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Statistics of Electromagnetic Radiation Scattered by a Turbulent Medium*
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The theory of Villars and Weisskopf is used to calculate the univariate and bivariate amplitude distribu-
tions of electromagnetic radiation scattered from turbulent Quctuations. The univariate distribution is
Rayleigh, and is in excellent agreement with measurements made on a 49.6-Mc/sec ionospheric scatter link.
Using the bivariate distribution, we relate the amplitude correlation function to a velocity correlation func-
tion which appears in the von Weizsacker-Heisenberg statistical theory of turbulence. In this way the
theoretical velocity correlation can be compared with experiment.

I. INTRODUCTION

' ~~OR some time both vhf ionospheric propagation and
anomalous beyond-the-horizon propagation of uhf

and microwaves have been attributed to scattering by
refractive index fluctuations associated with turbu-
lence. ' ' A detailed model of the origin of these Quctua-
tions has only recently been made available in the work
of Villars and Weisskopf. ' These authors have applied to
the electromagnetic problem results of the statistical.
theory of homogeneous turbulence developed by von
Weizsacker' and Heisenberg. According to this theory,
pressure Quctuations in a compressible medium produce
corresponding density Quctuations, which in turn pro-
duce Quctuations in refractive index and hence a
scattered field. Under steady-state conditions, the distri-
bution of turbulent energy in wave number can be
derived from similarity considerations4' and leads to a
corresponding wave number dependence of the scattered
6eld. The average scattered field is found to involve only

- one parameter pertaining to the turbulence, namely the
amount of turbulent energy dissipated per unit volume
and time I see Eq. (48) of reference 3j.

In this paper we use the theory of Villars and
YVeisskopf to derive the amplitude distribution of the
scattered radiation, which we then compare with experi-
ment. We also derive a relation between the amplitude
correlation function and a velocity correlation function
appearing in the Heisenberg theory.

II. THEORETICAL AMPLITUDE DISTRIBUTION

Villars and Weisskopf have shown that the scattered
power is proportional to the quantity

c(k,t)= Q (k vk ')(k vk k ')(k v k ')(k vk. k'), (1)
kl kr I

tween the incident and scattered propagation vectors.
The time dependence of vk' is here indicated explicitly
by a superscript. The allowed values of k' and k" are
those corresponding to expansion in a cube of side I.o,
the linear dimension of the largest eddy. To calculate
the average received power, Villars and Weisskopf 6nd
the time average of Eq. (1) and obtain

&c(»t)& =2&&lk "I'& &Ik v -"I')' (2)
k/

They use the basic assumption of Heisenberg' that the
diQ'erent I'ourier coeKcients are independent, in particu-
lar that

(vk' 'v—k'+k" &Av
—80k"&vk' 'v—k' )Av 80k"&Ivk' I &Av (3)

(c'(k, t) &A.
= ((k vk')

kI kl l k/ I l kl t's s

X(k.vk k')(k v k"')(k.vk" k')

X (k vkr» ) (k'vk ki~i )

X (k v k.-') (k vk" i. k'))„„.

Applying Eq. (3), we see that

&c'(k, t)&A.=g & (lk v" I')A.&lk v. k'I'&A.
kl kit

They then proceed to evaluate Eq. (2) [see Eq. (45) of
reference 3j.

The univariate distribution of the random process
c(k,t) (assumed stationary) is easily found. For example,
the second moment of c(k, t) is

where vk ' is the Fourier coefficient in the k direction of
the turbulent velocity field v(r, t). k is the difference be-
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=gLQ&lk vk'I'&A&lk vk k'I')A]'

=2(c(k,t))„„'. (5)

The numerical coefficient in Eq. (5) is obtained by
noting the number of combinations of the k"s that are
compatible with condition (3).Thus, for example, k" can
equal k' or k —k', but if k"= —k""we get a term which

averages to zero. Similarly, we get for the general
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' moment

(c"(k,t))s„——2 "I!LQ((k vk'~'),

f(x)= —exp( —x/2o'), x&0
20 2

and moments

(7)

Av

J()
x"f(x)dx= st!(2as) ".

These moments are identical with the moments of the g'
distribution with two degrees of freedom (i.e., the
distribution of the sum of the squares of two independent
Gaussian variables), ' with the frequency function

caused enhancement of the signal far out of the range of
the distribution were not accepted. (Such meteoric
enhancement is not considered in the above theory. )
Figure 1 shows a Rayleigh distribution (solid curve) and
the means of the totalizer readings from four typical
runs, all taken within 15 minutes. Shown also at each
point is a segment representing the unbiased estimate of
the standard deviation of the sample.

It is clear from Fig. 1 that the observed sample its a
Rayleigh distribution very closely. Other samples give
similar 6ttings. On the other hand, other simple positive
distributions (e.g. , the y distributions of one or three
degrees of freedom) fail to fit the data satisfactorily.

We wish to thank Dr. J. T. deBettencourt and his
associates for making available to us the facilities at
South Dartmouth, and Mr. C. A. Wagner for his assist-
ance in conducting the experiment.

