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The method of O’Rourke is used to obtain an expression for the thermal ionization rate of an impurity
in a polar crystal. The interaction energy of the trapped electron with the optical vibrational modes is
assumed to be linear in the normal vibrational coordinates of the lattice. The eigenvalue equations and
perturbation of the Born-Oppenheimer adiabatic potential method are employed, leading to a result identical
to that of Huang and Rhys. Multiphonon transitions occur only when the configurational constant S50. An
approximation of simple form, for the transition rate, can be made only for low temperatures, where the

frequency factor s is independent of temperature.

I. INTRODUCTION

N luminescent materials, the rate of thermal ioniza-
tion of an impurity center containing a trapped
electron is one of the fundamental reaction processes.
Afterglow phenomena can in some cases be ascribed to
the ejection of an electron from a trap into the empty
conduction band, whence the electron returns to an
empty luminescent center with the emission of a light
quantum. The decay of the afterglow is determined by
the rate of ionization P of the traps and a monomolecular
decay of emitted light intensity is described by an
equation of the form I=1I,exp(—Pf). Generally the
rate P is assumed to have the form P=s exp(— E/kT),
where s is the frequency factor, of the same order as
the vibrational frequency of the lattice, and E is the
activation energy corresponding to the depth of the
trap below the bottom of the conduction band. It is
recognized that calculations of E are quite insensitive to
choice of values of s, so that from crystal to crystal one
finds values of s ranging from 107 to 10'¢ sec™. Since
there appears to be no way of predicting s from known
characteristics of the crystal and impurity center, a
better understanding of the nature of s is required.

In the analysis of thermostimulated emission, the
same expression for P, with s constant, is used. Randall
and Wilkins! have shown how to calculate trap depths
from the temperatures at which glow peaks occur. Tt is
difficult to conclude whether a single glow peak is due
to one trap species with discrete values of s and E or
whether it is caused by a distribution of traps in depth
or s value. Hoogenstraaten? is of the opinion that the
latter is more likely.

Recently Ellickson® has discussed the effect of the
variation of energy gap with temperature, on the rate
of thermal ionization of traps in phosphors. His assump-
tion that the trap depth varies to the same extent with
temperature (E=E,—pB7T) is not justified, but he has
called attention to the fact that the frequency factor is
temperature dependent. The analysis of a first-order
glow curve depends upon the functional dependence of

! J. T. Randall and M. H. Wilkins, Proc. Roy. Soc. (London)
A184, 366 (1945). :

2 W. Hoogenstraaten, J. Electrochem. Soc. 100, 356 (1953).

3R. T. Ellickson, J. Opt. Soc. Am. 43, 196 (1953).

s on the temperature 7". Williams and Eyring,* in their
discussion of metastable levels, obtain from absolute
rate theory, s=AT. It can be shown by modifying the
analysis of Grossweiner,? that the William’s form of s
alters very little the estimated trap depths, provided
they are not too shallow.

Several theoretical investigations®1 have shown that
the rate of thermal ionization of impurities in crystals
involves a frequency factor which depends on tem-
perature as well as upon trap depth, so that P has the

form
P=s(E,T) exp(—E/kT). 1)

Except for the work of Huang and Rhys, these calcu-
lations do not apply to traps in polar crystals. However,
it will be shown that in this case Eq. (1) gives the
general form of P and that s(E,T) decreases with
decrease in temperature.

In addition to determining the correct form of s(E,T)
it is of interest to examine the problem of multiphonon
transitions, which according to Kubo® have a high
probability of occurring. He ascribes this to the dif-
ference of the lattice vibrational frequencies in different
electronic states. In the present calculation it will be
seen that a multiphonon transition is due fundamentally
to a different mechanism, namely, the displacement of
the lattice normal coordinates after excitation.

