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It has been believed for some time that anharmonicity of lattice vibrations is responsible for the continued
rise of the specific heats of certain solids in the classical temperature region. A general analysis is here carried
out of the linear chain model interacting through a Morse potential. All the major thermal properties, such
as speci6c heats, thermal expansion, and compressibility are derived, and a tentative comparison is made
with observed properties of the alkali metals.

It is found that the linear chain then exists in two widely different states with properties characteristic
of condensed and gas-like phases; these two states are separated by a relatively narrow transition region
in temperature where the specific heat passes through a rather sharp maximum (except at high pressures
when the maximum ultimately disappears).

&. INTRODUCTION

HE atomic heats of the alkali metals Li, Xa, K&

and Rb all show anomalous behavior at tempera-
tures greater than their characteristic temperatures.
Apart from the sharp increase in specific heats as the
melting temperature is approached (this and the corre-
sponding behavior of the electrics resistance are
attributed to the formation of defects in the lattice), ' -'

there is also a steady rise in atomic heat at constant
volume above the value 3E which is the classical limit
if only harmonic vibrations of the lattice are considered.
Furthermore, this excess atomic heat is too large to be
accounted for on the basis of a free electron contribu-
tion. It was suggested by Lindemann' that such anom-
alous behavior might be due to the anharmonicity of
the lattice vibrations and this explanation has generally
been regarded as probably correct. Born and Brody,
Born, Wailer, ' and Damkohler' have all made esti-
mates of the inRuence of anharmonicity on the specific
heat of a lattice.

Anharmonicity is an important feature of the be-
havior of lattices for other reasons. There are many
significant properties of a lattice such as thermal ex-
pansion, the change of specific heat with pressure, etc.,
which are zero if a purely harmonic potential is assumed.
Finally the anharmonicity of lattice vibrations is re-
sponsible for the establishment of thermal equilibrium
among the modes of vibration of the lattice and for the
existence of a finite thermal conductivity. "For these
reasons further study of the inQuence of anharmonicity
was considered desirable.

In the treatment of anharmonicity given by Born and
Brody (Wailer's conclusions are essentially the same)
the precise model is not defined well enough to enable

' L. G. Carpenter, J. Chem. Phys. 21, 2244 (1953).
s D. K. C. MacDonald, J. Chem. Phys. 21, 177 (1953).' F. A. Lindemann, Phil. Mag. 45, 1119 (1923).
4 M. Born and E. Brody, Z. Physik 6, 132 (1921); M. Born,

Haldbuch der Physik (Springer Publishing Company, Inc. , Berlin,
1933), Vol. 24, Part 2, p. 675.

s I. Wailer, Ann. Physik 83, 153 (1927).
e G. Damkohler, Ann. Physik 24, 1 (1935).
r R. Peierls, Ann. Physik 3, 1055 (1929).

R. Peierls, Ann. inst. Henri Poincare 5, 177 (1935).

the conclusions to be clearly interpreted and in addition
there are problems of convergence which were not con-
sidered (see also reference 5). Damkohler, on the other
hand, considered a precise model (a linear chain) with
specified boundary conditions, and because this makes
the problem directly tractable a linear chain model is
considered in this paper. The treatment here is, we
believe, considerably simpler and more direct than that
of Damkohler; we evaluate the Gibbs free energy
analytically instead of by numerical approximation,
and consequently our results can be carried to any
desired degree of precision. The analysis is also readily
extended to include next-nearest neighbor interaction
in good approximation. Moreover, the procedure
adopted here reveals certain other properties of the
model which are of interest in their own right, It is
found that at low pressures there exists a relatively
narrow temperature region in which the specific heat at
constant pressure passes through a sharp maximum (at
higher pressures the maximum ultimately disappears),
above which the equation of state of the chain approxi-
mates to that of a perfect linear "gas", while below this
"transition" the chain has the properties of a condensed
state.

2. GENERAL ANALYSIS

The linear chain model has been considered in a large
number of papers. ~" In the treatment given here, a
single physically realistic interatomic potential (the
Morse potential) is employed and all the important
thermodynamic properties of such a chain are derived
for temperatures high enough that classical statistics
are applicable. Although the application to three dimen-
sions of results derived on a one-dimensional model is
necessarily very tentative, we have, in order to keep in
touch with physical reality, interpreted some of the
quantities appearing in the analysis in terms of the
physical properties of sodium, since we are particularly
interested in the alkali metals.

