
PHYSICAL REVIEW VOLUM E 96, NUMBER 3 NOVEMBER i, f 954

Resonance Scattering of Gamma Rays by Nuclei
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Two methods of observing the nuclear resonance scattering of gamma rays are discussed: one using
gamma rays which arise from transitions to the ground state of a nucleus which is the same as the one in
which the scattering is being observed, and the other using gamma rays of small energy spread and variable
mean energy obtained by means of Compton scattering.

l. INTRODUCTION

' '%FORMATION about the widths of gamma-ray
~ - emitting states may be obtained by delayed coin-
cidence methods if the lifetimes of the states are greater
than about 10 "second, for in this case the lifetime may
be measured directly and hence the width may be
deduced. Because of the limitations of present-day
coincidence circuits, this method will not work for life-
times much shorter than 10 " second, and the widths
have to be inferred either indirectly, from reactions
involving particles, or directly, by measuring the reso-
nance scattering of gamma radiation. Two methods of
obtaining gamma rays of approximately the right
energy for resonance scattering are: to use gamma rays
which arise from a transition to the ground state of a
nucleus which is the same as the nucleus in which the
resonance scattering is being investigated (method A),
and to use a source of variable energy gamma rays
such as could be obtained by allowing monoenergetic
gamma rays to undergo Compton scattering (method
8). The difficulties inherent in both of these methods
and ways of overcoming them are discussed below.

The cross section for resonance scattering may be
written.

g) 2p2

&~[(Eo—E)'+ (I'/4) ]
where g is a statistical factor of order unity, ' and X, E,
Eo, and I' are, respectively, the wavelength and energy
of the incident gamma rays, the resonance energy, and
the width of the level. The maximum value of 0- is of
order 10 "cm' for gamma rays of energy 1 Mev. Ap-
proximate expressions for F have been given by Weiss-
kopf, ' which show that the conditions for large F are
large Eo, small multipole order, and large mass number.

2. RESONANCE SCATTERING BY METHOD A

Suppose that a nucleus T is stationary when it emits
a gamma-ray of energy E~ in Qight. Since the gamma
has a momentum (E„/c), 1V must have a recoil energy
of (E~s/2Mc') where M is the mass of Ã. If the gamma
ray is scattered by another nucleus, S, of the same
species as X, then S will also recoil with an energy
(E„'/2Mc') so that the appropriate energy E to insert

' E. Guth, Phys. Rev. 59, 325 (1941).
s V. Weisskopf, Phys. Rev. 83, 1073 (1951l.

in (1) is less than Es by an amount (E~'/Mc'). Since
this last energy is of the order of tens of electron volts,
whereas I" is a very small fraction of an electron volt,
the cross section for scattering of gamma rays from Ã
will be very small, and the resonance scattering will
be hidden in the background of Compton, Rayleigh,
and Thomson nuclear scattering. ' This fact has been
pointed out by several writers" who have suggested
that by making S move towards S at the instant of
emission, E~ will be Doppler-shifted towards Eo, and
this will result in a larger value for 0. than would be
the case if E were stationary. Moon4 has achieved this
relative motion of E and S by rotating the source in the
neighborhood of the scatterer, and choosing his geom-
etry so that the bulk of the scattering occurs when the
source is moving towards the scatterer. While his results
indicate the presence of resonance scattering, his
statistics are such that only a rough estimate of F
may be made. *

Relative motion of E and S will occur if the emission
of the gamma by Ã has been immediately preceded by
the emission of either an electron or a gamma ray. The
emission of the first particle will set E in motion and the
energy of the gamma ray of interest will be Doppler-
shifted accordingly. The simplest case will occur when
the source nuclei E are in the form of a gas, so that
they will move with the recoil velocity resulting from
the emission of the first particle as long as they do not
undergo collisions.

If the first particle is a gamma ray of energy Ej,
it is easily shown that the energy spectrum of gamma
rays from the nuclei X in any direction is a constant
between E~[1 (Ei/Mc')] and E„[1—+ (Ei/Mc')] and
is zero everywhere else. The effective cross section 0-,

for gamma rays with this energy distribution is found
from (1) to be

e = (gX'I"Mc'/S~E~E, )[tan 'i 2E,(E, E~)—
/I'Mc'}+tan '(2E (E,+E )/I"Mpl]. (2)

Weisskopf's formulas' show that the conditions for
3 P. B. Moon, Proc. Phys. Soc. (London) A63, 1189 (1950).' P. B. Moon, Proc. Phys. Soc. (London) A64, 76 (1951).
~ S. Devons, Excited States of nuclei (Cambridge University