Within the approximation employed the final ex-
‘pression for P reduces identically to that of Huang and
Rhys'® who have omitted all details of its derivation.
However, in their theory of light absorption by F
centers, they have utilized two constants, .S and ¢,
which we shall henceforth term the configurational
constant and displacement constant respectively. Lax!!
has utilized these constants in his complete treatment
of light absorption by the use of ordered operators and
O’Rourke!? has dealt with the same problem by the use

4 F. Williams and H. Eyring, J. Chem. Phys. 15, 289, (1947).

L. I. Grossweiner, J. Appl. Phys. 24, 1306 (1953).

¢ F. Moglich and R. W. Rompe, Z. Physik 115, 707 (1940).

7 Goodman, Lawson, and Schiff, Phys. Rev. 71, 191 (1947).

8 D. Curie, J. phys. et radium 12, 920 (1951).

9 R. Kubo, Phys. Rev. 86, 929 (1952).

(1;0510(). Huang and A. Rhys, Proc. Roy. Soc. (London) A204, 406
i M. Lax, J. Chem. Phys. 20, 1752 (1952).
2 R. C. O’'Rourke, Phys. Rev. 91, 265 (1953).
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of the density matrix for a harmonic oscillator. It is the
latter method, whose effectiveness and simplicity is to
be emphasized, that is to be applied to the Huang-Rhys
model. In addition, use is made of the ‘“Condon”
approximation which becomes exact when the second
derivative of the electronic wave function with respect
to any normal coordinate vanishes.

II. BASIC EQUATIONS

Following Kubo, we treat the crystal plus impurity
center, as a polyatomic molecule, whose Hamiltonian
H is given by

H=Hg+H*V(r,R), (2)

where Hp is the vibratory energy of the crystal nuclei,
H, the energy of the trapped electron, and V (r,R) the
interaction of the electron with the nuclei. On the basis
of the Born-Oppenheimer!® adiabatic potential method,
we seek solutions of the eigenvalue equations

LH AV (1,R) 16:(r,R) = Eo(R)4:(r, R), ©)
(He+E(R) I, n(R)=E4, o1, n(R), 4)

where E;(R) is the adiabatic potential of the /th elec-
tronic state and # signifies a vibration state of the
nuclei. The wave function of the system in the Ith
electronic state is thus

¥y, (1, R) = (1, R){, (R). )

The perturbation on the system for a process such as
thermal ionization, is determined from the approximate
nature of the wave function (5) and is given by

HY, o= Hril1, n—S1H S, e (6)

Treating the lattice as a continuum and considering the
vibratory motion of the nuclei as lattice waves, the
Hamiltonian Hpz becomes

N
He=} T (4740, )

where g; is the normal lattice coordinate, w the angular
frequency of vibration, and IV the total number of unit
cells in the crystal. Since it is generally assumed that
the electron interaction with the optical modes is pre-
dominant, w is approximately constant for all modes of
vibration in the optical branch. By substituting the
corresponding operator in (6), there results

N /3¢:(r,R) ¢y,
HI‘PLﬂ=_h2Z(L2. g‘l' )
d¢;  9g;

H
1t N 3%:i(r,R)
L ——a(R). (®
2 g aq_,,z
3 M. Born and F. Oppenheimer, Ann. Physik 84, 457 (1927).
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From time-dependent perturbation theory, the transi-
tion probability from the state (/,n’) to a final state
(k,%"") in the conduction band is

40
albn—ta")= @/ [ p(E)| G | BV 1)

X8(Ex, we—Ey n)dEr, (9)

where p(Ey) is the state density of the electronic state
in the conduction band, and the matrix element is
defined as

(e | H 10"y = f ¥y, o HY, wdrdR. (10)

Thus the total transition probability P is found by
averaging (9) over all the initial lattice states »’ and
summing over all the final #’’:

oo
P=a/B) [ b £ pul " 1)

Xa(Ek, ntr—Ej, ’n’)dEkr (11)
where the weighting factor p,- is given by
pu=[Zn exp(—Ey, w/kT) T exp(—E, ~/kT), (12)

and the quantities E; ,» and Ej, .- are the energies of
the system in the initial and final states, respectively.
The thermal ionization rate is found by evaluating

expression (11). To this end we shall follow the notation
and procedure of O’Rourke. The initial and final state
wave functions of the system are

