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Interaction of Conduction Electrons and Nuclear Magnetic Moments
in Metallic Lithium*
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The probability density at the nucleus of a metallic lithium conduction electron on the Fermi surface is
calculated in the spherical approximation, giving the value Py =0.11~0.01 atomic unit. This is in good
agreement with measurements of the nuclear magnetic resonance shift discovered by Knight and with
recent determinations by Schumacher, Carver, and Slichter of the paramagnetic susceptibility.

tto'
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where yz= pz/hI.
Since all other quantities are known from inde-

pendent measurements, knowledge of the Knight shift
or of Tj gives one information about the quantity
xo(Pz/P~). In the case of metallic Li, direct measure-
ment of I3.II/II by Gutowsky and McGarvey' leads to
the result

I. INTRODUCTION

~

~ ~ ~

NUMBER of years ago Knight' discovered a
significant diQ'erence between the frequencies at

which nuclear resonance occurs when a given element is
in the form of a metal, on the one hand, and when it is
part of a nonmetallic compound, on the other. This
shift was attributed by Townes et al.' to the additional
magnetic Geld at the nucleus, hH, resulting from a
partial alignment of the spins of the conduction elec-
trons. They derived the expression

0 H hchvIM Pp
(1)
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where the symbols have the following meaning: d v is
the hyperfine splitting of the atomic ground state; I is
the nuclear spin; M is the mass of one atom; pl is the
nuclear magnetic moment; p, o is the Bohr magneton;
x„ is the paramagnetic susceptibility per unit mass;
and P& represents the probability density of the valence
electron at the nucleus in the free atom, while Pp is
the same quantity for the metallic conduction electrons,
averaged over the Fermi surface.

Subsequently Korringa' proposed that the longi-
tudinal relaxation time Tj is connected with this shift
by the following approximate relation:

Recent measurements of yo by Schumacher et al. t
give the value,

x„=(3.74+0.6) &(10 ' cgs mass units, (4)

II. DETAILS OF THE CALCULATION

which is in good agreement with unpublished calcu-
lations by Pines. f Thus these data indicate that

(Ps/I'g), ot 0.46&. 0.0——7.

It is of interest to examine whether the band picture
of the metallic electrons in Li can account for this
value. Kohn and Bloembergen, ' using a variational
method with certain s, p, and d functions, suggested
by perturbation theory, obtained a value of 1.0, in
rather bad agreement with (3). In the present paper,
we wish to report a more accurate calculation giving a
value,

(&s/&~) g~...——0.49&0.05.

This value was obtained with the effective potential
constructed by Seitz~ and by replacing the atomic
polyhedron by an equivalent sphere. All checks indicate
that the remaining calculational errors within the
framework of this model are less than j.0 percent.

Before going on to the details of the calculation, we
should like to mention the reason for the discrepancy
between the present result (6) and the earlier value of
Kohn and Bloembergen. It turns out that although the
probability of ending the electron in an angular mo-
mentum state with l&2 is less than 1 percent, the
boundary conditions cannot even remotely be satished
with s, p, and d functions only. The higher angular
momentum states. in spite of their small amplitude,
play an essential role at the surface of the cell boundary.
The present calculation includes states up to 1=6.

xo(Pz/I'~) =1.73&0.02&&10 ' cgs units, (3) The Quantity P&
and P«hminary measurements of T, by Norb«g' are S' e we e e the ratio I /I b b
in good agreement with this value.

~ This work was supported in part by the U. S. 0%ce of Naval I'~= I1b~(0) I', (7)
Research.' W. D. Knight, Phys. Rev. 76, 1259 (1949). $ Schumacher, Carver, and Slichter, Phys. Rev. 95, 1089 (1954).' Townes, Herring, and Knight, Phys. Rev. 77, 852 (1950). f. D. Pines, Phys. Rev. 95, 1090 (1954).

e J. Korringa, Physica 16, 601 (1950). 'W. Kohn and N. Bioembergen, Phys. Rev. 80, 913 (1951);
'H. S. Gutowsky and B. R. McGarvey, J. Chem. Phys. 20, 82, 283 (1951).