Thus, to the extent that Eq. (3) is vahd, we have
inferred the power distribution of the scattered radiation
from the form of Eq. (1), which in turn can be traced
back to the nonlinear term of the Navier-Stokes equa-
tion Lsee Eqs. (27) and (29) of reference 3]. The
distribution of the signal amplitude (envelope) is that of
gx, i.e., the Rayleigh distribution.

It is interesting to note that crude (nonhydrody-
namical) models of the scattering mechanism, e.g., a
cloud of "independent scatterers" with a Maxwell
velocity distribution, ~ can also lead to a Rayleigh
distribution of the received amplitude.

III. EXPERIMENTAL AMPLITUDE DISTRIBUTION

It has already been observed' that the fading of the
received amplitude in a long-distance vhf transmission
seems to follow a Rayleigh distribution. In that experi-
ment, an averaging circuit with a time constant of 12
seconds (much greater than the average fading time')
was used.

We have measured the received amplitude distribu-
tion of a 49.6-Mc/sec continuous wave transmission
from Cedar Rapids, Iowa, to South Dartmouth, Massa-
chusetts (a distance of 1716km), using a totalizer which
records correctly varying signals with frequencies up to
about 15 cps. The totalizer gives the amount of time the
signal exceeds ten preset levels. These 6gures, when
normalized, give directly ten points on a distribution
curve.

The apparatus was run for one-minute intervals in a
series of tests conducted in December, 1953.During the
tests, the mean signal level was about 20 db above
noise. Intervals during which a strong meteoric burst

H. Cramsr, Mathematical Methods of Statistics (Princeton Uni-
versity Press, Princeton, 1951),pp. 233-237.' Booker, RatcliGe, and Shinn, Trans. Roy Soc. (London) 242,
579 (1950).' S. O. Rice, Proc. Inst. Radio Engrs. 41, 2'74 (1953).

8 The simple consideration that an eddy is signi6cantly changed
in form after "moving its own length" {see reference 4) leads to
correlation times of the order of one second.

min(r, s) /r) (s)
rr .—=(Prt')s =2"+'r!s! g ( ~ ] (os~'—"o " (10)()) (&)

where

a,=p((k vk')(k v k'+'))A„
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FIG. 1. Rayleigh distribution (solid curve) and experimental dis-
tribution points, showing the standard deviations of the latter.

IV. THE AMPLITUDE CORRELATION FUNCTION

We obtain the joint distribution of the pair of random
variables $=c(k,t) and rt=c(k, t+r) by considerations
entirely analogoUs to those used above to obtain the
univariate distribution of $. As a first step, we calculate
the moments (Ps)')A„by time-averaging products of the
form of Eq. (1), some taken at time t+r Using t.he
independence of Fourier coeScients belonging to differ-
ent wave numbers and the following generalization of
Eq. (3),

(vk' v—k'+k" )Av '50k" (vk' ' v—k' )Avq (9)

we And after considerable manipulation that
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The characteristic function" e (t,u) of the joint distribu-
tion is defined as the Fourier transform of the joint
frequency function, i.e.,

t

rp(t, u) =(e"&'+'"')A,= ~ e «t'+""'W
(pP rt)didst .(12)

As in the case of the univariate distribution, Eq. (17) is
the result predicted by the assumption of "independent
scatterers. '"'

Heisenberg' calculates the quantity

(v~'v-t '+')Av/(vt 'v t, ')A.

Wp(p, rt)d/drt is the probability that the received power
at any time t is between $ and $+d$ and that r seconds
later it is between rt and rt+drt. By comparing the ex-
pansion of y(t, u) in Taylor series with its expansion in

moments Lobtained from Eq. (12)], we find that

and finds it to be a universal function g(y) of the
dimensionless variable y= 6voko&k&v-. As we have de6ned
lt, pk(r) 1s slIIlply

Z(ik vt'ip)A, ([kr v, , t(p&.,

(jf' $8
a„=(—i)~' — y(t, u)

.Btr Bgs - t~u~0

pp(r) =
(13)

Xg(pvpkp'*it"*r) g(p vpkp& [ k—k'
[ &r)

(18)
Q(~k vk'~')A(~k. vt, t'I')A

It can be shown that

po(t, u) =
I 1—2io.pt —2iapu —4(o p' —o-,')tu$ —' (14)

is the solution of Eqs. (10) and (13).Finally, W&(p, rt) is

obtained as the Fourier transform of Eq. (14), and is
found to be (see Appendix)

W.(f,~) = -«'"'I.(2.(A')1), (»)
4o p'(1 —p')

(kp is the wave number of the largest eddy, Itp its mean
velocity. ) The denominator (aside from multiplicative
constants) is just the mean power calculated by Villars
and Weisskopf by an integration in bipolar coordinates,
Given g (y), the numerator can be calculated in exactly
the same way. Heisenberg gives only a very approxi-
mate solution to the equations determining g(y). ' The
authors hope to improve this approximation and then
compare the pl, (r) calculated from a suitable g(y) with
experiment.