Vi, w=¢1(1,R) {1, n (R),

W, =0 exp(ik-1) -3, (R), (13)

with the vibrational wave function expressed as a

" product of N harmonic oscillator wave functions,

N N
Con (R)=]1 Xny(g/) =11 IL;n1'),
7 1 .
(14)
N N
Crne(R) =H Xns(gi") =H [kni'").
7 7

The primes on the coordinates indicate that the normal
coordinates for each electronic state are modified by
the coupling constants 4 ;% and A4 for the initial and
final states as follows:

7' =g;—N4"4 j'=q;—c/, 15)

g9/ =q;— N~%'"?4 }=g;—c".

It is assumed that the electronic wave function in the
free state is a plane wave independent of the lattice
coordinates, and is normalized by thé introduction of
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the crystal volume Q. For the present the analytical
form of the electronic function for the ground state
remains unspecified.

The form of the wave function for a simple harmonic
oscillator is given by

Xnj(g;)= (%) *(an,o !)—%Hnj[Qi(Z) *]
Xexp‘—%[%(z)i]z}’ (16)

where the variable ¢; and the angular frequency w cor-
respond to the appropriate electronic state. The con-
nection between the initial state frequency ' and the
final state frequency w” is expressed by the phe-
nomenological constant p such that (" —w’)=pw’.

In addition, the system energy is required for each of
the two electronic states under consideration; these
become

E h2k2 1 N (A k)2+ ( u+ )h 17
“ T om* aN G % tni 4 Bh, -
N (AN« X

Ey = 41—2—2 +Z(n,'+2)ﬁw,

where (#2k%/2m*) and — E; are the electron energies in
the conduction band (with m* the effective electron
mass) and in the trapped state, respectively, in the
absence of electron interaction with the lattice vibra-
tional modes.

Evaluation of Transition Probability

It is convenient to express Eq. (11) in a different
manner, by the introduction of the integral representa-
tion for the Dirac delta function

40
5(6)= (1/2xF) f dt exp(it/ ),

so that P becomes

4o
P=(1/#2) f p(Ex)P'dEx, (18)
with -
o0
P= f dt exp (itwy, 1)Gr, 1(2), (19)
Gia(t)= Z ) P | (R | H' | 1n") |2
N
Xexp[it 3 (n/" 43" — (nf+3)"], (20)
i

feor, 1= (12k?/2m*)+ Er¥,

1.
B — S TR — (4 7],
2N i
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Since the weight factor (12) may be written* as the
product of the Boltzmann factors for each oscillator we
have

N
pr=T1 2 sinh(8"/2) exp{— (n/+1)8},

with 8'= (#w'/kT), then the function Gy, ;(f) becomes
G, 1(f)= ; , 2 sinh(8’/2) exp[ — (n;/+2)\/]

Xexp[— (ny"+5)us"]| ks | H'| L") |2, (21)

with A/ =1iw'{4+B" and u;’=—1iw"t. From Eq. (8) we
obtain for the matrix element of the perturbation due
to the ith vibrational mode:

<k:n” | Hi’llin'>

- rk.n,,*m")[—m f (5, R")
R

adi(t,R) 108, w
SRy, ]f’ (R)dR
9g; dq;
h2
+f fk-n"*(R")[_—f éi*(r,R")
R
62¢;(r,R’)

dr] £1w(RVAR. (22)
aq,-

Within our approximation ¢:*(r,R”) is independent of

“the lattice coordinates, and we can apply the “Condon”

approximation if the first derivative of the ground-state
electronic wave function varies slowly with lattice
coordinates R. Under this condition the second term on
the right-hand side may be ignored since 8%(r,R")/d¢
is approximately zero, and Eq. (22) becomes

af’l, n’ (R’)
(e’ |H{ L' y=M i(k,}) f Cru[R™) -———a——dR,
where R ) g
apu(x
Mik))= —-hﬂf &% (r, R
q;

Substituting the vibrational wave functions (14),
squaring the modulus and the summing over all vibra-
tional modes, we obtain

|k | H' [ 10" |

+oo 2

F)
~"(qz-")—an-'(q.~')dqi
3g:

2

+o0
f X (g:") Xny (g1)dg;

21

HJ (nf"|n)?, (23)
qi i#

4T, Mayer and M. Goeppert-Mayer, Statistical Mechanics
(John Wiley and Sons, Inc., New York, 1940).