1472 (1952). ' P. Seitz, Phys. Rev. 47, 400 (1935); for a correction see W.' R. E. Norberg (private communication). Kahn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
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where f~ is the normalized 25 wave function of atomic where
Li. Using the potential of Seitz, we found dR~

LI,= Eg
(Pg) th„,——0.223ao-',

where a& is the Bohr radius, while the measured hyper-
fine splitting of the 2s state leads to I;,= I e O'""' ""P;(cos8)P;(cos8) sin8d8.

~o

(16)

(Pa) sxpt= 0.231120 (9)

The agreement, to within 4 percent, must be considered
excellent and gives one additional confidence in the
Seitz potential. Any inaccuracy of this potential, should
have a quite negligible effect on the ratio PF/Pg.

The Metallic Wave Function in the Spherical
Ayproximation

In practice, the determinant is truncated after a finite
number, say /, of rows and columns and evaluated for
a series of energies 8 which enter only through the 1.&.

(The latter were found by numerical integration and,
for high i, by cruder perturbation methods. ) In this
way the E for which 6 vanishes is found and the c& are
then evaluated by solving the set of equations which
lead to (15). Finally, PF is given by

We next calculated the quantity I'p. With an equiva-
lent spherical cell boundary this is the value of

~ P&(0)
~

',
where ilr p is the normalized wave function for any wave
vector on the Fermi surface. If we denote the radius
of the equivalent sphere by r„we must solve the
boundary value problem:

P p=c02R02(0) g CPIiI1,
-L=O

4m
171= — R12(r)rsdr.

2l+1" 0

(17)

(—'P+ V(r) —E)P(r) =0, r(r, ; (10)

p(r) C2ikrs
cosset( r) (11)

alP(r)//ar = —8"2"' ""atfr( r)/ar r =r, —(12)

where k is the magnitude of the wave vector, assumed
in the s direction (kr, =1.9192), and 8 is the angle
between ir and r, if possible P(r) can be expanded in
terms of the s, p, etc. , solutions of (10),

The results are given in Table I.
It will be noted that if one stops at l=2, I'g is

much too small. "At 1=3 no solution at all is found.
However, at 3=6, I'p appears to have settled down to
within less than 10 percent of its true value.

Ke have made two checks on this result. If the wave
function satisfied the boundary condition (11) exactly
we should have, at all angles,

f (r) = coR0(r) Po (cos8) + iclR1(&)Pl (cos8)

+c2R2(r)P2(cos8)+ . , (13)

clP1(cos8)+ciPO(cos8)+ ' '

cpPO(cos8)+c2P2(cos8)+ ' ' '
tan(kr, cos8) = 1. (19)

where the Ri are normalized such that Ri(r,) =1 and
the c&, by a simple symmetry argument, are real.

According to the variational theory described in a
previous paper, ' the c& are determined by the condition
that the surface integral,

pW'( )rK—= ~ P(—r)e """""sin8d8, (14)
~s ar

be stationary. When (13) is substituted in (14) one
finds that E is a quadratic form in the c&. The stationary
condition leads to a set of linear equations for the c&,

which are compatible provided that

Following is a table of this ratio for /=5 and 6 (Table
II). Again an accuracy of about 5 percent is indicated.

As a second check we have substituted the function
(13),with 7 undetermined coeiBcients into the boundary
conditions (11) and (12) at the arbitrarily selected
angles, 8=30', 60', 75', 90', and determined E
from the condition that the equations be compatible.
The c~ and I'g were then evaluated, the result for the
latter being 0.116ao ', agreeing within 6 percent with
the best variational result. We tend to favor the latter

TABLE I. Successive variational approximations.

2LOIOO (LO+Ll)iI01 (Lp+L2)I02
(LO+Ll)2701 —2L1I11 (Ll+L2)iI12
(Lo+L2)I02 (Ll+L2)iI12 2L2I22 ~ ~ s 0

E(ry)

-0.4272
(—0.4065)'—0.4347—0.4308—0.4313

I'Ir X&03

0.046

0.07S
0.114
0.110

' M. Fox and I. I. Rabi, Phys. Rev. 48, 746 (1935).' W. Kohn, Phys. Rev. 87, 472 (1952).

a 6 has no zero but a minimum at this energy.

