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Coulomb Wave Functions in the Transition Region*

MILTQN ABRAMowirz, Computation Laboratory, National Bnrean of Standards, Washington, D. C.

AND

H. A. ANToszEwzcz, Mathematics Department, The American University, washington, D. C.
{Received June 28, 1954)

Expansions, involving the Airy integrals, of the functions Fz, (rt,p), Gz, (n, p) are obtained from a study of
the Coulomb wave equation. These expansions are convergent in the region
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where I is a non-negative integer and g&0 is a pa-
rameter, ' are of importance in many problems such as
the separation of Schrodinger's wave equation for a
Coulomb force field, the scattering of charged particles
and the stability of laminar Poiseuille Sow. They have
been investigated intensively for the past several years
and expansions of them have been obtained by various
authors. '

In the present note, we establish first a representation
of the general solution of (1) with I.=O, valid in the
region

~ p
—2rti &2st, in terms of the well-known Airy

integrals Ai(s), Bi(s) which, for s)0, are defined' by
the relations

Ai(s) = iss&1I .; (-', sl) —I;(sssf) },
»(s) = (s/3)'(I-f(ss')+If(ss'))

(2)

where I+;(x) is the modified Bessel function of the first

kind. We then outline our method briefly for the case
I.&0 and not necessarily an integer. As far as the
functions Fr, (rt,p), Gr, (st,p) are concerned, there is no

real loss of generality in considering the case 1.=0 only
as these functions satisfy recurrence relations by which

they can be generated from the functions Fs(rt, p),
Ge(rt, p) and their derivatives.

The possibility of a representation of the solutions of

(1) with I.=O in terms of Airy integrals becomes
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1. INTRODUCTION

'HE Coulomb wave functions Fr, (rtp), Gr, (rt,p)
which are dined as two linearly independent

solutions of the diGerential equation

apparent if we transform Eq. (1) by the substitution

x= (2~-p)/(2~)', p= (2n)',

into the equation

pS

p S

whose general solution may be written in the form

N(x) =ci Ai(x)+cs Bi(x).

It seems reasonable, therefore, to presume that the
general solution of (4) may be represented for all ttÃ0
in the form y(x, tt) = Y'(x,tt)tt(x), where I'(x, tt) is suitably
determined. Indeed, such a representation is possible
but rather awkward to obtain. Rather, we attempt to
find a representation in the form

y (x,tt) =y(x, tt)N (x)+P(x,tt)N'(x), (7)

where te(x) is defined as in (6). This, as we shall see,
will enable us to determine the functions p(x,tt), f(x,tt)
as analytic functions of x for all ~x) &r& (tt) whose
series expansions have coeKcients that are readily
available from simple algebraic recurrence relations. It
is this fact which makes the representation (7) ex-
tremely useful for numerical computations since the
error in truncating the series expansions of g(x,tt),
P(x,tt) can be estimated from a comparison with the
expansion of 1/(1 —x/tt).

Let

2. REPRESENTATION OF y(x, Is)

yi(x, tt) =y(x, tt) Ai(x)+lb(x, tt) Ai'(x),

ys(x, t ) =4 (x,p)»(x)+4(x, p)»'(x)

We wish to determine the functions p(x, tt), f(x,tt) such
that for every tt/0 and x in ( x (

&r & (tt
~

the functions
yt(x, tt), ys(x, tt) are two linearly independent solutions
of (4).

for this equation resembles, the more so the larger p, ,
the equation

—XQ= 0)
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On substituting either of the expressions (8) into
Eq. (4) and equating to zero the coeKcients of the
respective Airy integral and its derivative, we obtain
the system of di6erential equations,

S2 S'
4+2M'+4'=o 4"— 4+24'=o (9)

p S p, X

which we attempt to solve for [x[ &r( [p[ by assuming
that p(x,p), f(x,p) admit. the expansions

4(x,p)=Z ~-(p)x", 4(x,p) =2 &-(p)x" (1o)
0 0

Expanding x'/(p, —x) in (9) in powers of x, we thus
find the recurrence relations

3. CONCLUSION

The determination of a particular solution of Eq. (4)
is straightforward. Choosing, for instance, x=0 as
initial point, we obtain for the constants involved in
the representation (7):

c&——z VS{y'(O,p) Ai(0) —y(O, P) Ai'(0)),

c&= —vr{y'(O, p) Ai(0)+y(O, P) Ai'(0) ).
If we put y(0,p) = Fs (&,2&), y'(O, p) = (2&)&(dFs/dp), s „,
these constants normalize (7) to represent Fs(rip) for
all p in the region [p—2q[ &2g, ri) 0; a similar set of
constants may be obtained for Gs (rt,p).'

If I./0 we can derive an analogous representation.
Indeed, if in (1), we let

~2 — g V0p C3— 2 Vg) x= (pi p)/pi', —v= pi', (16)

Qy) 63= 382q

1 n

an+4= Q p ' "a, ;—(2e+5)b„ps,
(I+4) (~+3)

n

&~4= Q p & 'b„-; -2(n+—3)a„+s,
(v+4) (v+3)

(12)
namely,

p' —2' —L,(I.+1)=0,

p, ,=~~ [~'+L(Ly 1)]'*,

(17)

we obtain the equation

where p~ is the larger of the two roots (assumed t.o be
real) of the equation

m=0 1 2

Hence, the four constants a0, a&, b0, b& are arbitrary
within the restriction that y&(x,p), ys(x, p) be linearly
independent. The simplest choice, satisfying this

requirement, is to take

d'y vx L(L+1)x
y=0,

dx' v —x v(v —x)'

whose "limiting" equation as v—+~ is

(O'I/dx') —xsam = 0. (20)

0 ~, ~y —&0 13
The above method yields the representation

whence it follows that the Wronskian determinant of

y&(xp), ys(x,p) at x=0 becomes WLy~, ys)=w '. For
convenience, we list a few terms in the resulting

expansions (10):

1 1 1
y(x,p) = 1+—x'+ x""+ x'

12@ 20p2 30@3

1 (1 11'
+—

I
—+ Ix'+

42 Ep' 30')

y(x, v, L) =$1.(x,v)e(x)+ill, (x,v)z'(x),

Pl, (x,v) =P P.(v,L)x".=
0

I.(L+1)
x4+ .