1#1
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the quantity required in expression (21), which may be
simplified to

N N

Gi ()= | M (k) |*H ; g.G:‘, (29)
where

2
= > <n,~” — ni’> 2 sinh(B’/2)
ni’’ ng’ g
Xexp(— (n/+EN} exp{— (n+Du"),

Gi= X [(n"|n{)|*2sinh(8'/2)

'l nj

Xexp{— (n/+5N/'} exp{— (n/"+3)u/"}.
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The procedure followed by both Kubo and O’Rourke in
evaluating the matrix elements in H; and G;, was to
make use of the Slater sum,

w e~ (ntDE

p(za' | =2

n=0 7r%
= (27 sinh§)~* exp{ — ;[ (v+2')?
Xtanh (3£)+ (x—")? coth(3£) ]},

where H,(x) are the Hermite polynomials. By the use
of the vibrational wave function (16), it is easily seen
that

H () Hn(x") exp{—3(a*+2"%)}

=2 sinh(8/2
G;j Sin. (B/ )nj”z,: (W*Z"’llﬂ,’,!)

p[ (i +3)u; :lOl exp[— (n; +2))‘ :lff dasda;

(w¥27'ny

X Hnj (0" qi" ) Hnj (' qi"") exp{—3a'"(q;"*+ q,-”Z)}H n'i(a'qi ) Hnj' (o 3;") exp{—3a'*(q;/*+ G}

= zal " Slnh (B’/Z)fqu]dq;p (allqjll’al/q—jll l “]Il)p (Ollq;',,alq]" l >\j,)

—00

i

™

+(g/"—=q/")%" COth(m“:“)]} exp{—1[(¢;'+¢/)a" tanh (G\,)) + (¢,

sinh(8'/2)[ sinh\;’ sinhy;"" ] f f dgdq; exp{—3[(g/"+0;")’"* tanh (3p")

¢’ coth(3N;) ]},

where o'?=w''/% and a*=w’/#. The integral'® occurring in the above expression has already been evaluated by

O’Rourke so that it reduces to

zalall

Gi=

m
where

sinh(8'/2)[sinh\;’ sinhu;" 1327 (A 2272~ exp[ — o222 (¢ —¢;")/Q2)- - -,

(25)

Q2=0a'" coth(3u;")+a'? coth(3\/), §j2=a'2 coth(3u;"")4a'" coth(3A;'),

Ap2=0a" tanh(Gu;")+a'? tanh (37/),

Af/=a’ tanh(3;") o’ tanh (31,).

The last-defined quantity A,2 occurs in the evaluation of H; which may be carried out in the same manner.

H ;=2 sinh(8'/2)

ni!'ng’ ( %2”‘”’”1,” !)

"expl— (" +5)u"] o exp[— (m’-l-z)?\ /] f f dadas

(w¥32ni'n

d
Huy(a'q" ) Hn (o' q:") exp{—3a"?(¢/"*+¢: "2)}—— —*Hn (/g ) Hni (o' qi') exp{—3a*(q*+¢:?)}

dq; 94

a 9
=2d'e"" Slnh(B'/Z)ff ininP(a/,Qi",aIIQz'"’#i")g—‘ a-—P(a'q/,a'Q/I)\i')
q: 0Q;

i
a

—00

sinh (8’/2)[sinbhA// sinhui”:]—iff dq:dq,; exp{—1[(¢"+G/")%"? tanh (3u,")

d 9
+a/%(g" - ") Coth(%#i”)]}g—— o exp{—i[(¢/+¢/)%" tanh(G\/) +a"(¢/'—¢+')* coth(3A/) J}.

q: 0q;

15 O’Rourke’s evaluation of G; is slightly in error. In his expression the exponent of the exponential contains € rather than Q2

