented by a common form factor F. Then Eq. (15)
is of order eFQ/qo, where Q is the total charge involved
in the transition.

The first (magnetization) term in Eq. (16) involves a
derivative operator which, by partial integration, is seen
to introduce a factor of order q. The vector r introduces
a factor E, which is an average radial distance from the
center of the nucleus for the main contributions to the
integral; for large q, E is expected to be somewhat
larger than 1/q and somewhat smaller than the nuclear
radius. Then the order of magnitude of this term is

(eF/q) (qR) (Q'5/Mc), where Q'5/cVc is the total mag-
netization involved in the transition, and 3f is the
nucleonic mass. In the second (current) term of Eq.
(16), the two derivative operators introduce a factor q',
and there is again a factor E. Thus its order of magni-
tude is (eF/q) (R/c)Q"i&, where Q"v is the total current
involved in the transition, and v is the nuclear convec-
tion velocity associated with motion of the charge Q".

In similar fashion, we find that the current and mag-
netization terms in Eq. (17) have the orders of mag-
nitude (eF/cq')qRQ"t& and (eF/eqp) (eq'R) (Q'8/3fc),
respectively.
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If now we call the order of magnitude of Eq. (15)
unity, then the relative orders of magnitude of the
magnetization and current terms in Eq. (16) are,
respectively,

(P)(qk/~c) (e'/Q), (q~) (n/c) (Q"/e),

and the orders of magnitude of the current and mag-
netization terms in Eq. (17) are, respectively,

(q~) (n/e) (Q"/Q), (P) (q&/~e)(Q'/Q)

For large-angle scattering of electrons with about 200-
Mev energy, qh/Mc~-s , and qR~3. For single-particle
excitation of a nucleus, Q, Q', and Q" are all expected to
be of order unity, and n/c —,'. For a collective mode of
excitation, Q' should still be of order unity, Q and e"
should have the same order of magnitude and be much
larger than unity, and n/c should be much less than —,'.

We conclude, therefore, that for single-particle excita-
tion in this energy range, all terms of Eqs. (15), (16),
and (17) can be of the same order of magnitude. For
excitation of collective modes, on the other hand, it is
likely that Eq. (15) is not only the leading term for the
electric multipole transitions, but is significantly larger
than either of the magnetic multipole terms, which are
comparable with each other. Further, if we assume that
the current density associated with a collective mode is
irrotational, " then curl j=0 and the current terms in

Eqs. (16) and (17) are zero.
It may be noted at this point that summation of Kq.

(15) over / yields, with the help of Eq. (7),

angle between yo and p. When A=a %~'a„-or A=a„
Wia„ the spin sum leads to

[(Po+P) (1 cos8) PsP slil 8]/k q

= [1+sin'(-', 8)] 1+
2p p[1+sin'(-', 8)]

X
4psp sin'(-', 8)

except for very small scattering angles, this is very
nearly equal to [1+sin'(rs8)] when the nuclear excita-
tion is moderate. The last group of multiplicative factors
involving the incident Aux and the density of final states
is, in the extreme relativistic region, (p/2srIt'c)'. Thus
the differential scattering cross section per unit solid
angle is equal to [p cos(sr8)/2a. trt'c]'~ V~s when either
(15) or (18) is used for U, and is approximately equal to
(p/2a. A'c)'[1+sin'(-'8)]

~
U~ when either (16) or (17) is

used for V.

VI. COMPARISON WITH RADIATIVE TRANSITIONS

It may be desirable in some cases to relate the
inelastic electron scattering cross section to the radiation
probability for the same nuclear transition. We therefore
examine the expressions for the electric and magnetic
/-pole moments, which are respectively'

r'Yt *pdr —ik(L+1) ' r'Yt *derv(r)&M)dr, (19)

This is just what mould have been obtained if only the
6rst factor in Eq. (1) had been retained, and the static,
nonretarded, Coulomb interaction had been used in
calculating q. Thus the present paper provides a
justification for the use of this term by itself, at least so
far as excitation of collective nuclear oscillations is
coricerned. '4

V. DIFFERENTIAL SCATTERING CROSS SECTION

Each of the interaction energies (15) through (18) is
of the form AV, where A is one of the quantities cp,
a &ia„, u„Wia, which invoIves only the electron spin
functions, and V involves only integrals over nuclear
quantities. In order to obtain a differential scattering
cross section, it is necessary to sum ~A V~' over final
electron spin states, average over initial spin states,
multiply by 2sr/k times the energy density of final
electron states, and divide by the incident electron Aux.

