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An electron beam interacting with the fields in an enclosed region is considered. The induced noise caused
by the vacuum fluctuations and the thermal fluctuations is calculated in terms of the dissipation function
R(w) and the electron transit time 7. The observable mean squared electromotive force is given by
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wmax 1S defined by #wmax= U, where U is the energy of the incident electrons. The effect of the fluctuations
of the vacuum is given by the temperature-independent part of the first integral.

The above expression is employed to calculate the fluctuations induced in an electron beam which interacts
with a damped electrical oscillator. The results are valid even if the oscillator is heavily damped. As the
damping becomes very large the fluctuations are shown to approach zero. For a weakly damped oscillator
the fluctuations reduce to those already given in an earlier paper. '

The differential form of the fluctuation dissipation theorem is shown to be very useful for the evaluation
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of matrix elements.

INTRODUCTION

A PREVIOUS paper! considered the interaction of
an electron beam with a damped electrical
oscillator. The fluctuations of the vacuum were shown
to contribute to the electron-beam noise. This ob-
servable zero point noise contribution is important
because it is one effect of field quantization which is
finite in the first nonvanishing approximation.

In order to calculate the noise, the assumption had
to be made that the oscillator is very weakly damped.
The dissipation was assumed to have no effect on the
wave functions for the fields. The coupling to the
internal degrees of freedom was considered to have only
the effect of establishing thermal equilibrium, between
individual electron interactions. Also the electron was
assumed to be highly localized. In this paper we
consider interaction of a system which may be heavily
damped with an electron which is not necessarily highly
localized. The fluctuations are shown to depend on the
degree of damping, unless the damping is very small.
For large damping the fluctuations approach zero.

FLUCTUATIONS MEASURED BY AN ELECTRON BEAM
INTERACTING WITH FIELDS IN AN
ENCLOSED REGION

For the Hamiltonian of the system of Fig. 1 we take
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(1) is the Hamiltonian of the system, with one
electron in the interaction gap. Ho is the Hamiltonian
for the fields of the enclosed region, P is the operator
corresponding to the momentum of an electron in the
beam, m is the mass of the electron, ¢ is the velocity
of light, e is the charge on the electron, and A is the
magnetic vector potential for the interaction gap. We
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1J. Weber, Phys. Rev. 94, 214 (1954).

assume, at first, that the region is in an eigenstate of
its unperturbed Hamiltonian H,. The electron is to
some extent localized and its energy is not known
precisely while it is in the interaction gap. A linear
combination of free-electron wave functions will there-
fore be used to represent the electron during the entire
interaction time. For the wave functions of the electron
and interaction region we assume the expression.
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In (2) ¥x is an unperturbed wave function for the
fields of the enclosed region. Ex is the Kth eigenvalue
of Hy and Ej’ has the corresponding meaning for the
electron. ¢ is given® by

pur= (1/2/1) exp(2miMx/D). 3)

(3) is the wave function for a free particle moving in
the X direction with momentum given by

Par=2xMN/l. (4)

M is an integer. The wave function (3) satisfies periodic
boundary conditions with period equal to the length I
of the interaction gap, and is normalized within the
region of the gap. At the beginning of the interaction
time, we have: ay=1, ax=0, K N. At this time (2)
is a summation only over M. At any time after inter-
action has begun, we have, from perturbation theory,
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2 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), p. 49.
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We let A= Ayq(?), and assume that the fields have no
spacial variation over the interaction gap. Ao is then a
constant. Making use of (3) and the operator for P we
can carry out one integration required by (5) to obtain

} Ao, p* 2miLx d
f or*¥(Ap-P) orrdx= f exp( - )[—ih—]
0 1Y ! dx

2miMx
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We assume the interaction gap to be so oriented that
A, is parallel to P. Making use of (6), we can write (5)
in the form
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L bu()]=— (i) Ex| g| Ex)br(t)| Ao| Pr

@ e 1(Ex— En)t
XeXP(”‘——“‘*h ) ™

Let wxy=(Ex—Ey)/h. We assume that the mo-
mentum of the electron while in the interaction gap is
approximately known to be Pg. The value of L corre-
sponding to Pg can be obtained from (4) and is given
by L=1Pg/2xh. by, for this value of L will be large
and can therefore be considered to remain approxi-
mately constant during a not too long interaction time.
Under these conditions we can integrate (7) to obtain

ag(D)bL(f)
_e(@h)™Exlq | Ex)br(1)| Ao| Pe[exp (iwxnt)—1] (

imew KN

8)

From (8) we can obtain an expression for |ax(f)|?
and from this we can calculate the induced noise, since
energy is conserved in these transitions. |ax(f)]? is
given by

4¢*| Ao|*Pr*|(Ex | q| Ex)|? sin®*(Gwrnt)
lax()|*= :
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In (9) (Ex|q|Ewx) is the matrix element of q over
the quantum states of the fields with eigenvalues Ex
and Ey. We now proceed to calculate the matrix
elements of ¢.