Press, London, 1949).
*Pote added in proof. —A considerable improvement in the

moving source technique has been eGected recently by Moon and
his collaborators (Proc. Phys. Soc. (London) A66, 956 (1953);
and A67, 601 (1954)).
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:la,rge 0. are, again, large resonance energy and mass
number, and low multipole order. If E~ and E~ are of
the same order of magnitude, say 1 Mev, the second
term in Eq. (2) is very nearly (~/2). If Ei)E~ by as
little as 1 kev, the first term is also nearly (s/2), and
in this case

o = (gX'I'Mcs/8E~Et). (3)
l

'If E&&E~, again by as little as 1 kev, the two terms
will nearly cancel and, by using the approximation
tan —'x = (s./2) —(1/x),

tr = (glt'I'sM'c4/8s. E 'LE '—Ets]). (4)

The large difference between the expressions Eq. (3) and
Eq. (4) may be used as an independent met:hod of infer-
ring the order of emission of gamma rays in cascade. For
example, if the 1..33 and 1.17 Mev gammas of Ni"
were emitted in that order, Eq. (3) would show o. to be
about 3&10 "cm' when I'=10 'ev. If the order were
reversed, Eq. (4) would give o =4X10 "cm'.

If the first particle emitted is an electron rather
than a gamma ray, the spectrum of the gamma rays
from the source is more complicated. Kofoed-Hansen'
has given an expression for the momentum spectrum
of nuclei recoiling after beta decay, and from this
the energy spectrum of the Doppler-shifted gamma
rays may be calculated. The result for a beta spectrum
with maximum- |;nergy 2mc is shown in Fig. 1. The
intensity is plotted against f= $M (E E~)/rrtE~ j-,
where m is the electron mass. The curve is symmetrical
about /=0 and the ordinates have been chosen to make

. the area under the whole curve unity. A gamma ray
with the same mome~tlm as the maximum momentum
of the electrons would give rise to a rectangular spec-
trum within the same limits as the spectrum following
beta decay, and would thus give rise to a larger cross
section if the Doppler shift was just not large enough

. to compensate for the loss of energy by recoils. A
gamma ray with an energy equal to the maximum
beta-ray energy would not be similarly effective.

The condition for the validity of the above considera-
tions is that the half-life of the state being investigated
should be smaller than the reciprocal of the collison
frequency in the gas, i.e., smaller than (mean free
path/mean velocity). Since the velocity of sound, V,
in a gas is given by" V=tI (p~/8)', where & is the
ratio of specific heats and is of order unity, and v is
the mean velocity of the molecules, the condition may
be stated that the half-life should be less than (mean
free path/velocity of sound in the gas). This condition
is satisfied for the states of interest here, with lives
less than 10 "sec.

When the atoms of the source are in solid and not
gaseous form, the situation is more difficult to analyze
in view of the paucity of exact knowledge of the elastic

'0. Kofoed-Hansen, Phys. Rev. 74, $785 (1948).
t A. B. Wood, Text book of Sound (G-. Bell Bt Sons, London,

1944).
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FIG. 1. The intensity of gamma rays of energy E emitted by
nuclei recoiling after beta decay with a maximum energy 2mc',
plotted against k= PI(E E~)/m—E~5

forces binding atoms in a crystal lattice. Some progress
may be made by considering a linear Blackman model
of the crystal lattice, i.e., a set of identical mass points,
mass m, with a constant spacing s, joined together
with identical springs with force constant k. The
equations of motion of the chain may be readily solved
with the initial conditions that the displacements of
all the particles is zero and that the initial velocities of
all but the nth are zero, the nth particle having the
initial velocity vo. This is a model of the system of
interest in which an atom is set in motion by the
emission of the first particle. The velocity of the
(rt+r) th particle is given as a function of time t by

n ~,(t) =npJs„(2nt), (5)

where n= (k/m)'. The velocity of the tsth particle is
tllus np Jp(2nt), which falls to zero for the first time
when t=(1.2/n). J„(x) reaches its maximum when
z= p, hence the velocity of the (n&r) th particle will be
a maximum when t= (r/n), and, since it is displaced
a distance rs from the mth particle, the velocity of
propagation of the disturbance will be V, =ns. Thus
the velocity of the mth particle will be zero for the first
time when t= (1.2s/V, ). Since V, is obviously the
velocity of sound in the solid, the results of this section
will still be valid if the half-life of the state under in-
vestigation is small compared to (interatomic distance/
velocity of sound). In view of the agreement between
the form of the conditions of validity for solids and
gases, it is apparent that this criterion will also hold
for liquids, i.e., half-life short compared to (inter-
atomic distance or mean free path in the liquid/
velocity of sound in the liquid). If these conditions are
not fulfilled, then the velocity of the atom after the
emission of the first particle will diminish because of
dissipation of energy in liquids and solids and will be
modified and generally diminished by collisions in
gases. The Doppler shift and hence 0- will then be
smaller than the value given by Eq. (2).