'T. Nagamiya, Proc. Phys. -Math. Soc. Japan 22, 705, 1034
(1940).

'e H. Takahasi, Proc. Phys. -Math. Soc. Japan 24, 63 (1942)."F. Giirsey, Proc. Cambridge Phil. Soc. 46, 182 (1950).
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We consider then a system of (X+1) identical par-
ticles of mass ns equally separated (at O'K and under
zero tension) by a distance Ap (see Fig. 1).These initial

&n-i &A 4+)
FIG. 1. System of identical

I I I

A particles.
l I

where we use the Morse potential and initially restrict
the analysis to nearest-neighbor interaction. Hence, if

we write

then
+e gn $n—1)

V= Q D(e '*"—1)'. (2)

positions of the particles are then chosen as the origins

of measurement for the displacements of the respective

particles, and that of the eth particle from its origin is
denoted by y . Without loss of generality, we may
consider as fixed the zeroth particle so that yo is always

zero. The interatomic potential of two particles sepa-

rated by a distance r is C (r). Thus the energy of inter-

action between the nth and the (rs —1)th particle is

C (Ap+y„—y„r), and the potential energy of the whole

system is
N

Jr = P D(e ~(w~~~ i) 1)s

Thus, if we set I e ', we have"

Zg ——E, N(Tl'"T) '—e xpt —D(N —1)'/kTJdu

—=EI~. (Sa)

2'
(1+v) i~Tv exp( —Dv'/kT)dv

p

2D t
+' (P

exp( —Dv'/kT) v'+l
( akT

( P
Xl —2

l

—+". dv
&akT ) 3! l

2aD
+ vPlakT+1 exp( Dvs/kT)dv

p
pOO

+ v"l " exp( Dv /kT)—
k 14+i

( P q 1
X 1+l —1l + dv (6)

EakT ) 2!v

If we write e=N —1, and integrate by parts, then

%e now set up what may be called the partition
function at constant force, Zg(P, N, T), (see for example,
Fowler and Guggenheim" ) where P is the applied force,
analogous to pressure in a three-dimensional problem.
Then

Zg(P, X,T)=

[—H(vn ~ ~ ~,p~ ~ ~ ~ )+&r]l&Tdw . . .dn . . . (3)

where I.=MA p+PP x„.Takahasi" and Gursey" have
also shown analytically that this form of partition
function may be derived from the more usual form,
Z), the partition function at constant length (volume).
Thus

2D 2aD
(It+Is)+ Is.

kT
(6a)

I= (mkT/D) &+ (akT/.P)e (7)

It should be noted that so far no approximations
have been made. In (6a) it may now be shown that Is
is certainly entirely negligible in comparison with Ii
except for (P/akT)))1. For the compressible metal
sodium at ~300'K, the equivalent pressure corre-
sponding to the equality P/akT= 1 is about 3000 atmos.
We shall therefore assume meanwhile that P/akT&1
and so ignore I3. Now as E~O it is evident that the first
term converges uniformly to a finite limit while the
second term does not; in fact, then

Zg —ns
J

exp{—L(Z D(e *"—1)'
P & (a'DkT) &e ~l'T. (7a)

The second term is then only comparable with the
first for

+P(NA p+Q cc„)+ns Q

j„s/2]/kT)idler.

that is,

where
4.

Xdgn~pi' ' 'd'pn j

Ps D
expl — +- — (e *—1) lds

akT kT

g = (2rrnrkT)&isa &&&ol&Ta—
~R. H. Foozler and E. A. Guggenheim, S/atistica/ Thermo-

dynamics (Cambridge University Press, London, 1939), p. 254.