We assume that the magnetic vector potential and
the scalar potential are not functions of the x coordinate,
within the interaction gap, and that the electric field
intensity is therefore uniform over the interaction gap.
We express the electric field intensity in the interaction
region in terms of ¢ and a canonically conjugate
variable p following the procedure outlined by Schiff.?
Using Maxwell’s equations, we obtain for the electric

3L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), p. 362.
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field intensity:
10A 1 1
se———= ——Aoq= ——Aop.
¢ ot c c

(10)

The electromotive force V is given by S E-dl, where
the contour is over the interaction gap. For a uniform
field over an interaction region of length /, we have

V=El=—(1/c)Aopl. (11)

Consider the matrix elements of the operator p. We
can write

dgxny [Hoq—gqHolxw
dt ih

PRN=

(Ex—En)
=—h——-—-<EK|qIEN>- (12)

i
We substitute (12) in (11) to obtain
(Ex|V|Ewn)=(i/c) Awxn(Ex|q| En)l.

Let the total time of interaction be 7. Now 7 is
approximately given by r=ml/Pg. Evaluating (9) at
time {= 7, and making use of (13), we obtain

e2|<EK|V[EN)lz[Sin(%wKNT)]z. ”

PPwrn? l_ twrNnT

(13)

lax(r)|?=

If an electron undergoes a transition such that the
region goes to a state Eg, we say the measured electro-
motive force is Vx, where eV g=Awgy. If no transition
occurs, the electromotive force is taken to be zero.
The mean squared electromotive force measured by a
large number M electrons as a result of transitions to
the state K is

[M|ax(7)]¥]] VKP_ |ax (7) | 2R Pwkn?

(V&)= = (15)
[Vl M e
Making use of (14), we can write (15) as
Sin('lz‘wKNT) 2
([Vx|2)Av=I(EKIVIEN)|2[-—;——]. (16)
WKNT
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F1c. 1. Electron beam interacting with the fields of an enclosure.
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The region with which the electrons interact is only
partially specified, but its temperature will be known.
Also, since dissipation is present wgy will have a
continuous range of values. In order to obtain the total
noise contribution (16) has to be summed over all states
K and an ensemble average taken. This procedure can
be carried out, using the methods of Callen and Welton,*
in the following way. From the rules for matrix multipli-

cation
(Ex| V2| En)=2k|(Ex|V|En)|% a7

We can average both sides of (17) over an ensemble,
at temperature 7. We denote by [(Ex| V2| Ex)]av, dorw
the ensemble average of the contribution of the group
of matrix elements (Ex| V| Eg) in the vicinity of wxx
within a range dwgwy to the ensemble average of the
operator corresponding to V2

A study of Callen and Welton’s paper* shows that we
can write the fluctuation dissipation theorem in differ-
ential form as

(Ew| V| En)lav, doxv=[ 2 [{Ex|V|Eg)|*In

dwrN
R(wKN)thNI- 1
T ll—exp(—thN/kT)
J‘— exp(—thN/kT)
1—exp(— hwrn/kT)

Jeorv. a9

In (18), the first term of the expression within the
brackets represents the contribution of matrix elements
(Ex|V|Ex+hw) and the second term represents the
contribution of matrix elements (Ex|V|Exy— fw).
R(wky) is the real part of the impedance function,
which would be seen between the points at which
electrons enter and leave the enclosure. We can make
use of (16) and (18) to write an expression for the mean
squared electromotive force measured by the electron
beam. If the energy of all of the electrons before
interaction is almost the same and equal to U= %wmax,
then the mean squared electromotive force measured
by the electron beam is

Rl

1 [ R(w)ho exp(— hw/kT) |[ sin(3wr)
+—j; [ 1—ex:)(rihw/kT) J[Sml

WT

]zdw. (19)

s

Equation (19) is a very general expressiont for the
induced noise on an electron beam which interacts with
the fields of an enclosure at temperature 7T, in terms of

+H. B. Callen and T. A. Welton, Phys. Rev. 83, 35 (1951).

t The mean square deviation of the electron velocities after
interaction can be obtained by multiplying expressions (19) and
(20) by (e/P)?, where ¢ and P are the charge and momentum of
the electrons, respectively.
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the dissipation function R(w), and the electron transit
time 7.

