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The frequency distribution of a crystal is approximated by combining Van Hove's determination of its
analytical nature and Montroll's method of moments. The function 6{co') is represented by an expression
with the correct behavior at the singularities and at the maximum and minimum frequencies. The behavior
between singular points is adjusted smoothly by leaving n undetermined parameters. These parameters are
then fixed by using the correct first n moments. As a test, this procedure was applied to the two-dimensional
square lattice with nearest and next nearest neighbor interactions, solved exactly for a particular case by
Montroll. The approximated distribution function had the right form at the end points, contained terms
of the appropriate logarithmic form, and a jump function (with known coellrcients). It also included
Legendre polynomials with unknown coefficients, which were determined by moments. The difference be-
tween the exact and approximate distribution functions was a few percent using only the zeroth moment
{normalization). Using higher moments produced a. gradual increase in accuracy.

I. INTRODUCTION

HE normal modes of a lattice are eigenvectors of
a matrix 3f;; & denoted simply by M, wherei, j

are indices of the cell and rz, P are indices of particles in

a cell. Using the translational symmetry of the lattice,
the problem is customarily reduced to the diagonaliza-
tion of a matrix 3II~ s(k), denoted briefly by M(k),
where k is the propagation constant of the wave, and
the index n (or P) takes on /Z different values, where l

is the dimension of the space and Z the number of atoms

per cell. The elements of M(k) are periodic functions
of k, with the periodicity of the reciprocal lattice.

The normalized density of eigenvalues ~' associated
with the matrix M can be defined by

Since the integral in Eq. (2) cannot be evaluated ex-
plicitly except for a few special cases, ' ' many approxi-
mate methods' have been used to study g(ro). Blackman'
approximates g(ro) by calculating the frequencies at a
large number of points in the Brillouin zone and ending
their distribution. This requires a great deal of labor,
which has to be repeated for every set of force constants.
Houston' finds the distribution along special lines in
reciprocal space and interpolates for the rest of the
Brillouin zone. This method introduces some spurious
singularities in g(ro). ' Montroll uses the moments of
g(rd) to determine the coefficients of the initial terms in
a power series expansion of g(o~). We shall discuss
Montroll's" moment method in some detail as it
forms part of the basis of our work. "

From Eq. (1), the eth moment of G(x) is given by

where the average of a matrix () is the trace of that
matrix divided by its dimensionality. Using the uniform

spacing of the propagation constant over one Brillouin

zone, Eq. (1) can be reduced to

rrr = x"G(x)dx= (M"),

or, taking explicitly the average over the propagation
constant" as in Eq. (2), by

where

G((o') = ~ (5L(o'—M(k) j)dk J dk, (2)
m. = (M"(k))dk

(atro' —M(k) j)= (JZ) ' trace{atro' —M(k) j}

The relation between the frequency distribution g(ro)
and the distribution function of the frequency squared
G(res) is

g(rd) = 2(oG((os).

*A summary of the essential results of this paper was presented
to the Washington meeting of the American Physical Society,
April, 1954.

f Supported in part by the OKce of Naval Research.

' E. W. Montroll, J. Chem. Phys. 15, 575 (1947).
'W. A. Bowers and H. B. Rosenstock, J. Chem. Phys. 18,

10M (1950).' G. F. Newell, J. Chem. Phys. 21, 1877 (1953); H. B. Rosen-
stock, J. Chem. Phys. 21, 2064 {1953);H. B. Rosenstock and
G. F.Newe1121, 1607 (1953);H. B.Rosenstock and H. M. Rosen-
stock 21, 1608 (1953).

