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an equal mixture of hg and AD. If this is the case, it can
be regarded as evidence favoring a relatively uniform
:galactic magnetic field directed along a spiral arm of
:the galaxy. The field strength could not be an order of
magnitude less than 10 ' gauss or there would be more
anisotropy in the highest energy particles observed
by Cranshaw and Galbraith. It is also implied then

. that cosmic rays are accelerated by the Fermi mech-

anism rather than exclusively by processes taking place
at the original ion sources.

The author is very grateful to Professor J. L. Green-
stein and Professor Guido Munch for most helpful
discussions and to Dr. W. Galbraith and Dr. F. J. M.
Farley for information sent in advance of publication
and for their comments on a preliminary version of
this theory.
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A brief introduction to the recent Bellman-Harris theory of branching stochastic processes is given in the
nomenclature of cascade theory; and a simple model in cascade theory formulated as an age-dependent
branching process is given.

INTRODUCTION

HE theory of branching stochastic processes has
been used on many occasions in the development

of mathematical models of cascade phenomena (e.g. ,
cosmic-ray showers, neutron multiplication, etc.).' '
Recently Bellman and Harris' have developed a theory
of age-dependent branching processes which appears to
have important applications in the physical and bio-
logical sciences. The purpose of this communication is
twofold: first, to give a brief introduction to the
Bellman-Harris theory in the nomenclature of cascade
theory; and second, to present a simple model for the
electron population of a cosmic-ray shower. The model

considered is a modification of the Furry process.
In the Bellman-Harris theory the distance or thick-

ness, say r, travelled by a particle (electron, neutron,
etc.) from its forma, tion until it is transformed is

a random variable with general distribution G(r),
0(r(co; i.e., G(r) is the integral distribution for all

paths of length less than or equal to 7. At the end of its
path of travel the particle is transformed into rt particles
with probabilities q„, m=0, 1, , each particle having
the same distribution G(r) for the distance it will travel
before being transformed. For example, qo is the proba-
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bility of absorption, q& is the probability that one new
particle will be formed, the original one being absorbed,
q2 is the probability that two new particles will be
formed (the original one being absorbed), etc. The
random variable 7. measures the distance to the next
point of regeneration. YVe remark that the age-depend-
ence is only for the total cross section, the branching
ratio being age-independent.

The Bellman-Harris process is formulated as follows:
Let X(t) be an integer-valued random variable repre-
senting the number of particles at thickness t; and define

p(x, t) =Pr(X(t) =x), x&0. Let

~(s,t) = g p(x, t)s*, ~s~ &1

be the generating function for the probabilities p(x, l)
starting with one particle at thickness zero. [sr(s, t)7" js
the generating function if the process starts with n& 1

particles at thickness zero. In treating both cases the
assumption is made that the particles do not interact
with one another. The generating function (1) has been
shown to satisfy the nonlinear Stieltjes functional
equation

pt
~(s,t) = hL~(s, t—r)7dG(r)+st 1—G(t)7, (2)

it(s)= Q q.s",

that is, h(s) is the generating function for the trans-
formation probabilities q„. The equation for the gener-
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ating function can be derived as follows. By definition,

p(x t) =I.(X(t)=*)= I r(X(t) =x~ r)dG(r),
0

where Er(X(t) =x
~
r) is the probability of x particles at

thickness t from a single particle at thickness zero which
is known to have branched at t= r. Now

Pr(X(t) =x~ r)

=Eq(
'ti+ ' ~ '+ 4~~ $

p(ii, t r) —p(i„, t—r)),

LQ p(x, t r)s*7—"=rr"(s;: t r);—

where the term in braces is the coefficient of s in the
expansion of

of their previous paths; hence, the stochastic process we
consider is a Markov process with an enumerable
number of states. If we disregard the photons in the
electron-photon cascade the probability that an electron
will be transformed between t and t+8t is X6t+o(8t)„
where X is defined as the birth constant or birth-rate.
From the definition of h(s), (ii) states that an electron
after travelling a distance of random length r has
probability qp of being absorbed, probability q& of being
absorbed and producing one new electron, and proba-
bility q2 of being absorbed and producing two new
electrons. Each new electron then has probability G(r)
of travelling a distance r before being transformed
again.

The generating function in this case satisfies the
equation,

rr(s, t) = ( P q„m "(s, t r) }he "'dr—+se "'. (5)e~

(1/X) Brr/R = q27r' —(qp+ q2) ~+qo.