' The value 0.22 of Kohn and Bloembergen was obtained with
s, p, and d functions which did not satisfy (10) but were suggested
by a perturbation expansion for small k.
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YAsLE II. Accuracy of variational functions.

vs'

Our variational calculation gives the following results,
which agree with those obtained by fitting the boundary
conditions at the selected angles within a few percent:

1.06
1.04

1.04
0.92

0.99
0.98

0.82
1.05 [a, [ =0.20 [a [s=0.73; (as[s=0.06;

(22)

s1ightly, since it does not depend on arbitrarily chosen
angles.

Combining the last entry of Table I and Eq. (9),
and taking into account the error indicated by our
checks, we arrive at the result quoted in (6).

III. ADDITIONAL REMARKS

EBect of Actual Cell Boundary

One of the remaining uncertainties of the calculation
is the eGect of replacing the true cell boundary by an
equivalent sphere. Since the required quantity is
jets(0) ~' averaged over the Fermi surface one would
expect the equivalent sphere model to give a good
approximation, provided that the true ~fr(0) ~s does
not vary too much over the true Fermi surface. We
have the following two indications that the variation
is in fact moderate. Kohn and Rostoker' have ca1cu-
lated the energy band of metallic Li, using the actual
atomic polyhedron. They 6nd that the energies on the
Fermi surface, relative to the energy of the 4=0 state,
differ by only 3 percent in the (1,0,0) and (1,1,1)
direction. As a second check we have extracted the
variational wave functions consisting of s, p, and d
states from the calculation of Kohn and Rostoker and
have computed

~ lf (0) ~' both in the (1,0,0) and (1,1,1)
direction. Their ratio is 1.14, indicating a rather
moderate variation over the Fermi surface. This result
must, however, be viewed with some caution as we
have seen that the true wave function cannot be
adequately expressed in terms of s, p, and tE functions
only. "

Nature of the Wave Function on the
Fermi Surface

Returning to our "spherical" calculation, let us
write the wave function in the form,

The preponderance of the p function is noteworthy.
This is in line with a recent calculation by SchifP' who
has calculated the wave function at some points on the
Brillouin zone boundary and finds that it has p char-
acter. Since ~g(0)~' therefore vanishes at the zone
boundary, Jones and SchifFs have anticipated a rather
small value of Pr (the Fermi surface is quite close to
the zone boundary), a fact which the present calculation
bears out.

Perturbation Theory
As erst suggested by Bardeen, " it is possible to

expand the wave function corresponding to the spherical
problem (10)—(12) in a power series in k. We do not
know any good a priori reason why such an expansion
should converge well on the Fermi surface. However,
this is in fact the case for the energy E=Es+E&k'
+94k'+ .'4 Keeping two terms gives, in atomic
units, E= —0.423, three terms give E= —0.427, which
should be compared with our best variational result of
Table I, E= —0.431. One can similarly expand ~P(0)

~

'
in powers of k (see reference 2). In this way, one finds,
in atomic units,

~ P (0) (

' =0.4247 —0.9006k', (23)

if higher terms are neglected. This expansion is certainly
good for small k. Further it predicts that ~f(0) ~'
vanishes at k=0.6868. The calculation of Schi6" shows
that ~lt (0) ~' vanishes at the zone bouiidary which in
our spherical model corresponds to k=0.7533. Thus
the expansion (23) gives good results for k=0 and
slightly low results for k near the zone boundary. On
the Fermi surface where k=0.5979 we dnd

iver(0) i o„t,'=0.103, (Pp) p„,/P~=0. 46, (24)

which is in remarkably good agreement with the
variational result (6) but, as expected, slightly too low.

(20)

where yg is a wave function corresponding to angular
momentum l, normaIized over the equivalent sphere;
and let P itself be normalized to unity so that

(21)

"The absolute values of (f@(0)(s obtained with these functions
is very large giving Pr/Pz 1.3.
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