This does not affect his final result however.
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After evaluating the integral, we obtain
H ;= (a’o/")*[sinh\’ sinhu"A 2Q 2]
X[ (1—p)~t sinhA;/+ (1—p)? sinhu/"]G;
HL(@o) /A2 A/ Qi) el —c'ViGy, (26)

where the G; are the functions defined in Eq. (25).
Thus for Eq. (24) we obtain for the product:

N
H; H Gj= [(a'a")3{sinh)\," Sinhu i"Ai29i2}—-l
i#i
X {(1—p)~* sinhA/+ (1—p)?# sinhu,"’}
(a/an)4

A2Q?

(‘E;{)?(C/_Giv)z]ﬁ Gi=K: fj[ G. (27)

When the displacement constants ¢, and ¢’ are put
equal to zero, H; reduces to the form obtained by
Kubo. In the evaluation of K ;, we shall neglect p which
enters as O(N™1). The second term in K; may be
neglected in comparison with the first since the ¢’s
are O(N—%) and the first term is proportional to the
angular frequency. Thus using the relation

[sinh)\ i, sinhu i”A iZQ i2:| = 4&'2(1”2 Siil’lh2 [% ()\ i’+/.l. 1',’ ’)],

we obtain

1 !
K.=2%d"

{ (1—p)~* sinh\ /4 (1—p)? sinhy,”’
sinh’[3 (V44 ]
~ [coth(8/2)+1]e'*
4n

‘ +Z;L[C0th B'/2)—1]e"t. (28)

O’Rourke has approximated the second factor in (27)
by neglecting terms O(N~%) under summation, so that
N
I1 Gi=exp{—S coth(8'/2)}
i
X exp{ —iw'tB coth(8’/2)

+S csch(8'/2) cos(w't—¢)}, (29)

where
N
S=3% 3a"(ci"—c/)’, B=3%Np,
=1
cosp=cosh(B'/2).

Thus from Egs. (19), (24), (27), and (28) we obtain,
after dropping primes on the frequency factors,

sing=1 sinh(8/2),

® B
P'=— 3| Mi(k,])|? exp] —S coth-
= EIMGk)| exp[ co 2}

X [{coth(8/2)+1}I-+{coth(8/2)—1}1, ], (30)

IONIZATION
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with the integrals I and 7 given by

+ W, 1
I*=f dt exp{—-iwt(B coth(ﬂ/Z):l:l————)
o I3)

+Scsch(B/2) cos(wt—¢) }

21 . +o0 1 2
=T expliGEDS) T 60— p)— f dx
w 2 0

p=—00
Xexp{i(yF1)x+S csch(8/2) cosx},
where the dimensionless quantity
y= (wir/w)— B coth (36),

may have any integral value p, with the result that the
integrals may be expressed in terms of the modified
Bessel functions.

2w
I,(z)=(2m)! f dx exp{iyx+z cosx}.
0

Using the defining relationships for ¢ given in (29) we
find
exp[i(y=1)¢]=exp[— 3 (y=1)8],

so that
[coth(8/2)==17 exp[i(y+=1)]

=2(—1)" exp[—3(y—1)BJ.
Consequently expression P’ may be simplified to

e_% -8

P=T XM (D) exp{=S coth 3/}

Xi 5(3’-?)[17“_1(5 cschg)—i-l _1(S cschg)].

Inserting the quantity P’ in Eq. (18), we finally obtain
the total rate of thermal ionization P:

P=£—3(e5— 1)t exp{—S coth(8/2)}

-+00
XS [ 1 im0

XJ:Z: 6(y-—p)|:1,,+1(5 csch§)+l _1(S cschg)]. (31)

Integration over the electronic states Ej, in the con-
duction band, may be replaced by integration over the
variable y, by employing the defining relationship for y,

y= (wz1/w)— B coth(3B).
Thus,

Hoy, 1= ‘(h2k2/2m*)+El*= yh,w—l-Bﬁw Coth(ﬂ/Z), (32)
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and hence
dE b= ﬁwdy,

p(Ex)= (4Qm*/ W) k= (4Qm*/I*) 2m*w/ 1)} (y—30)},

where
yo= (E*/hw)— B coth(8/2).

