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An electron beam interacting with the fields in an enclosed region is considered. The induced noise caused
by the vacuum Quctuations and the thermal Quctuations is calculated in terms of the dissipation function
R(co) and the electron transit time ~. The observable mean squared electromotive force is given by

nJ e 2 exp (ha&/kT) —1 is&or s.~~, exp (hco/kT) —1 ,'&ur-
ea, is defined by Ace, = U, where U is the energy of the incident electrons. The effect of the Quctuations
of the vacuum is given by the temperature-independent part of the first integral.

The above expression is employed to calculate the Quctuations induced in an electron beam which interacts
with a damped electrical oscillator. The results are valid even if the oscillator is heavily damped. As the
damping becomes very large the Quctuations are shown to approach zero. For a weakly damped oscillator
the Quctuations reduce to those already given in an earlier paper.

The differential form of the Quctuation dissipation theorem is shown to be very useful for the evaluation
of matrix elements.

INTRODUCTION

PREVIOUS paper' considered the interaction of
an electron beam with a damped electrical

oscillator. The Auctuations of the vacuum were shown
to contribute to the electron-beam noise. This ob-
servable zero point noise contribution is important
because it is one effect of field quantization which is
Gnite in the first nonvanishing approximation.

In order to calculate the noise, the assumption had
to be made that the oscillator is very weakly damped.
The dissipation was assumed to have no eGect on the
wave functions for the Gelds. The coupling to the
internal degrees of freedom was considered to have only
the effect of establishing thermal equilibrium, between
individual electron interactions. Also the electron was
assumed to be highly localized. In this paper we
consider interaction of a system which may be heavily
damped with an electron which is not necessarily highly
localized. The fluctuations are shown to depend on the
degree of damping, unless the damping is very small.
For large damping the Quctuations approach zero.

FLUCTUATIONS MEASURED BY AN ELECTRON BEAM
INTERACTING WITH FIELDS IN AN

ENCLOSED REGION

For the Hamiltonian of the system of Fig. I we take

I" e
X=Hs+ — A.P.
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assume, at 6rst, that the region is in an eigenstate of
its unperturbed Hamiltonian Hp. The electron is to
some extent localized and its energy is not known
precisely while it is in the interaction gap. A linear
combination of free-electron wave functions will there-
fore be used to represent the electron during the entire
interaction time. For the wave functions of the electron
and interaction region we assume the expression.

i
4= p aK(t)bsr(t)yK~ss expl —&&K+'zsr')t

I (2)
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In (2) ltK is an unperturbed wave function for the
fields of the enclosed region. E~ is the Eth eigenvalue
of IIp and E~' has the corresponding meaning for the
electron. y~ is given' by

yes ——(1/gl) exp (2sriMx/l) (3)

(3) is the wave function for a free particle moving in
the I direction with momentum given by

Per 2srM h/l. —— (&)

M is an integer. The wave function (3) satisfies periodic
boundary conditions with period equal to the length /

of the interaction gap, and is normalized within the
region of the gap. At the beginning of the interaction
time, we have: aII=1, aK ——0, EACH|/. At this time (2)
is a summation only over 3E. At any time after inter-
action has begun, we have, from perturbation theory,

z(EK+Ei Eir Ess)t— —e
(ih)

—'Q bss exp
fÃC M

X t 4'K*pI.*(A P) yssgirdr, dre .(5).
e 0

sL. I. Schiff, Qnantnm Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), p. 49.
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(1) is the Hamiltonian of the system, with one LaK(t)bi(t)j
electron in the interaction gap. Ho is the Hamiltonian
for the fields of the enclosed region, P is the operator
corresponding to the momentum of an electron in the
beam, m is the mass of the electron, c is the velocit
of light, e is the charge on the electron, and A is th
magnetic vector potential for the interaction gap. %

*Supported by the U. S. Ofhce of Naval Research.
' J. Weber, Phys. Rev. 94, 214 (1954).
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We let A = Apq(t), and assume that the helds have no
spacial variation over the interaction gap. Ap is then a
constant. Making use of (3) and the operator for P we
can carry out one integration required by (5) to obtain

field intensity:
1BA

E=——
C BE

1=—-Apq= —-App.
c C

(10)

Ap, t
z t' 2oriLoo~ ~ d

pr,*(Ao P) yMdx= exp l
—

I
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"p l ~o E l 3 dx

(2+iMxy
Xexpl — Idx= Ao,PArbr. Ar (6).

We assume the interaction gap to be so oriented that
Ap is parallel to P. Making use of (6), we can write (5)
in the form

The electromotive force V is given by J;E dl, where
the contour is over the interaction gap. For a uniform
field over an interaction region of length l, we have

V=El= —(1/c) Aopl.