In the extreme relativistic region, the spin sum opera-
tion on ~A ~' yields cos'-', 8 when A =as, where 8 is the

is A. Bohr, Rotational States of Atomic Nuclei (Ejnar Munks-
gaards Forlag, Copenhagen, 1954},Appendix.

'4 Equation (18) has been used in much of the earlier work on
inelastic electron scattering (see reference 10).

—[c(l+1)] ')~r'Yt *div(rXj)dr

—
) r'Yt *divMdr. (20)

Estimates like those of Sec. IV show that the relative
orders of magnitude of the two terms of (19) and the
two terms of (20) are

1, (kh/Mc) (Q'/Q);

(/)(e"/e), (k/~ ~)(e'/Q)

Here, E is the nuclear radius. Since kh/3Ic((1, the first
term of Eq. (19) dominates the electric l-pole moment,
whether the nucleus undergoes a single-particle or
collective transition. Likewise, the first term of Eq. (20)
is the larger in the single-particle case, while the two

terms are more nearly comparable for a collective
transition.

It folloms that there is a close relation between the
leading terms for electric multipole transitions in the
radiative case [first term of Eq. (19)] and in the
electron excitation case [Eq. (15)].The same quantity p

appears in both terms, and indeed the former is simply



770 L. I. SCH I FF

the first term in the expansion of the latter in powers of
q. A similar relation obtains between the first (current)
terms of Eqs. (17) and (20) in the magnetic multipole
case, since r curl j= —div(r&& j). However, the second
(magnetization) terms are much less closely related to
each other, and this term is more important in the
electron excitation than in the radiative case. Thus it is
much easier to connect the probabilities for the two
types of transitions in the electric than in the magnetic
multipole case; an assumption must of course be made
concerning the radial dependence of p (see for example
Sec. VIII).

VII. ELECTRIC MONOPOLE TRANSITIONS

The electric monopole interaction energy H'
p, p~ & is

responsible for the elastic scattering from a static
spherically symmetric charge density, which is the
expectation value for the nuclear ground state. In this
case, either Eq. (15) or Eq. (18) can be used.

The transition between nuclear states with total
angular momentum I=0 and the same parity (which is
even in all known cases), is of considerable interest. It is
essential to realize here that the orthogonality of the
initial and final nuclear states makes J'pdr vanish.
Thus for small q, the apparently leading terms in Eqs.
(15) and (18) are actually zero. As a reminder that this
occurs, one should replace the spherical Hessel function
in Eq. (15) byj s(c'r) 1, and the expo—nential in Eq. (18)
by exp(iq. r) —1.Thus for small q, the electric monopole
and electric quadrupole transitions have the same q
dependence.

The diGerence in behavior between the elastic and
inelastic monopole transitions corresponds to the fact
that a static spherically symmetric charge density has a
field that extends to large distances, whereas a radially
oscillating charge density has no time-dependent field

external to itself. Therefore interaction with the spheric-
ally symmetric part of the electron potential can occur
only through its variation over the nucleus, and the
leading term, which is independent of r, results in no
interaction.

VIII. COLLECTIVE ELECTRIC QUADRUPOLE
TRANSITIONS

There is a close relation between the contribution of
the static nuclear electric quadrupole moment to the
elastic scattering" and the contribution of the transition
quadrupole moment to the inelastic scattering. This is
because the collective model relates both the static and
the transition moments to an intrinsic quadrupole
moment. ""The relation is worth exploring, since with

imperfect energy resolution the two eGects may be
experimentally indistinguishable.

's L. I. Schiif, Phys. Rev. 92, 988 (1953).
' A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.

Seiskab, Mat. -fys. Medd. 27, 16 (1953).

In both cases we use Eq. (15), and neglect the differ-
ence between the two values of q for the same incident
electron energy and angle of scattering. We consider
first the case of a uniformly charged nucleus of radius R,
for which the quadrupole parts of the static and
transition charge densities both have the approximate
form 8(r—2) ""Then the integral in Eq. (15) in the
static case is equal to that in the transition case for all
values of q, except for a multiplicative constant. For
small q, the integral is proportional to the static
quadrupole moment Q in the elastic case, and to the
transition quadrupole moment in the inelastic case, both
of which can be expressed in terms of the intrinsic
quadrupole moment Qs. The two integrals can then be
expressed in terms of Qs for small q, and hence also for
all q.