4 A discussion of some of the methods together with references
is given by A. C. Menzies, Repts. Progr. Phys. 16, 83 (1953).

s M. Blackman, Repts. Progr. Phys. 8, 11 (1941).' W. V. Houston, Revs. Modern Phys. 20, 161 {1948).' T. Nakamura, Prog. Theoret. Phys. 5, 213 {1950).' E. W. Montroll, J. Chem. Phys. 10, 218 (1942).
) 9 E. W. Montroll, J. Chem. Phys. 11, 481 (1943).' Ior convenience we use units in which the maximum fre-

cluency of vibrations car, is unity so that z=ca'= (~/caz)' covers
the range 0&x&1."T.H. Walnut, J. Chem. Phys. 22, 692 (1954), calculates the
moments directly from M.
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Montroll was the 6rst to recognize that the moments
m„are easily computed. from traces of powers of M(k)
via Eq. (5). He showed that the first X moments can be
used to construct the best approximate distribution
function in the sense of least squares, for approximating
functions expressed in a power series or a polynomial
series containing N terms. " For these two choices of
expansion, the least squares criterion is equivalent to
the requirement that the first X moments of the ap-
proximating and exact distribution agree. " The rate
of convergence of such an expansion is determined by
the smoothness of the exact function. Hence, if G(x)
is smooth, the use of even a few moments could be
expected to give a good approximation.

However, it was found by Montroll, ' when he did
an exact calculation for a two-dimensional square
lattice with nearest and next nearest neighbor inter-
actions, that the frequency distribution function was
not smooth but contained two logarithmic singularities.
Smollett" extended Montroll's result to the case of a
two-d. imensional ionic lattice, taking into account the
long-range Coulomb forces between ions. Similar re-
sults were obtained by Bowers and Rosenstock' for
the frequency distribution of vibrations perpendicular
to the plane of the lattice. Van Hove" subsequently
showed that these singularities, far from being acci-
dental, are a necessary consequence of the periodic
structure of the lattice. They arise from those vibra-
tions in the neighborhood of critical points k, for which
~gradx„(k, ) ~

=0. The singularities in G(x) occur at
x,=x„(k,), where x„(k)=co s(k). In two dimensions
G(x) will have at least one logarithmic singularity. In
three dimensions there will be at least three critical
points x„where while G(x) remains continuous, its
derivative G (x,) has an inverse square root singularity.

These considerations show that a smooth approxi-
mating function G, (x), such as a linear combination of
polynomials which has the correct 6rst X moments,
wouM converge slowly to G(x) with increasing X.
Hence a large number of moments, and a corresponding
large amount of labor, would be needed to get a good
ftt to G(x).

We decided, therefore, to take explicitly into account
the analytic nature of G(x) in constructing G, (x).
G, (x) is represented by an expression with the correct
behavior at the singularities and at the end points.
The behavior between singular points is adjusted
smoothly by leaving e undetermined parameters to be

"The use of polynomials as expansion functions will always
lead to the same result as the use of a power series, for the same
number of terms. The use of orthogonal polynomials greatly
simplifies the arithmetic."If an expansion is made in functions other than polynomials,
e.g., an ¹erm Fourier series, the method of equating moments
and the least squares method are distinct for finite X. While
knowledge of the first X moments determines a Fourier expansion
to N terms, if the moment conditions are applied, this knowledge
is insufIIcient to lead to a least squares solution.

'4 M. Smollett, Proc. Phys. Soc. (London) A65, 109 (1952)."L.Van Hove, Phys. Rev. 89, 1189 (1955).

6tted by the moments. "In this way the moments are
used for approximating a smooth function so that good
agreement to G(x) might be expected, even when, only
a small number of moments are used. Essentially the
same procedure was suggested independently by Rosen-
stock,"who applied it to the body-centered and face-
centered cubic lattices. See Sec. III for further dis-
cussion of Rosenstock's results.

IL TWO-DIMENSIONAL SQUARE LATTICE

As a test, this procedure, which we call the moment-
singularity method was applied to a two-dimensional
monatomic square lattice with neighbor and next
neighbor interactions. The distribution function ob-
tained by this procedure will be compared. (a) with the
exact distribution calculated by Montroll, ' (b) with the
distribution obtained by the unmodi6ed method of
moments.