Consider the matrix elements of the operator p. We
can write

dqxN [+oq qao]x—N
PKN

dt ih
(EK EN)

I ax(t)br, (t)1= (ib) '&E»l ql EN)br. (t) I Apl Pr.
8

ik
(Ex I qlE

dt mc

xexpl — I. (7)
We substitute (12) in (11) to obtain

(Ex I
V

I EN& = (i/c) Aopr»N &Ex I q I EN)l.

N) (12)

Let &u»N= (Ex EN)/h. W—e assume that the mo-
mentum of the electron while in the interaction gap is
approximately known to be I'z. The value of 1. corre-
sponding to Px can be obtained from (4) and is given
by L=lPK/2zrh, br. for th.is value of L will be large
and can therefore be considered to remain approxi-
mately constant during a not too long interaction time.
Under these conditions we can integrate (7) to obtain

ax(t) br (t)

e(i') '(Exl qlEN)br(t) I Apl Ps[exp(ior»Nt) 1j—
. (8)

WSCMK~

From (8) we can obtain an expression for
I ax(t) I

and from this we can calculate the induced noise, since
energy is conserved in these transitions. Iax(t)l' is
given by

I,et the total time of interaction be v. Now ~ is
approximately given by 7=ml/Px. Evaluating (9) at
time t = z, and making use of (13), we obtain

e'I(EKI vlEN)l' sin(-', pz»Nz) '
I ax(~) I'= —. . . (14)

5 KXN - 2MKN7

If an electron undergoes a transition such that the
region goes to a state EK, we say the measured electro-
motive force is VK, where eVK= AcoK~. If no transition
occurs, the electromotive force is taken to be zero.
The mean squared electromotive force measured by a
large number M electrons as a result of transitions to
the state E is

I ~l «(~) I'll Vxl'
I
ax(r) I'@'~KN'

(I Vxl')A =-- = (15)
M g2

4e'I AoI'»'I «» I qIEN) I'»n'(o~»Nt)
la (t)I'= (9)

m2C2$2(g KN2

(I V»l')A = l(E»l VIEN) I'
Sl (no)»N7 )

Making use of (14), we can write (15) as

(16)
In (9) (ExlqlEN) is the matrix element of q over

the quantum states of the Gelds with eigenvalues EK
and EN. We now proceed to calculate the matrix
elements of q.

We assume that the magnetic vector potential and
the scalar potential are not functions of the x coordinate,
within the interaction gap, and that the electric field
intensity is therefore uniform over the interaction gap.
We express the electric field intensity in the interaction
region in terms of q and a canonically conjugate
variable p following the procedure outlined by Schiff. '
Using Maxwell's equations, we obtain for the electric

tNTERACTJOhl QttI, P '
pl

ELECT'REAMS~.

ENCLOSURE

3L. I. SchiR, Quand lm Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), p. 362. Pro. 1. Electron beam interacting with the fields of an enclosure.
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The region with which the electrons interact is only
partially speci6ed, but its temperature will be known.
Also, since dissipation is present co~N will have a
continuous range of values. In order to obtain the total
noise contribution (16) has to be summed over all states
E and an ensemble average taken. This procedure can
be carried out, using the methods of Callen and Welton, 4

in the following way. From the rules for matrix multipli-
cation

(E~l V'IE~&=Zxl(Ezl VIE~&ls.

We can average both sides of (17) over an ensemble,
at temperature T. We denote by I (E& I

U'I E&&7A, d„„
the ensemble average of the contribution of the group
of matrix elements (E& I

V
I Ez) in the vicinity of &core&

within a range dao~~ to the ensemble average of the
operator corresponding to V'.

A study of Callen and Welton's paper' shows that we
can write the Quctuation dissipation theorem in di8er-
ential form as

L(E~IVsiE~&7A-. d- =I Z I(E~IVIEx&l'7A

R (coKN) hcoxN

1—exp( —hcoxiv/kT)

the dissipation function R(co), and the electron transit
time v.

In (19) the first term represents the effect of transi-
tions in which the electrons give up energy to the 6elds
and the second term represents the eGect of transitions
in which the electrons gain energy. We can write Eq.
(19) in the form

sin(rpcor) '
de)

2 r" ~ &co Aco

R(co) —+
&"

Q & 2 exp(hco/kT) —1 -', cor

1 I" R(co)hco sin(-,'cor) s

+- dco. (20)
rrj .. e xp( hco/kT) 1 ——',co7

In (20) the term,

2 t
m'x hco sin(-', cor) '

R(co) — dco,
Q 2 g GOT

represents the observable eGect of the Quctuations of
the vacuum 6elds. ~

For the damped oscillator of Fig. 2, R(co) can be
expressed in terms of the conductance 6, the capacity
C, and the inductance I as

exp (—hcoxiv/k T)
dcoxiv (18).