A,PPEmDIX

where Ip(x) is the Bessel function of order zero and

imaginary argument, and

If we substitute

2o pt = t'/(1 —p'), 2a au= u'/(1 —p'), (A-1)

p=—p p(r) =a,/ap,
into the characteristic function $Eq. (14)j, we get

I '9—
2o p(1 —p') 2o p(1—p')

The amplitude correlation function At, (r) is appro-
priately de6ned as

p
q (t,u) =

(1—it') (1—iu') —p'

The joint probability density is then

(A-2)

A1.(r)=—
(&&A.-(t') A'

16
F00 00

Ws(g, rt) = ' e '«'+p"'rp(t, u)dtdu
(2~)»

LThus At (0) =1, since rt=p for r=0; and Ap(pp) =0,
since $ and rt become independent as r +~.]Evaluating-
((@)l),„ from

(2tr)'4ap'(1 —p')

((e)t)"=

we 6nd that

(e)'W. (~;)d~d. ,

where

e—i«1 i'+p'o'1

X ' — dt'du', (A-3)
& „~ „(1—it')(1 —iu') —p'

(1 1 1
pp'(r)+ pp'(r)+ -p"(r) "—I (»)

4—sr l 4 64 256

"H. Cramer, reference 6, pp. 265—6.

p/

2o p(1 —p ) 2o'p(1 —ps)

"D.E. Kerr, Propagation oj Sttort Radio Wares (McGraw-Hill
Book Company, Inc. , New York, 1951),pp. 553-55'tt.
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Now,

dN
1 it—t' p'—/(1 it—')

2

= 2sr exp —rt'+rt', rt') 0
1—zt'

If @=1—it',

dt' p2

exp i)—'t '+rt'
1—it' 1—it'

t'+ dh'tr rt'p' )=—is-t' —exp~ &'z+
g ( g)

Therefore,
=0, rt'&0 (since p'/(1+t') &1). (A-4)

oo 1
=2sre f' P (&'rl'p'),~ (srt!)'

~s($ n) =
Ssro p'(1 —p')

(g'&0, by the Residue Theorem)

= 2sre t'Ip(2p(t'si') &), (A-6)
r dt' 2

X exp —i$'t'+g'
1—zt' 1—it'

(A 5) which when substituted into (A-5) gives the probability
density, Eq. (15).
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The partition function of liquid helium proposed by Feynman, q=Zg(L) exp( —uTL), is calculated for
a simple cubic lattice using an approximation corresponding to Bethe's method for the Ising model. It is
shown that a second-order transition occurs at uT&, =ln4, or Ty=2.9m/m' 'K (m and m' representing the
true and the effective masses of a helium atom). The nature of the approximation is discussed.

I. INTRODUCTION

HE series of papers on liquid helium which
Feynman has recently published' ' explained

many of the so far unsolved properties of this sub-
stance. However, the problem of the nature of the X

transformation still does not seem to have been settled.
In his papers" Feynman proposed an expression for
the partition function and solved it approximately to
obtain a transition of a third order. As it is commonly
accepted that the X transformation of liquid helium
is of a second order, Feynman' ascribed the disagree-
ment between his results and experiment to the fact
that he neglected the correlation among atoms, both in
the same cyclic change and in diGerent cyclic changes.
Though Chester' agreed with Feynman with regard to
this interpretation of the discrepancy, Rice, ' Matsu-
bara, ' and ter Haar expressed the view that the above
neglect of the correlation is not the origin of the dis-
crepancy.

' R. P. Feynman, Phys. Rev. 90, 1116 (1953).
s R. P. Feynman, Phys. Rev. 91, 1291 (1953).
s R. P. Feynman, Phys. Rev. 91, 1301 (1953); Phys. Rev. 94,

262 (1954).' G. V. Chester, Phys. Rev. 93, 1412 (1954).
s O. K. Rice, Phys. Rev. 93, 1161 (1954).
e T. Matsubara, Busseiron Kenkyu 72, 78 (1954).' D. ter Haar, Phys. Rev. 95, 895 (1954).

The purpose of the present paper is to show that a
technique developed in the order-disorder theories can
be applied to this problem to take into account the
geometrical correlation, and, though the conclusion is
not completely convincing (due to the approximate
nature of the technique), that Feynman's partition
function does give a second-order transition.

II. FREE ENERGY

The original expression for the partition function
with which we begin is Eq. (7) of reference 2:

m'kT
q= Q exp — Q (z;—Pz~)'

2k2

Xp(zt, zs, , zN)d z; (1)

in which ns' is the effective mass of a helium atom. For
the derivation of this equation and the notation, readers
are referred to the original paper by Feynman. When
one assumes that the value of p(zr, zs, , zN) is non-
vanishing only when the z's are located on a simple
cubic lattice and that (z,—Pz;)' is neglected except
when its value is equal to d', d being the lattice constant
of the hypothetical lattice, Kq. (1) reduces to Kq. (4)