I (L+1)
Pl. (x,v) =Q n„(v,L)x"=1- x'+ .

6V4

(22)

1
$(x,p) = — -x'—

30p
-x' — x'

60@2 105@,3

1 f'1 11'
g 0 ~ ~

168 ~ p,
4 30p,J

Since the coeKcients in the system (9) are analytic
functions of x for all [x[ &r( [p[, it follows from a
well-known theorem that its solutions are likewise

analytic functions of x for all [x[ &r& [p [. Thus, the
functions g(x,p), P(x,p) as dined in (14) are for every

p /0 analytic in x for all [x [ &r( [p [.

with coefficients determined as follows:

ap = 1, ng =ns ——0, ns —— I.(L+1)/6v', —

Po=Px=Ps=Ps=O,

1 n

Otz+. 4= — 2 v ' '~
& (2~+3)P-.—+s

(++4)(m+3)
n+2—L(L+1) E ~.—-' ., ;,

' Asymptotic expansions of FO(g, 2g), G0(g,2g) frere obtained in
the following paper: pM. Abramowitz and P. Rabinowitz, Phys
Rev. 96, 77 (1954lg.
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~ x[ & t', i.e., ~ p —
tor

~
&tpr. Note that by (18) pr~oo with

g while p2~0 as g~~, I being fixed.
The above results are contained in a general represen-

tation theorem for the solutions of an nth order linear
ordinary diGerential equation with analytic coeKcients. ~

n=0, 1, 2, ~ SH. A. Antosiewicz and M. Abramowitz, "A Representation
for Solutions of Analytic Systems of Linear Di6'erential Equa-

The functions QL, (x,o), pl, (x,o) are analytic in x for all tions, "J. Wash. Acad. ScL (to be published).
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Asymptotic representations are obtained for the regular and irregular Coulomb wave functions and their
derivatives for p =2g. A table of these functions is given, and a discussion is given to show how values may
be obtained for p~2q by using Taylor's formula.

'
N a recent paper Barfield and Broyles' evaluated the

~ ~ Coulomb wave functions Ii p, Gp, and Fp' from their
contour integral representations for p=2q and gave a
short table of these functions. They made the observa-
tion that a knowledge of the functions for p=2g per-
mitted the scient use of local Taylor expansions for
numerical computation. It is the purpose of this paper
to exploit these suggestions and demonstrate a sys-
tematic method of computation over a wide range of
values of p and q. Specifically, we provide in Table I
values of these functions for 2g ranging from 0 to 50 and
develop an asymptotic formula which may be used for
larger values of the argument, The tabular values were
computed on the National Bureau of Standards
SEAC with the aid of programs prepared by Dr. C. K.
Froberg of Sweden during his stay at the Computa-
tion Laboratory of the National Bureau of Standards.
The results were obtained to nine decimal places by
numerical quadrature of integra1 representations of the
functions and checks were applied by diGerencing and
calculation of the Wronskian. The table as given to
seven decimals is correct to within a unit of the last
place. The intervals were chosen so that the five-point
Lagrangian interpolation formula will yield the full
accuracy beyond p =3.For larger values of 2q, the repre-
sentations obtained will yield equivalent results.

We restrict our discussion to the case I.=O since there
is a convenient method of generating the functional
values for I.&0 for the pertinent range of values of p
and q with the aid of the recurrence relations.

We start with the integral representation' employed
*This work was supported (in part) by the U. S.Once of Nava1

Research.
' W. D. BarGeld and A. A. Broyleo, Phys. Rev. SS, S92 (1952).
~ T. D; Newton, Chalk River Laboratory Report 526, December,

1952 (unpublished).

by Newton,

Po iGo =—pro(rt) exp (2rti arctanhs ips) ds, —(1)

= 2rtCp expL2rti(arctanhs —s)]ds, (2)J —1

and evaluate this integral by the method of steepest
descents. We note that if f(s) =arctanhs —s, then f'(s)
has a double zero for s=0 and f(s) =rps'+ors'+.
Thus, if s= e", is' is real and negative for 8=5~/6 and
8= —pr/2, the paths of steepest descent. We conse-
quently deform the path from s= —1 to s= —i~ into
the equivalent path

cr s=e', m &e&Sor/6.

s Ps~co 1 ~g ~0. —

c s=le '" 0&t & op

It can then be shown that the contribution from the
integral along c~ is smaller in absolute value than
oror exp{—rt(prorrt —1)).The integral along co is

J3= —i
dp

exp[2q (are tani g) jdt", —

and this can be represented asymptotically by the

where Co(rt) = (2srrt) &(1—e o~o) &, in order to obtain
asymptotic expansions for Pp and Gp and their deriva-
tives for p= 2q. In this case, we have

Pp(2rt) —iGp(2st)