For sodium again at room temperature, this value of p
corresponds to an equivalent pressure of about 10 "
atmos, and consequently from this standpoint we may
entirely neglect the second term in (7) at normal tem-
peratures and pressures. The second term in (7) cor-
responds to a gas-like behavior as we shall see later. We
might regard (7a) as corresponding to a vapor-pressure
equation, and, although in the linear chain the thermo-

"We are grateful to Dr. H. C. Schveinler for suggesting this
transformation,
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dynamic functions remain continuous and consequently Also,
no discontinuity presents itself, we shall see that there
is, in general, a sharp maximum in the specific heat f

~~I
when the two terms in (7) are comparable. EaP), &aP ),

3. CONDENSED STATE

Thus, except under the extreme conditions discussed,
we have I= (2D/kT)Ii, corresponding to a condensed
state. Assuming that D/ kT))1 (e.g. , D/kT 45 for
sodium at room temperature, with D interpreted as the
latent heat of vaporization at absolute zero), we may
replace the limits (&1) in Ii by (&~). The presence
of the exponential factor with the large index ensures

that we then make negligible errors by this approxima- and
tion in the constituent integrals until we reach terms

containing very high powers of v which are already of
no physical interest. "Thus,

~V 1 11kT 3 P
—+— + ——,(11)

a'D 2 8 D 4uD

essentially the compressibility;

t'BI.y Nk 3 19 kT 11 P
I I= -+— +
EBT&i aD 4 8 D 8 aD

essentially the thermal expansion;

1kT 9 ( kT)'
c (,)

——Nk)1 —— ——
I I

— . . . (13)
8 D 32(D)

kT)w2 1p P
1+ -I

ED j 4&akT )

( P ikT
+ . (&)

&akT ) D

Now G= —kT lnZg and hence, after some reduction,

G= NkT lnI —
I

NkT 1nT+—PNAO
a'D )

1 N(kT)' 5 N(kT)'
~ ~ ~

2 D 8 D'

P 3 19 N(kT)'
+ NkT+-~ ~ ~

aD 4 16 D I

I (HAND+" ). (9)
EaD)

Although Lfollowing (6a)j we confined ourselves to
P/akT(1, it may be shown that this equation remains

applicable for the less restrictive condition P/aD«1,
so long as kT/D«1. Thus

(O'Gq kT 15 (kTq '
c,= TI I

=Nk—1-+ +—
I

I+".
&BT')i D 4 &D)

Damkohler, using his first analytical method (based
on the partition function at constant length) obtained
the leading terms of Eqs. (11) and (12), and Eqs. (10)
and (13) as far as the terms linear in (kT/D). Since,
however, he felt unable to extend this approach to give
the higher terms in the expansions, he used a second
method to obtain results intended to be valid at higher

temperatures, which involved a numerical computation
of the partition function at constant pressure which we

have here evaluated analytically. These results diGered

appreciably from those he obtained by his first method,
presumably because of inaccuracy in computations, and

consequently those conclusions which he bases solely
on his second method are incorrect.

The foregoing analysis may also be carried through
with the inclusion of second-neighbor interaction if we

neglect the repulsive part of the potential for these

neighbors and ignore end eGects on the assembly.
Vnder these conditions, Eq. (7) becomes:

m kT ~
& akT

I=
ED(1+X)'J P

where

D
exp — (1—A)2,

kr

A=2e ~~'
7

and Eqs. (10) to (13) retain the same form with D
replaced by D(1+4)'.

Since the electrical resistivity in a solid at classical

temperatures is approximately proportional to the
mean-square amplitude of atomic vibrations, we shall

assume that in this model the resistance would cor-
respondingly be proportional to ((x—x)')A„. Then, in

general,
8' t'G )

((x—s)~)A„= —kT
BP (NJ

11kr 3 P
1+— +

4 D 2uD
((~—*)')A =

2a'D'4 This approximation is, of course, not imperative.

It ~ I+ (10)
which from (11) gives

aDE8 D kT
(14)
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TABLE I. Morse constants derived from molecular data.

Element
D

A 0 (A) (kcal/mole) a(A 1)

10&a
{Gin. exp.

calc. from
(12)3

Ratio:
aexpt l.

10'a
(exptl. ) aeale.

Li2
Na.
K2

2.67 26.4 0.83
3.07 17.6 0.84
3.91 11.8 0.78

2.52 5.6 2.22
3.24 7.2 2.22
4.08 8.3 2.04

Under the condition that the length is maintained at
the equilibrium value at T=O (i.e., L=WAs) we have,
therefore,

kT ( 1kT
11+- +

2g'D( 2 D j (15)

where 8 represents the electron-lattice interaction
which may be considered constant if 1.is fixed.