In (19) the first term represents the effect of transi-
tions in which the electrons give up energy to the fields
and the second term represents the effect of transitions
in which the electrons gain energy. We can write Eq.
(19) in the form

< V2>Av

2 [(omex how ho sin(3w7)7?
=— R(w | dw
-n-j; ¢ )[ 2 exp(hw/kT)—l][ 0T ]

+1f w[ Rhe ][Sin(%wf)

wmax\ €XP (hw/kT)— 1
In (20) the term,

e

2

]2dw. (20)

1or

represents the observable effect of the fluctuations of
the vacuum fields.®

For the damped oscillator of Fig. 2, R(w) can be
expressed in terms of the conductance G, the capacity
C, and the inductance L as

LG
R(w)= .
(1—?LC)*+ (o LG)?

(21)

Employing (21) in (20), we obtain

2 [omx LG :
<V2>Av =- f [ J
o LU—LC) M+ (wLG)?

how ho sin(3wr)7?
X[ } ][ ] dw
2 exp(hw/kT)—1 30T
1 p> G
i
TV omaxt (1—*LC)?+ (wLG)?

heo Sin(%wT) 2
X[exp(hw/kT)_l][ Yor ]dw. (22)

If G is very small then the integrand will be large
only in the vicinity of w=w,, where wq is the natural
frequency of the oscillator, given by w?LC=1. For
Wmax Dwo, (22) is approximately equal to

2 hwo hwo Sin(%wo'l') 2
w5 5]
7wl 2 exp(hwo/kT)—1 Jwor
°° w?L*Gdw
<
0 (1—w?LC)?+ (wLG)?

1 [hwo l hwo ][sin (%wo‘r):r. (23)

ol 2 explhon/kT) =1L Beer

5 J. Weber, Phys. Rev. 90, 977 (1953).
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Equation (23) is the expression for the mean squared
electromotive force measured by an electron beam
interacting with a weakly damped oscillator, and agrees
with expression (16) of the earlier! paper. To discuss
the case where the oscillator is very heavily damped we
employ (21) in (19) and obtain

1 pomax W L2Ghw
<V2>Av = ‘—f [ ]
v/, (1—w?LC)*+ (wLG)?

in(3w7r)7? 1
0T 1—exp(— hw/kT)

1, W L’Gho
=i ]
1ty L (1—?LC)?+ (wLG)?
sin(3or) P exp(—hw/kT)
sl Je
Lor 1—exp(— hw/kT)

The first term of (24) tends to zero as G— = because
the range of integration is finite and the integrand

tends to zero. The second term of (24) can be shown
to also tend to zero, in the following way:

(29)

1 p* w2 L*Ghw
;fo [(1—w2LC)2+(wLG)2]
in(0r) [ exp(—/hw/kT)
[ i
L por  PLGhe
=;fo [(1—w2LC)2+ (wLG)z]

X[sm(gwf)] [ 1 ]dw
Tor exp(kw/kT)—1

1 p* W L*Ghw
[ J
o1 L (1—?LC)? 4 (wLG)?
% [Sin(gw‘r)]z[ ]dw 25)
1oT exp(fw/kRT)—1

As G— the first term on the right side of (25) tends
to zero because the range of integration is finite and
the integrand approaches zero. Consider the second
term of (25). In the range wi<w< oo, [sin(wr)/3wr ]
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F16. 2. Electron beam interacting with an oscillator which may
be heavily damped.

<1; we can choose two numbers ¢ and b such that
(1—w?LC)+ (wLG)*> a(w LG, (26)
exp (hw/kT)—1>b exp(hw/kT). (27)
Using the inequalities (26) and (27), we can write
1 p> W LPGhw sin(3w7) 72
;f,.,l[(1—w2LC)2+(wLG)2][ Lor ]

wlkT hwl
e
wabG kT

x{1+§:§]. (28)

e

Equation (28) tends to zero as G becomes large.
We therefore conclude that the observed electron beam
noise caused by both the thermal fluctuations and the
vacuum fluctuations tends to zero as the damping
becomes very large.

CONCLUSION

We have studied the interaction of an electron beam

with the fields in an enclosed region. It is believed that

“this model is a good representation for low-temperature

noise measurement experiments in which the random
changes in velocity of the electrons are measured after
interaction. The first term of (20) represents the effect
of the vacuum fluctuations. For a weakly damped
oscillator this is given by the term (1/C)(%wo/2)
X [sin(3wor)/3wor 2 of expression (23). This term
represents an observable effect of field quantization
which is finite in a first-order theory.