Since we are interested only in those values of y which
correspond to transitions to the conduction band, then
y must have a minimum positive integral value larger
than or equal to yo, which may or may not be integral.
Since thermal ionization implies a transition to any one
of the states in the conduction band, the rate of thermal
ionization must be the sum of all such transition prob-
abilities as is given by expression (31). If we now make
the Huang-Rhys assumption (contrary to Kubo) that
the electronic matrix element M ;(k,l) is an insensitive
function of & (or vy, which increases by unit steps), then
it may be removed from under the sign of integration.
Thus we put k=0 in M ;(%,0). This procedure is valid
if the wavelength (1/k) is large compared with the
electron orbit of the ground state. With this approxi-
mation, the rate of thermal ionization may be written,

P=A(ef—1)"1e¥-exp[—.S coth(8/2)]

X 3 (p—yole Lt T,a], (33)

P>U0
where
s 49"fk('z"m")%Z|M 0]?
e\ g A

The expression for P is identical with the result, ex-
pressed in different notation, of Huang and Rhys who
employed a different method of derivation. A further
approximation may be made by replacing the sum-
mation by an integration over the order p of the Bessel
functions, the lower limit of integration being yo. As
yet, however, the integral has not been evaluated. A
different approach may be followed by putting in the

summation p= po+m where po and m are integral. The’

minimum value of p is then po, so that (po—y¢)=38
where 0<6 < 1. Equation (33) becomes

P=A(f—1)"1e¥-exp[—S coth(8/2)Jetr#
> (m4-08) e ¥ I pgtm+2+Ipo+m]. (34)
m=0

In evaluating the terms in the summation it is con-

venient to use the series expansion for the modified
Bessel function.

PN PG %
el 1) 210+ ) (04+2)
(2/2)8 ¢]
31p+1) (p42) (p+3)

where T is the gamma function.

H. D. VASILEFF

III. DISCUSSION

Since the argument of the Bessel functions occurring
in the final expression (33) for P is proportional to the
configurational constant .S, the functions will have
nonzero values for all finite integral values of p, greater
than yo, provided S is not zero. Thus, multiphonon
transitions occur when the displacement constants ¢,
and ¢/, for the final and initial states differ for each
vibrational mode. A nonzero value of .S corresponds
physically to a displacement of the adiabatic potential
minimum in configuration space, or to a change in the
electron-lattice interaction with excitation. On the
other hand, if .S is zero, only a single-phonon transition
is possible in spite of the fact that the lattice vibrational .
frequency changes on excitation.. This is easily seen
as follows. When .S=0, the Bessel functions, and con-
sequently the ionization rate P, reduce to zero except
when p is unity, in which case only a single-phonon
transition is possible, since from Eq. (32) we have for
y=1,

E*=liw+ Blw coth(8/2)— (72k2/2m*),  (35)

where &’ corresponds to the electronic state in the con-
duction band, to which the transition has occurred. For
such a transition there is a range of permissible values
for E*, its maximum value corresponding to a minimum
possible value for %’. Thus its maximum value is ap-
proximately

(Er*) max=2tw~+ Bhw coth(8/2). (36)

It may be remarked at this point that the approxima-
tion made in the formal theory of neglecting the second
term in Eq. (26) has no effect on the preceding argu-
ment, since when S=7, the definition of .S given by Eq.
(29) implies that ¢;/’=c/, so that the second term in
Eq. (26) becomes identically zero. Returning now to
Eq. (35) it would appear that when B coth (8/2)>1,
single phonon transitions would take place from elec-
tronic levels (E;*) having depths greater than 27w.
However, this argument is not as yet conclusive since
the magnitude of the phenomenological constant B is
not known. We would expect intuitively that as E;*
increases, so does B, with the result that for very shallow
trap depths, B is also very small. Some idea, as to the
magnitude of B may be obtained by comparing the
theories of O’Rourke, and Huang and Rhys. The
frequency of light absorbed corresponding to a transi-
tion from an initial state ¢ to a final state b is given by

hv=hwy, o+ phw— Bhw coth(8/2), (O’Rourke)
hv= Ty, o+ plio+B' (Ai+3%), (Huang and Rhus)

where = (f—1)"L
Thus the relation between O’Rourke’s constant B
and the Huang-Rhys constant B’ is expressed by