For this lattice, M(k) is a two-by-two matrix s

1 ( 1+(t—1)ct—tctcs
M(k) =-(

2E 3$y$2

$$y$2

(6)
1+ (t—1)cs—tctcs)

mt —— dkt dks(16s') '

&([2—(1—t) (c,+cs)—2tc,cs]=-', . (8)

Montroll has calculated the Grst six even moments p2„
of g(ro), in a slightly different way. These are related
to the m„by

pl rj
tr, „= ros"g(co)dro= x"G(x)dx=m„,

~0 ~0
(9)

and. their values are

nzp ——1, m, = 1/2, ms ——(3—2t+2P)/8;
m, = (5—6t+ 6P)/16;

(10)
m, = (35 60t+77P 34P+1—7t )/128;—
ms ——(462 —980t+960P —265t'+80t' —St')/1024.
'~ The fitting between singular points may also be done by any

otber method, e.g., Blackman's which yields su6iciently accurate
results away from the singularities."H. B. Rosenstock, Phys. Rev. 95, 617 (1954). A paper re-
porting this work is in preparation.

's For comparison with notation in reference 1: k;~;, x~f',
G(x)~(2f) 'corg(f), we measure the frequency in such units
that the largest frequency col,= i.

where c;=cosk;, s;=sink;, i=1,2, t=(i+ o/2y), and
e and y are neighbor and next neighbor forces, re-
spectively. The two roots of the secular equation are

x~= sL2t(1 —ctcs)+ (1—t) (2—ct—cs)j
+4L4Psr'ss'+ (1—t)'(cr —cs)'1 (7)

The Nth moment of G(x) can be found from Eq. (5) by
integrating the trace M"(k) over the Brillouin zone,
—x&kt, ks&7r, and dividing the result by 2(2s)'.
Thus, the first moment m~, is
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TAsr.a I. Value of the coefBcients of AI, &~) of the Legendre
polynomials in the expansion of the nonsingular part of dis-
tribution function.

where H is the Heaviside unit function, H(y) =0, for
y(0, H(y) =1, for y&0, and

N Ao&&)

Gu &» —0.1306
G (2) —0.1306
G~ &» -0.1306
G, (4) —0.1306
Gg &t') -0.1306
G~ «) —0.1306

—0.1599—0.2620-0.2620—0.2620-0.2620—0.2620

A g
&t~t') A g&tIt') A 4&N)

0.1568
0.1568 0.1021
0.1409 0.1021 0.0159
0.1409 0.1388 0.0159
0.1409 0.1388 0.0536
0.1409 0.1388 G.0536

-0.0368—0.0368 —0.0378—D.G429 —0.0378 0.0061

8,= —Lt(1—2t) j-i/~'

8,= (1——3t)t t(1—t)(1—2t)(1—5t)]-'*/~'

t, x/2

8,,=—(2/«')
~

dg)(1 3—t)/t+ (1+ks sinso) tj-',
Q k'= (3ts—2t+ 1)/ts (12b)

where

C,= —Lt(1—2t)]-'*/x',
An explicit form for all higher moments was found by
Walnut. " C,= (16t/x') (1—t)-'$3(5t —1)(3t+1)j—'*;

cient to work. in one quadrant of the Brillouin zone,
0&k&, ks &rr. In this quadrant the critical points of x~ The value of G(x) at 0 and 1 is
are at

G(0)=(1+t)Lt(1+2t—3t')j /s", G(1)=t ~/~ (12.c)
(kr, ks) = (0,0), (0,&r), (vr, O), (m,x), when 0&t(1/5. (11)

The values of x, in the two branches x+(k), at these
critical points are (0, 1, 1, 1—t) and (0, t, t, 1—t), re-

spectively. For t greater than 1/5 but less than 1/2, "
the x+ branch has one additional critical point at
{cos '[(t—1)/(4t)g, cos 'L(t —1)/(4t)$), and the value
of x+(k) at that point is (1+3t)'/(16t).