In all of the above considerations it has been assumed
that the distribution of recoil velocities after the
emission of the first particle is isotropic, so that there
will be as many nuclei recoiling away from the scatterer
as are moving towards it, and hence as many of the
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Sc
FIG. 2. Schematic arrange-

ment of coincidence method for
increasing the effective cross
section for resonance scattering
in the scatterer Sc of gamma
rays from the source S. C& and
C2 are counters in coincidence.

are scattered by an angle 8, the energy of the scattered
radiation E is given by the Compton formula

E=E~t'1+{E„(1—cose)/mc'} j ' (8)

and the spread in energies AE due to a spread of
scattering angles 68 is

gamma rays of interest will have their energy Doppler-
shifted away from the resonance energy as towards it.
However, gamma rays which have had their energy
Doppler-shifted towards Eo may be selected by means
of the coincidence circuit shown in Fig. 2. C& and C2
are detectors, S is the source, and Sc is the scatterer.
C2 is shielded from direct radiation from S. If a coinci-
dence between C& and C2 is registered, one will know
that the gamma ray which reached C2 from S via Sc
was emitted by an atom moving towards Sc, since the
6rst particle went in the direction of C~. This will result
in a much larger cross section than would be obtained
using unselected gamma rays. Experiments on these
lines are in progress in this laboratory. An obvious,
but not readily applicable, extension using three scin-
tillation counters is to make one of the phosphors the
scatterer and to register coincidences between the other
two but not triple coincidences. For large scattering
angles this will eliminate the Compton scattering com-
pletely and give the advantage of selected gamma rays
mentioned above.

3. RESONANCE SCATTERING BY METHOD 8

Suppose that it is possible to obtain gamma rays
with an energy spectrum which is constant and equal to
(1/E ) in the range (Eo'+~E ), and zero everywhere
else, where Eo' is the resonance energy corrected for
recoil. The effective cross section 0. is found from (1)
to be

0.= (gX'1'/2~E„) tan '(E„/1'), (6)

and, if E is as small as a few ev, tan '(E /F) = (m/2)'
Hence (8) may be approximated to by

0 will still have this value if the center of the spectrum
is displaced by nearly +(E /2) as long as E is large
compared to I'. Hence, as the center of the spectrum
is moved from outside this range through it and outside
it again, 0 will change from a small to a large value and
back again, "small" and "large" depending on the
value of E . In the case of the 0.487-Mev level in Li',
which has a width of about 0.01 ev ' 0 = 1.8& 10 "cm'
or about 2 percent of the Compton cross section in
Li jf E =9kev.

A gamma-ray beam with a spread of a few kev and
a mean energy which may be varied continuously may
be obtained by the use of the Compton eBect in a
primary scatterer. If gamma rays with an energy E„

J. M. Blatt, and V. Weisskopf, Theoretical ~VNclear Physics
{John WiIey and Sons, Inc., New York, 1952).

(E„'/mc') sin@8
AA= -—

L1+{E„(1—cos8)/mc'} j' (9)

from which it is seen that, for a given 68, AE is smallest
when 8=0 or m. For a given E„, the smallest value of
AE will occur for 8=m., but this region suGers from the
disadvantages that the diGerential Compton cross
section is smallest here, and, more important, that the
maximum energy in this region is (mc'/2), no matter
how high E„. Thus for most purposes the region of
small 8 will be important.

If annihilation radiation was used as a source for
the investigation of the resonance scattering from the
0.487-Mev Li' level, the right energy of gamma rays
from the primary scatterer would be obtained for a
scattering angle of about 21'. Equation (9) shows that
68 should be 3.3' in order to obtain DE=9 kev, which
gives 0-= 1.8& 10 ' cm'. If a more favorable source were
used, with E„less than 0.51 Mev, the same DE would be
obtained with an even larger value of 68. The geometry
of the experiment could be chosen without great
diKculty to give such a value of 68. It would be deter-
mined by the finite extension of source, primary
scatterer, and lithium scatterer, and would give a cross
section somewhat larger than the value mentioned since
the energy distribution of the gamma rays would then
be peaked about the average value, instead of having
the rectangular shape assumed in the derivation of
Eq. P).

The main difhculty is to obtain a large enough in-
tensity of Compton gammas, scattered at just the
right angle. This may be done by using a scatterer in
the form of part of a surface of revolution, the axis
being the line joining source and scatterer, and the
profile being a circle. Gamma rays from all parts of the
surface will then be scattered through the same angle.
Strong sources, careful screening, and possibly the
use of coincidence methods to reduce background will
be necessary since the counting rates obtainable in
double scattering experiments of this kind will not be
high.

4. CONCLUSIONS

The methods outlined should prove useful in the
study of high-energy, low-multipole order gamma-ray
transitions. Because of the short lives of the states
involved and the low internal conversion coe%cients,
etc. , these transitions are not readily accessible by the
methods which have proved so fruitful in the investiga-
tion of lower-energy, higher-multipole order transitions.