Finally, there is one further relationship which is of
value. If the lattice potential were purely harmonic
(i.e., expanding only to the quadratic term in x), its
characteristic frequency would be proportional to u+D.
Because of the higher-power (anharmonic) terms, how-

ever, this characteristic frequency depends on the com-
pression or extension of the chain and, for an imposed
relative atomic displacement xp, the characteristic
frequency for small. vibrations is now proportional to
Q(a'D 3a'Dxs). F—rom this it readily follows that the
Gruneisen parameter, defined as y= —d logv, /dlogL
(where v, is the characteristic frequency), "now has the
value

y= ~aAp.—3 (16)

1 (dLp 1 (rdLq

LidT ji L i dP) r

is valid as a first approximation.
Equations (10) to (13) then represent the chief ther-

modynamic properties of what we may call the "con-
densed" state of the linear chain. Any comparison
between these properties and those of a real solid must,
at best, be very tentative. The solid inert gases very
closely satisfy the condition of short-range forces which
we have assumed, and if the transition from one to three
dimensions introduces no qualitative features which are
completely absent in the linear chain then these equa-
tions should indicate the kind of behavior which is to
be expected when account is taken of an anharmonic
potential function. Unfortunately, the data on such
solids are at present meager in the region of temperatures
where classical statistics are valid.

5 For a discussion of the significance of y in 1, 2 and 3 dimen-
sions, see J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89,
832 (1953).

It can then be seen, using the leading terms of Eqs.
(11), (12), and (13), that the Griineisen relationship

y =nL/PC. ,
where

In making comparison with metals, the representa-
tion of the interatomic forces by a potential is obviously
a much grosser approximation. To illustrate that,
nevertheless, this model can provide a useful correlation,
we compare in Tables I and II the observed thermal
expansion coe%cients at room temperature for the
alkali metals with those derived using Eq. (12).

Qualitatively, it might appear that the foregoing
analysis of the linear chain model could account
rather well for the observed deviations from classical
harmonic behavior. For example, the model predicts a
speci6c heat at zero "pressure" which increases mono-
tonically with temperature $Eq. (10)j and suggests an
electrical resistance at zero "pressure" which rises more
rapidly than linearly (Eq. (14)J—features found in a
number of metals (for example, see MacDonald' for
data on sodium). If, however, we make a closer exami-
nation, serious discrepancies arise. Taking sodium as
probably the "best-behaved" of the monovalent metals—at least in an electronic sense (see MacDonald and
Mendelssohn" and MacDonald and Pearson") —one finds
that C„ is already rising much more rapidly than
linearly with T in the room-temperature region where
the factor (15/4)(kT/D)' in Eq. (10) should still be
very small compared with (kT/D). Furthermore, C.
also is&creases with temperature (a feature common to
sodium, potassium, and rubidium") while in the present
model CI, diminishes with rising temperature. In making
comparison with the electrical resistance it is perhaps
even more vital to do so under constant-volume con-
ditions, since it is not yet known with certainty how
the electron-lattice interaction energy Lcharacterized

by 8 in (15)] varies with volume. For sodium, the
temperature variation of electrical resistance is sig-

ni6cantly less rapid than linear when corrected to the

TABLE II. Morse constants derived from bulk metal data. '

Element A 0 {A)
D

(kcal/mole) a(A i)

105a
$1in. exp.

calc. from
(12)3

105a
(exptl. )

Ratio:
aexpt l.

Li
Na
K
Rb
Cs

3.03
3.72
4.50
4 9Q

36.0
26.2
21.9
20.6
18.7

0.80
0.67
0.53
0.47
0.44

1.68
2.25
2.82
3.10
3.44

5.6
7.2
8.3
9.0
9.7

3.33
3.2
2.94
2.90
2.82

a Sources of data: Morse constants (except those marked*): See J. C.
Slater, Introduction to Chemical I'hysics (McGraw-Hill Book Company,
Inc. , New York and London, 1939), pp. 454-455; Morse constants
(marked*): See W. Hume-Rothery, Atomic Theory for Students of Metal-
lurgy (institute of Metals, London, 1946), p. 216; Experimental expansion
coefficients: See A. E. van Arkel, Reine Metalle (Springer, Berlin, 1939).