B=(—B'/2hw).
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On comparing their theoretical result, with Pohl’s data
on light absorption by F centers in KBr crystals, Huang
and Rhys deduce that B’=—0.1 ev, so that we would
conclude that O’Rourke’s dimensionless quantity B
would be about unity for this particular case. Thus for
the case of ionization of shallow traps we would expect
B to be much less than unity, with the result that
only at very high temperatures will the condition
B coth(8/2)>1, be obtained. We may conclude that
the condition S0 is the more fundamental reason for
multiphonon transitions, being contrary to the con-
clusion of Kubo that a change in lattice vibrational
frequencies (B#0) leads to an appreciable probability
for a multiphonon transition.

In view of the series expansion for I,(S csch8/2), it
is possible to simplify the expressions (33) or (34)
subject to the condition

© [3S csch(8/2) P<po,

since in this case we need retain only the leading term
of the series expansion, and Bessel functions of higher
order in the summation may be neglected. Expression
(34) for P, then yields

A Sro—igt

= (f—1)leB.exp[ — h
P 2”“"‘1‘(;1)0)( 1)~1e¥-exp[—S coth(8/2)]

-8 sinh (8/2) .

The temperature range for which Eq. (37) is valid is
determined by the values of .S and po, and hence by the
nature of the impurity center. Calculations, which will
be presented at a later time, indicate that, for inter-
stitials in the cubic form of zinc sulfide, S=1.2,
A=2.66X10" and po=12 at 300°K (for B~0). These
values were obtained on the basis of the Simpson!$
model for interstitials. The value for .S is reasonable
since it is less than the value S=16 obtained by Huang
and Rhys for excitation of F centers in NaCl. Here .S
must be smaller since the electronic wave function is
more diffuse and the effective ionic charge is less. Since

@37)

16 J. H. Simpson, Proc. Roy. Soc. (London) A197, 269 (1949).

609

the condition for the validity of Eq. (37) may be ex-
pressed as

S?<4p, sinh?(8/2)
<4A[ (E*/fw)— B coth(8/2)] sinh?(8/2).  (38)

Equation (37) is valid up to 300°K where(8/2)= 1.03
corresponding to w=06.28X10¥ sec! and where a
maximum error of 10 percent occurs. Since Eq. (37)
can be expressed in the form of a frequency factor
s(E*T) times a Boltzmann factor exp(— pq8), typical
values of s(E*,T) are s(E*, 300°K)=2.5X108 sec™,
s(E*, 75°K)=108 sec™! which are of the correct order
of magnitude for valués obtained from glow curve and
phosphorescent decay measurements on zinc sulfide.
However, it is seen that the frequency factor decreases
with decrease in temperature, at high temperatures and
remains constant at low temperature.

If B is large Eqgs. (34) or (37) may be further sim-

plified to -
P=5(E*) exp(— poB),
s(E*) = Ae=8Sr~18} /T (py).

(39)
where

For interstitials in zinc sulfide, Eq. (39) holds quite
well up to 300°K where it is less than the correct value
by approximately a factor of 10. Low-temperature
measurements on phosphorescent decay times should
lead to an estimate of the important factor .S. We have
been unable to simplify Eq. (33) or Eq. (34) for high
temperatures.
IV. CONCLUSIONS

The method of O’Rourke leads in a straightforward
manner to the expression obtained by Huang and Rhys,
for the thermal rate of ionization of impurities in polar
crystals. The use of the integral representation for the
Dirac delta function is equivalent to the use of Kubo’s
generating function. The results indicate that the fre-
quency factor depends both on temperature and trap
depth.

The writer would like to express his thanks to Dr.
J. Fajans for having initially suggested the investigation
of the problem.