From the behavior of x+(k) in the neighborhood of
the critical points in reciprocal space it is possible to
deduce the form of G(x) near the critical values of x,~

including the value of G(0) and G(1). If the singular

part of G(x) is called F(x), then it can be shown that

In order to apply the moment-singularity method we
subtracted F(x) from G(x) and approximated the re-
mainder by a linear combination of e I.egendre poly-
nomials. The erst e—2 coeS.cients of the expansion are
determined by the requirement that 6rst e—2 moments
of the approximate function agree with the exact ones.
The remaining two coeS.cients are then determined by
Axing the end points. Hence, when 2V moments are
known, the approximate distribution function G, '~& (x) is

G.t"&(x)=F(x)+ P Ast &Py(2x —1),

0&x &1, (13a)

F(x)=8&lnix —ti+B. Inix —(1—t) [

+BsH/x (1—t).j, 0(—t &-,',

F(x) =C& ln
~

x t
~
+Cs ln

~

x——(1+3t)'/16t
~

+C,,Ht x—(1—t)j,

(12a)
for k&)V—1, and

N—I
AN'"&+A»+rt~&=G(1) —F(1)—P A, t~&,

N—1

=G(0)-F(0)- P (-1)'A;t"&.

( 1)NQ (x&+ ( 1)N+lg (x&

TABLE II. Convergence of the moment-singu)arity approxi-
mating G &~& (g) to the exact distribution of G(g) with increasing
X. (E is the number of moments used. )

(13c)

P (x) Grs(1) (x} Gals&2) (x) Grs&g) (x) G~&4) (x) Go&~) (x} Gals&6) (x) G(x}

0
0.05
0.1
0.3
1/3

0.4
0'.5
0.6
D.7
0.75
0.9
0.95

1

0.450
0.528
0.620
1.36

1.25
1.11
1.17
1.52

0.942
0.799
0.6851

0.637
0.653
0.689
1.25

1.08
0.897
0.939
1.28

0.755
0.637
0.551

0.637
0.697
0.763
1.34

1.12
0.897
0.890
1.20

0.682
0.599
0.551

0.637
0.689
0.752
1.34

1.14
0.911
0.901
1.20

0.671
0.585
0.5$1

0.637
0.670
0.734
1.36

1.16
0.911
0.879
1.17

0.688
0.604
0.551

0.637
0.687
0.739
1.35

1.17
0.937
0.891
1.16

0.694
0.621
0.$51

0.637
0.689
0.739
1.35

1.18
0.937
0.887
1.16

0.695
0.619
0.$$1

0.637
0.683
0.740
1.34

1.17
0.9$1
0.908
1.14

0.733
0.631
0.$$1

&s We shall assume, as did Montroll in reference 1, that t &t&
I'For a discussion see Sec. III of this paper, also Van Hove,

reference 15, Secs. II and III. For comparison see Montroll,
reference j..

Note that AI, 'N) is independent of E, the order of the
approximation for k & (1V—1).

When the unmodi6ed method of moments is used to
approximate G(x), the approximating function, when
rV moments are known, G t~&(x) is

G t~&(x)= g Bat~&Es(2x—1); (14)

the Bst~& are again given by Eq. (13b) with F(x) set
equal to zero.

A numerical evaluation of the A~(N) and the BI,(N}

was made for t=1/3. This is the value of t for which
Montroll"' evaluated G(x) in a closed form, so that
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comparisons can be made. This will indicate how useful
the moment-singularity method is.

For t= 1/3, Eqs. (12) and (13) yield

TAsx.E III. Convergence of the unmodified moment approxi-
mation G &~&(x), to the exac't distribution of G(x) with increasing

(t&/. is the number of moments used. )

G &~& (x) = —(3/s') lnlx ts
I

(4/s') hilx

+ Q A&, &~&I's(2x 1),—(15)

G(O) =2/x; G(1)=v3/x.