"D.K. C. MacDonald and K. Mendelssohn, Nature 161, 972
(1948); Proc. Roy. Soc. (London) A202, 103 (1950).

'7 D. K. C. MacDonald and W. B. Pearson, Proc. Roy. Soc.
(London) A219, 373 (1953).

"See, for sodium and potassium, F. E. Simon and W. Zeidler,
Z. physik Chem. 123, 383 (1926); for sodium, Dauphinee, Mac-
Donald, and Preston-Thomas, Proc. Roy. Soc. (London) A221,
267 (1954); for rubidium, H. Preston-Thomas in Proceedings of
the Third International Congress on Low Temperature Physics,
Houston, 1953 (unpublished).
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volume at absolute zero by using Sridgman's data. "
The linear model, on the other hand, still predicts a
positive deviation under these conditions

I see Eq. (15)$.
As we have already emphasized, it is not easy to say

immediately whether such discrepancies are an intrinsic
consequence of a one-dimensional model, or whether in
fact one ought already to seek other sources than an-
harmonicity for the behavio'r observed. In anticipation
of later work we may, however, mention that the falling

specific heat at constant L appears to be a very general
prediction of the one-dimensional model I see also
Damkohlere j.

Nevertheless, two relationships of interest can be
derived which, because of their form, we may expect.
to translate into three dimensions without essential
change. If dB/d V is neglected,

600 =

500—

400—

500—

200—

too—
60—
20——

I I I

0
1 1 1 1 1 1 I 1 1 1 1 I 1 1 l 1 1 1 1

100 200 300 400
T('K j

td logR)

Ed logV) o-o
(17a)

FIG. 2. Speci6c heat at constant force showing transition region
from condensed to gas-like state. This figure shows the third term

(17b) of Eq. (20); the first two terms are negligible on this scale.
td logR) =:1+2 4apT.
(d logT) &=e

entropy

+I II -+-
I (19)

& (p//t)e'I'+1) (2 t)

Mott and Jones'" derive analogous relations starting
from the expression 8 ~ T//M0'; their first is in agree- (2~smk') &

ment with ours, while they give essentially 1+2ex&T ~=Nk lnI I +»t+1+lnI 1+
for the second. "The small difference arises because the

a'D

relationship E ~T//Mg is only strictly valid for har-
monic vibrations, while a part of the resistance variation
in (17b) is due to the anharmonicity.

4. THE GAS-LIKE STATE AND THE
TRANSITION REGION

It is clear from Eq. (7) that as P—&0 the second term
will ultimately become dominant, and if this term alone
is considered, the partition function yields the free
energy of a perfect linear "gas" whose specific heat at
constant pressure is —,')Vk and whose equation of state
is PJ =iVkT. I.et us therefore examine the behavior
when the two terms of Eq. (7) are comparable. We
have now

t 2~'mk'q i
G= VkT lnI —

I
,VkT ln T+PÃA—e

E a'D)

t fa'DkT)l 1—NkT»I 1+I I

—e """
I (1g)

I ~)P)
Writing p =Pgrr/aD, t = k T/D, we have for the

"P.W. Bridgman, The Physics of High Pressure (Bell Publish-
ing Company, I.ondon and New York, 1946).

"N. I'. Mott and H. Jones, Theory of Properties of 3fetals arId
Alloys (Oxford University Press, London, 1936), pp. 268, 271.

"In fact, on their assumptions, Mott and Jones's Eq. (66)
should read

f 1+2nv (T Tp) }, — —8—RQ

T TQ

where T0 is some arbitrary reference temperature within the
"classical" region. Their previous equation is of course correct.