It seems plausible to assume that the situation is
similar when the nucleus is not a uniformly charged
sphere this situation is now under study. We assume
that the static and transition quadrupole charge densi-

ties have the same radial dependence, so that the elastic
and inelastic form factors are constant multiples of each
other for all q. They can then be related to Qs for small q,
and hence found for all q if some radial dependence is
assumed.

From Eq. (15) and Sec. V, the differential cross
section for elastic scattering is given by Lcompare with

Eqs. (2) and (14) of reference 15)

rr, (0)= [e' cos-'(-', ())/4E' sin'(-', 0)j [ F,
~

',

(21)

5&j s(qr)I I jp—,(m;,mf)dr

where p, (m;,m~) is the matrix element of the static
charge density between initial and final magnetic sub-

states of the nuclear ground state of total angular mo-

mentum I."We choose the axis with respect to which

the magnetic substates are defined as q, which is the axis
of Y~p, in which case the integrals fail to vanish only if

vs~= re;. We call this common value m, and note that the

Ypp part of the integral is independent of m, while the

Y2p part of the integral depends on m through the
factor"

f = L3m' —I(I+1)j/I(2I —1)

"Alternatively, p, (r) may be regarded as an operator (see
reference 5), and the matrix element taken after the integration is
performed over r; all results are the same.

"Reference 8, p. 28. The numerator of f is the quantum-
mechanical transcription of Pm(cose), and the denominator merely
normalizes it so thatfr= 1. Thus the fact that f is indeterminate
when I=O or $ is not significant; in these cases f should be
regarded as zero since the numerator vanishes. Equation (24) is
consistent with this interpretation.
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in the following way.
2

~F.~'=(4s/(2I+1) jg )"jsYMp. (I,I)dr

r~

—(20)&f~e jsYssp, (I,I)dr jsYMp, (I,I)dr

r
+5f„' jsYspp, (I,I)dr

~

It must be remembered that in Eqs. (23) and (24), the
axis of F20 is the symmetry axis of the nuclear charge
distribution p, ."Note that there is no elastic quadrupole
scattering if I=O or ~, just as there is no observed
quadrupole moment; the charge distribution as viewed

by the incident electron is spherically symmetric in this
case, even though Qs may not be zero.

The differential cross section for inelastic scattering is
given by the first of Eqs. (21), with F, replaced by the
quantity I';:

Now P f =0, so that the interference term vanishes.
Also, where

] F,
~

'= (2I;+1) ' Q P (
F;(nz;, m fi0) ) (25)

0??s tsf

f '= (2I+1)/5Ar'
= (I+1)(2I+1)(2I+3)/5I(2I —1),

where A& is the quantity defined in reference 15. We
thus obtain

~F.~'=47r joYoop (I,I)dr

+[(I+1)(2I+3)/I (2I 1)j—

F;(m;,rlr, m) = —(20ir)
~

js(qr) Y&„p;(I;,rnI)dr,

and p;(res;, m~) is the transition charge density between
the initial state I;, m; and the final state I~, no~. Since
the summations in Eq. (25) are carried over all m; and
s$f the result is independent of the axis chosen for I 20,

and hence has the same value if F,(nz, ,mi, 0) is replaced
by F;(m;,mr, res) where res is not necessarily equal to
zero. Then

X gsYspp (I I)dr '. (22)

The first term of Eq. (22) gives the scattering from the
spherically symmetric part of the nuclear charge den-

sity, and the second term we call the quadrupole part of
the elastic scattering.

In order to relate the second term of Eq. (22) to the
intrinsic quadrupole moment Qs, we note that for
small q,

Ij sYssp, (I,I)dr~(q'/15)

[ F; (
'= L5 (2I;+1)]—' Q P Q [ F,(mr nsI, ns) ('

ts ~Ls %if

= (1/5)Q P ~
F;(ris;,mg, nz)

~

',

the second equality holds because the summations over
all m and m~ make the result independent of the value
of m;.

For small q,

F;(ni;,mr, m)~ (20ir) &(q'/1—5) r' Y„sp(m;, ri&s)d r.

The reduced radiative transition probability is defined
XJ

r Ysspe(I I)&r= (g /15) (5/16&)'eQ in Eq. (VII.2) of reference 16 as

eQs= (16s/5) &) r'YMp. dr, (23)

and infer its shape in some other way, then the quad-
rupole part of

~
F,

~

' is

i F„i'=4w)I(2I—1)/(I+1) (2I+3)j
2

X ) js(qr)Y~opAr (24)

where the observed quadrupole moment Q is given in
terms of Qs by Eq. (V.6) of reference 16:

Q =LI (2I—1)/(I+ 1)(2I+3)iQo.