The values of the AI, ' ' in diQerent orders of approxi-
mation E &6 are summarized in Table I. The values
of the B~(N', which are all independent of S, are

80——1, Bg=0, 82= —04167, 83——0,
84 —0.22——69, Bs= —0.2290. (16)

0
0.05
0.1
0.3
1/3

0.4
0.5
0.6
0.7
0.75
0.9
0.95

1

Gm(»(X)
G (»(x)

=G (»(x)

0.583
0.702
0.808
1.11
1.14
1.18
1.21
1.18
1.11
1.05
0.808
0.702
0.583

G (4)(~)
=G (»(~)

0.332
0.655
0.861
1.13
1.14
1.13
1.12
1.13
1.13
1.12
0.861
0.655
0.332

Q (6)(~)

0.103
0.646
0.770
1.20
1.21
1.20
1.12
1.06
1.07
1.09
0.953
0.664
0.561

G(x)

0.637
0.683
0.740
1.34

1.17
0.951
0.908
1.14

0.733
0.631
0.551

Comparisons between G(x), G,&~&(x), and G &~&(x)

are presented in Tables II, III, and IV.

III. CONCLUSION

As can be seen from Table IV, use ot the nonsingular
method of moments results in a great increase in the
accuracy of the approximation over the usual method
of moments for the same number of moments. The
additional work required to find F(x) was small, for
t=1/3. For this particular value of t, x~(k) can be
expanded in a Taylor series near the critical points, and
the behavior of G(x) near the critical points can be
read o6 directly from Van Hove. For other values of t,
the critical points (0,0), (x,x.) are of the type which
Van Hove calls generalized critical points. The behavior
of x~(k) near these points is

x(k) =x+ l&l&(&/I &I)+O(IVI)

To find the form of G(x) near these points, the integral
in Eq. (2) has to be evaluated, terms of O(~ P ~) being
neglected. Transforming to polar coordinates in re-
ciprocal space, the integration over the radial variable
can be done immediately by means of the delta func-
tion. This leaves an integration over the angle variable,
whose evaluation may be quite difFicult if it cannot be
found in the tables. The integral representing 83 in
Eq. (12b) is one such case.

However, even when the exact form of the singular
part of G(x), such as the coeKcients multiplying the
logarithmic terms in two dimensions, or the square
root terms in three dimensions, are not known, con-
vergence would be improved greatly if the approximat-
ing function contained terms of the correct singular
form. The coefFicients of these terms could then be
determined by the moments. Thus, for the case con-
sidered in this paper, it would have been preferable if
the approximating function G, (x) consisted of poly-
nomials multiplying the logarithmic terms whose value
at the critical points is the correct one. This would
have taken account of terms in the distribution func-

Thus ~grado&'(k) )
=0 whenever tgradM(k) t

=0. This
can happen only at those k where all the branches have
critical points simultaneously.

A great di%culty, in many cases, in 6nding the
analytic form of the distribution, is the location of atl
the critical points. Van Hove's arguments predict only

YABI.K IV. Comparison of the unmodified approximation
G &'&(x), the moment singularity approximation G &'&(x), and the
exact distribution G(x) when six moments are used.

0
0.05
O.i
0.3
1/3

0.4
0.5
0.6
0.7
0.75
0.9
0.95

1

Gm«) (X)

0.103
0.646
0.770
1.20
1.21
1.20
1.12
1.06
1.07
1.09
0.953
0.664
0.561

0.637
0.689
0.739
1.35

1.18
0.937
0.887
1.16

0.695
0.619
0.551

G(x)

0.637
0.683
0.740
1.34

1.17
0.951
0.908
1.14

0.733
0.631
0.551

"R. P. Feynman, Phys. Rev. S6, 340 (1939).

tion of the form (x—x,) ln(x —x, ~. A smaller number
of moments might then have been used to obtain the
same accuracy. This was not done because of the extra
work involved in solving simultaneous equations for
the coeKcients of the multiplying polynomials since no
orthogonal set would be available. In general, the
amount of work required to 6nd more moments has to
be balanced against -the work involved in solving
simultaneous equations.