Cp=Nk 1+ 2I 1+ e"'
I

p

)
p (1 11 t' p+ e"'I -+-

I I
1+ e"'

I . (20)
E2 t) E gt )

From this equation it can be seen immediately that as
t—&0, C„—+Xk and as t~~, C„—&-,'Sk. When, however,
(p/Qt)e't'=1, i.e., on what we may term the vapor-
pressure curve,

(a'DkT) & Nkl t1 1q'
P=I

I
8 '"r and Cp= 5+I -+—

I) 4 I &2 t)
In the region for which the expression is valid, i.e.,

for t«1, this gives very nearly Cp= Nk/4t', so that for
t= 1/50 (corresponding to about O'C for sodium),
CJ ——625%k. In Figs. 2 and 3 the speci6c-heat curves
are shown for a force such that the transition is centered
on O'C, and it is evident that this speci6c-heat anomaly
approximates to a latent heat. Correspondingly, from
(19), we can see readily that as the temperature is
increased through this critical range, the entropy rises
rapidly by about ND/T, and hence that the equivalent
latent heat is ND.
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18—
TO 625

AT 275 K

motion through any lattice of particles such that the
disptacerlelt of the ith particle from its equilibrium
position is given by

16—
(;=A sin(co(t+x, /v) ), (Ai)

12—

(2~Exp
((('—6)')A =2A'»n'I ——l, &~

X 2 X'

2~2+2+@2

where x; is the equilibrium position of the ith particle,
v the velocity of sound, and co the angular frequency.
Then the mean square relative disptacerrtertt of any two
particles is given by

where
for hx & X/2, (A2)

A

1 l I l 1 l 1

220 240 260 280 500 520
T( 1(,)

FIG. 3. Specific heat at constant force showing transition region
from condensed to gas-like state. Curve A shows the first two
terms of Eq. (20). Curve B shows the third term.

If (A1) be a normal mode of the lattice, ignoring anhar-
monicity, then

(-,'sttN(o') (-,'A') =-,'kT,

where ns is the mass of a particle and E is the number
of particles in the lattice. Therefore,

(AP)A, /Ax' & 4sr'kT/srtNroA'= kT/rrtNv' (A3)

If we now ignore dispersion so that v is not a function
From Eq. (18) it also follows that the length is given of fre uenc it is cl~~~ t at (A3) is inde endent of

by frequency, and since the individual displacements due
EkT to each normal mode are themselves uncorrelated, the

P total fluctuation due to all normal modes, say X in
number, is given by

which may also be written as an equation of state,
(AP..,),„/~x' & m/N(kT/~vs) (A4)

P x
P(L tVAs) =NkT— 1+ erat"r . (21b)

Q(a'DkT)

While it is evident from (21a) that L changes isother-
mally from NAs (characteristic of the condensed state)
to NkT/P (characteristic of the gas-like state) as p
runs from high to low values, it should be noted that
the compressibility increases monotonically, showing no
anomaly at the transition, in contrast to the striking
behavior of the specific heat.

We are grateful to Professor J. C. Slater for helpful
discussions and to Dr. S. K. Roy for help in checking
the calculations. We are also indebted to Drs. C. Domb,
R. B. Dingle, and A. B. Bhatia for useful criticisms.

APPENDIX

Since it has been suggested in the past (e.g., Peierls, '
Domb~) that a linear chain would be inherently unstable
due to thermal vibrations, we append an elementary
proof that this is not the case.

Consider the propagation of a wave of thermal

In the case of a one-dimensional lattice, K/N =1,
while for a three-dimensional lattice X/N =3, and thus
in general

(APt.g) A,/Ax' kT/mv'

and the total relative displacement of neighboring
atoms (setting Ex= a, the lattice constant) is given by

(D$ ')A ~k Ta'/rnv'~k'T/rlk8'.

It may be of interest (see also FrenkeP') to recall that
the Lindemann theory of melting corresponds essen-
tially to setting the dirnensionless parameter kT/srtv'

—,', at the melting point. However, the factor kT/rrtv'

may also be considered immediately as the ratio
(V,/v)', where V, is the thermal agitation velocity of
the atoms; consequently the general success of the
Lindemann theory could also thus be interpreted as
evidence of a critical velocity (-ratio) involved in the
melting process equally well with its derivation in terms
of the displacement of atoms from their equilibrium
positions.

~ C. Domb, CharsgemeutsdePhase (Society of Chemical Physics, "J. Frenkel, Eidetic Theory of Liquids (Oxford University
Paris, 1952), p. 338. Press, London, 1946), p. 138.