Qp is calculated in the same way as Q, except that the
axis of Yss is the nuclear symmetry axis rather than I.
Thus if we fix the magnitude of p, by the equation

P 9

B(E2)=g g r'Ys p, (m;, rlf)dr
m my 4

so that for small q,

~F,~s~e (~s/15)sa(F2).

There are in general two possible quadrupole transitions
from the ground state I: to the first excited state I+1,
and to the second excited state I+2."From Eqs. (33)
and (36) of reference 13, the reduced transition proba-

' The averaging over nuclear orientations was not performed
correctly in reference 15; the charge density defined by Eq. (1/)
of that reference is the same as the quantity p, of the present paper
except for a normalization factor Ze, but in Eqs. (20) and (21), ps
should be replaced by A Ip2. This does not affect the estimate of the
quadrupole scattering below Eq. (22), since only the ratio of (21)
to (20) enters there.

2' If the ground state I is zero, the Grst excited state has I=2,
and if the ground state I is —'„ the results below may be altered (see
references 13 and 16).
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TABLE I. Values of the square bracket factors in Eqs. (24), (26),
and (27), for a few values of I.

I
0

3/2
5/2
7/2

Elastic
I, Eq. (24)

0
1/5
5/14
7/15

Inelastic
I~I+1, Eq. (26) I~I+2, Eq. (27)

0
18/35
10/21
14/33

1
2/7
1/6
6/55

bility in the 6rst case is

& (&2)= (15/16 ) (eQo)'P/(I+1) (I+2)1,

and from Eqs. (34) and (36) of reference 13, this
quantity in the second case is

Bs(E2)= (15/16rr) (eQs)'L2/(I+2) (2I+3)1.

We thus find for the transition I~I+1 and small q

~
F,i

~
'~(5/4) (eQs)'(q'/15)'L3I/(I+ 1)(I+2)], (26)

and for the transition I +I+2-
( F;,('~(5/4) (eQs)'(q'/15)'L6/(I+2) (2I+3)]. (27)

We now assume that the extrapolation from small to
large q can be made as in Eq. (24). We then find that the
inelastic scattering is also described by Eq. (24), except
that the square bracket there must be replaced by the
square bracket in Eq. (26) or (27). Some numerical
values are given in Table I. It must be remembered that
these results may not apply when the ground state J is
equal to —,', and that Eq. (27) represents the transition to
the first (not the second) excited state when I=O."

It is interesting to note that there is a kind of sum
rule for the three kinds of quadrupole scattering, which
are the only possible kinds

LI (2I—1)/(I+1) (2I+3)3+L3I/(I+1) (I+2)]
+L6/(I+2) (2I+3)1=1.

IX. CONCLUSIONS

Excitation of nuclear multipole transitions by inelastic
electron scattering occurs along with the elastic scat-
tering of high-energy electrons. If sufficiently accurate
measurements of the distribution of the scattered
electrons in energy and angle can be made, the elastically
scattered electrons give information concerning the
static nuclear charge distribution, and the inelastically
scattered electrons give information concerning both the
strength and shape of the transition charge density. The
static quadrupole scattering must be allowed for when
interpreting the angle distribution of the elastically
scattered electrons in terms of a radial distribution of
nuclear charge. If the energy resolution is not good
enough to separate the inelastic from the elastic scat-
tering, then it must also be allowed for before the elastic
scattering is analyzed.

It is important to note that absolute measurements of
the inelastic scattering are not necessary in order to
determipe the strength of the transition charge density.
Analysis of the relative elastic scattering, even if no
absolute cross sections are available, yields a shape for
the static charge density. The magnitude of the nuclear
charge is of course known, so that an absolute elastic
cross section can be computed. Then comparison of the
relative magnitudes of inelastic and elastic scattering at
each angle gives absolute values for the former, from
which the strength as well as the shape of the transition
charge density can be determined.

The order of magnitude estimates given in Sec. IV are
of course not completely reliable, and simply indicate
that Eq. (15) or Eq. (18) is likely to be the dominant
term, especially for collective transitions, which appear
to be much the strongest in any event. For single-
particle transitions, where detailed nuclear wave func-
tions are more likely to be available, it would be
worth while to make more careful estimates of the
relative importance of Eqs. (16) and (17).