There is a theorem of Feynman" which is useful in
finding some critical points without diagonalizing M(k).
This theorem states that, 'if A(n)%(n) =X(n)%(n) and
A(n) is Hermitian, then

k)()&)ni &)A(n)=
I +(n), +(n) I

an ( '
an )
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the minimum number of critical points but give no
upperbound. It is generally easy to And those which are
at symmetry points of the Brillouin zone. In most
cases investigated thus far, ' ' these are the only critical
points. This might be due to the assumption made in
these cases that the forces are of short range. The
number of critical points might be expected to increase
with the range of the interaction, and their location is
then more likely to be at nonsymmetry points of the
zone. Rosenstock'~ has devised a method for examining
the presence of critical points inside the zone from the
behavior of &o'(k) on the boundary.

For three dimensions, with short-range forces, when
the critical points are at the symmetry points the
matrix M(k), is easy to diagona1ize at these points to
And the critical frequencies. To And the exact form of
the distribution near the critical points x„degenerate
perturbation theory has to be used to find the eigen-
values in the vicinity of k, . However, since in three
dimensions G(x) does not become infinite at x„ it
might be sufficient to use the right form of G(x) near x„
the coefficients of the singular part would then be deter-
mined by the moment as mentioned above. This would
agree with the results of Rosenstock. "
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Electrical Properties and the Solid-Vapor Eguilibrium of Lead Su16de

RGBERT F. BREBRIcK AND WAYNE W. ScANLQN

U. S. Naval Ordrlarlce Iabcratory, White Oak, Maryland

(Received June 21, 1954)

Natural PbS crystals were exposed to various pressures of sulfur-vapor near 500'C and then quenched.
Calculations based on the penetration of P njunct-ions gave an interdiffusion constant of 2&&10 'cm%ec
at 550'C. The temperature dependence of the Hall coefBcient and resistivity for several treated crystals
was determined. A forbidden energy gap of 0.37&0.01 ev and an electron to hole mobility ratio of 1.4 was
obtained.
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FIG. 1. Apparatus used for treating crystals.

'R. H. Fowler and E. A. Guggenheim, Statistical Thermo-
dynamscs (Cambridge University Press, Cambridge, 1949), Chap.
XII.

I. INTRODUCTION

A T low temperatures the electrical properties of
ionic or partially ionic binary compound semi-

conductors may be attributed to the presence of donor
and acceptor levels produced either by foreign atoms
or by deviations from stoichiometric proportions. In the
absence of appreciable concentrations of foreign atoms
the electrical properties are dependent to a large extent
upon deviations from stoichiometry. Current statistical
models predict that it is possible for all crystalline
ionic compounds to show these deviations from stoichi-
ometry. ' The crystal can exist as a single phase over a
range of composition through the inclusion of interstitial
atoms and/or vacant lattice sites. While this range of
composition is generally too small to be detected chemi-

cally it is revealed through variations in electrical prop-
erties which are composition sensitive.

The ability of the crystal to exist as one phase over
a range of composition implies some thermodynamic
consequences which are important in the preparation
of these materials with desired electrical properties.
In the case of lead sul6de the equilibrium system,
crystal-vapor, has two phases and two components,
lead and sulfur. According to the Gibbs phase rule
this system possesses two degrees of freedom. Hence
when the temperature and vapor pressure of either
component are 6xed, all of the intensive properties of the
system, such as the composition of the crystal and vapor
phases, are 6xed also. The vapor phase will in general
contain two components in a diGerent proportion than
the crystal. Therefore, under equilibrium conditions,
the crystal can be held at a Axed composition over a
range of temperature only by appropriately adjusting
the vapor pressure of one of the components or the
total pressure. On the other hand, if one of these pres-
sures is held constant and the temperature varied or
vice versa, then the composition of the crystal will

change in general.
In principle, therefore, the composition of a crystal-

line binary compound can be varied by heat treatments
in a controlled atmosphere comprised of its components.
In practice, it is necessary to work at those tempera-

s C. Wagner, Thermodyrsamscs of Alloys (Addison-Wesley Press,
Inc. , Cambridge, 1952), p. 67.