1 exp( hc—ox'/kT—)

R(co) =
(1—co'LC)'+ (coLG)'

Employing (21) in (20), we obtain

(21)

II
~max "

(U')A =—
)7l Q

R(co)hco sin( —',cor) '

1—exp (—hco/kT) ',cor—
1 t

" R(co)hco exp( —hco/kT) sin(-', cor) '
dco. (19)

w~ p 1—exp( —hco/kT) -,'co7.

Equation (19) is a very general expressiont for the
induced noise on an electron beam which interacts with
the 6elds of an enclosure at temperature T, in terms of

' H. B. Callen and T. A. Welton, Phys. Rev. S3, 35 (1951).
[The mean square deviation of the electron velocities after

interaction can be obtained by multiplying expressions (19) and
(20) by (e/P)s, where e and P are the charge and momentum of
the electrons, respectively.

In (18), the 6rst term of the expression within the
brackets represents the contribution of matrix elements
(Eivl VIEN+hco& and the second term represents the
contribution of matrix elements (Eiv I

V
I E~—hco).

R(coxiv) is the real part of the impedance function,
which would be seen between the points at which
electrons enter and leave the enclosure. Ke can make
use of (16) and (18) to write an expression for the mean
squared electromotive force measured by the electron
beam. If the energy of all of the electrons before
interaction is almost the same and equal to V= ken, ,
then the mean squared electromotive force measured
by the electron beam is

p fsfmfLX

(V'&A.=-)
7I Q (1—co'LC)'+ (coLG)'

&co hco sin(tscor) s

X —+ dG)

2 exp(hco/kT) —1

00

rr &. ,I (1 co'I-C)'+ (coI—.G)'

hco sill (s cor)
dco. (22)

exp(hco/kT) —1 —,'cor

2 LJQ hcop sin(-', coor) '
(V'&A~= — +

s 2 exp(hcop/kT) —1 ,'copr—
&Lr2Gd&

X
I'

j p (1—cosLC)'+ (coLG)'

L)Q hcoo sin(-;coor) '
+

C . 2 exp(hcop/kT) —1 ',copr—(23)

' J. Weber, Phys. Rev. 90, 977 (1953).

If G is very small then the integrand will be large
only in the vicinity of c0=07Q, where coQ is the natural
frequency of the oscillator, given by coQ'I.C=I. For
co „. ))cop, (22) is approximately equal to
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Equation (23) is the expression for the mean squared
electromotive force measured by an electron beam
interacting with a weakly damped oscillator, and agrees
with expression (16) of the earlier' paper. To discuss
the case where the oscillator is very heavily damped we

employ (21) in (19) and obtain

ELECTRONS

p &max

(v)„=-
0 (1—co'LC)'+ (coLG)'

sin(~icor) '
X leo

1—exp( —hco/AT)

APL'GL)00

~"o . (1—oPLC)'+(coLG)'

sin(incor) ' exp( —hco/AT)
X dco. (24)

-', cor 1—exp( —hco/AT) .

The 6rst term of (24) tends to zero as C - co because
the range of integration is finite and the integrand
tends to zero. The second term of (24) can be shown

to also tend to zero, in the following way:

I"io. 2. Electron beam interacting with an oscillator which may
be heavily damped.

(I;we can choose two numbers a and b such that

(1—co'LC)'+ (coLG)') a(coLG)' (26)

exp (hco/AT) —1)b exp (hco/AT) .(27)

Using the inequalities (26) and (27), we can write

1 I" co'L'Ghco sin(-', cor) '

(1—co2LC)'+ (coLG)' -'cor

GPL GAM

~o o (1—co'LC)'+ (coLG)'

sin(-', cor) ' exp( hco/AT)—
X AD

-'cor 1—exp( —hco/AT).

exp(hco/AT) —1

AT (hco
dco( exp —

~

mabG AT

X 1+ . (28)
A40i,

~J o (1—co&L{ )2+ (coLG)2

sin(-', cor) '

—',cor exp(hco/AT) —1

APL'Gko)

(1—comLC)2+ (coLG)'

sin(i2cor) ' 1
X

exp (hco/AT) —1
dco. (25)

As C -cc the first term on the right side of (25) tends

to zero because the range of integration is Gnite and
the integrand approaches zero. Consider the second
term of (25). In the range co&(co(~, )sin(~cor)/~cor7'

Equation (28) tends to zero as G becomes large.
We therefore conclude that the observed electron beam
noise caused by both the thermal fluctuations and the
vacuum Quctuations tends to zero as the damping
becomes very large.

CONCLUSION

Ke have studied the interaction of an electron beam
with the fields in an enclosed region. It is believed that
this model is a good representation for low-temperature
noise measurement experiments in which the random
changes in velocity of the electrons are measured after
interaction. The first term of (20) represents the effect
of the vacuum Quctuations. For a weakly damped
oscillator this is given by the term (1/C) (hcoo/2)

X [sin( —,coor)/-,'coor7' of expression (23). This term
represents an observable eGect of field quantization
which is finite in a first-order theory.