('l'he reasoning used above is the same as that used in
the theory of compound. probability distributions. j .

- This integral equation can be written as the differential

Multiplying p(x, t) by s and summing over x we obtain,
after adding the term for p(1,t) =1—G(t), Eq. (2). If
G(t) has a density function g(r) of bounded total

(6)variation, we can write (2) as

g (s,t) = hLm (s, t r)7g(r—)dr+sfi —G(t)7.

If we put qo
——qi ——0, Eq. (6) becomes the generating

function of the Furry distribution. The solution to (6)
with initial condition ~(s,0) = s is

Differentiation of (2) with respect to s yields intergal
equations of the renewal type for the moments of X(t),
the properties of which can be studied using well-known
methods. ' For example, the expected value of X(t) is

EX(t) =m(t) =E m(t —'r)g(r)dr+1 —G(t), (4)
~o

q() q2L (q2s qo)/(q2s q—2)7e «"—
~(s,t) = (7)

q&(1—L(q2s —qp)/(q2s —q2)7e"«' "' ')

By (1), the probabilities p(x, t) can now be found by
taking the coefBcient of s in the powers series expansion
of rr(s, t). We first rewrite (7) as

where
(dh)&= E»q.=l —

I

~ds~ g where

A+Bs 1 -D- x

~(s,t) = =—(A+As) P —s,
C—Ds C x~ C.

/'

In a.forthcoming publication we plan to treat models
of cascade phenomena which involve more than one
type of.particle, and in which energy considerations are
taken into account. We plan also to discuss the diGusion
equations associated with age-dependent branching
processes and their physical applications. Therefore,

A. =gpg2$" qo-q —
gpss, ,

jj—qpg 2 g
22~&( qn —q2) &

C=qpq2e"«0-q '-q2',

D q
2~) (qn q2) l'

q
2

AN AGE-DEPENDENT MODEL

Consider a single particle of the soft component of
cosmic radiation falling on a material slab (e.g. , lead).
and its eGect being multiplied to form a cascade shower,
'1'he model we consider assumes (i) G(t) = 1—e "', and
(ii) h(s) =qo+ qis+ q2s'. With G(t) thus defined the state
of the cascade at any thickness t depends only upon the
number of particles at that thickness and is independent

' W. Feller, Ann. Math. Stat. 12, 24.3 (1941).

A 8 ~D'
p(x, t) = —+-

.C D, C

Using Eq. (4) we can write the integral equation for
the expected, or mean, value of X(t). We have

EX(t)=m(t) = (1—qo+q2)

m(t r) tie "'dr+e "'. —(10)—-
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Equation (10) reduces to the differential equation

am(t)/at= a(q, —q,)~(t),

whose solution, when X(0)=1, is

m(t) =exp(}I (q2 —qo)t}. (12)
&(Z X'(t)) =2 ~X'(t)

independence is assumed, this is equivalent to con-
sidering n independent processes with associated random

(11) variables X~(t), X2(t), ', X„(t), and since

of gX(t) wi}} depend on the above result follows. An exPlicit exPression for P(x, t)

t} v 1 f and A t a } ' 6 it h v can be obtained by expanding x"(s,t) as a power series in

s and proceeding as before. Hence

Oq qo) qg

lllllEX(t) =~ +&, q2&qo
)~oo

.i~ qo= q2.

o-
p(&,t)= 2 I . I—

a~EiJ C D
q

~)I(aO—e»&

p(o, t) =—=
C qoe) «0-~»' —q'

Whenever the probability of absorption is introduced
into a model of cascade phenomena it is of interest to
determine the probability p(0, t) that the cascade will We have, therefore,
die out, that is that all particles will for some thickness I,

be absorbed. From (1) and (8) we see that this proba-
bility is given by

limp(O, t) = '

t—+co

qo) q2

qo/q2, qo&q~

The probability that all electrons will eventually be
absorbed is given by

p(O, t) = (A/C)", (18)

This distribution is of the negative binomial type. The
asymptotic behavior of the mean is the same as before,
except that now j X(t) = m when qo= q~. In addition, we
have

Should the cascade start with m) 2 electrons at
thickness zero, the expected number of electrons in the
cascade can be obtained by multiplying (12) by e. Since

limp(O, t) = 2,

(qo/q2)",

qo) q2


