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Radiative Effects in a Constant Field
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A method of avoiding all infrared divergencies in the radiative effects of a constant electromagnetic field
is developed. It is used, without the necessity of resumming a nonintegrable series, to calculate the one
photon mass operator up to the third order in the external field. The magnetic susceptibility and field de-
pendence of the rest mass of an electron are thereby exhibited to lowest order, The result is then shown in a
simple way to provide charged particles with strong short-range forces against the Coulomb 6eld. Particles
of unrealistically small mass and charge would carry a large repulsive core, if Coulomb attractive, or a
large attractive shell, if Coulomb repulsive.

I. INTRODUCTION

HE present problem is to calculate the one-photon
mass operator' for the Dirac equation in the

presence of a uniform external magnetic field. It was
found previously' that in the expansion of the mass
operator in powers of the uniform external field strength,
terms higher than the first contain infrared divergencies.
If one asks for the radiative contribution to the be-
havior of an electron in such a field, one has no other
effects which, if properly taken into account, could be
expected to cancel such divergencies (such as brems-
strahlung contributions which cancel infrared diver-
gencies in the elastic scattering by a central potential).
These divergencies are therefore either real or else due
to faulty mathematical technique. Since infrared diver-
gencies are not expected to be real, the latter is the only
alternative. It is one of the purposes of this paper to
exhibit the faults of the previously used techniques of
expanding the mass operator in powers of the external
field and to correct them for the present case. Admit-
tedly, the procedure used for this correction in the
simple case of a uniform 6eld is not directly applicable
to the general one of an arbitrary electromagnetic field.
But then, in all other cases of interest one has been
able to eliminate the e6ects of the incorrect expansion
by different means (e.g. , the introduction of a finite
photon mass, which could be allowed to vanish only
after other eGects, such as inelastic contributions to
scattering, were added).

The fact that the customary technique of expanding
all terms in powers of the external held is incorrect
manifests itself in the proper result by means of a
logarithmic dependence on the electromagnetic field.

Such a logarithm was erst obtained by Gupta' and also

by Demeur. 4 Both authors, however, used entirely
diR'erent and less general methods than the one em-

ployed here, and their results dier numerically from
the present one. (See discussion in Sec. III.)

The renormalized (one-photon) mass operator may
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' J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).' R. G. Newton, Phys. Rev. 94, 1773 (1954).' S. N. Gupta, Nature 163, 686 (1949).' M. Demeur, Acad. roy. Belg. , Classe sci., Mem. 28 (1953).

be written'

AM= ie'—' dss duu ' ~(dK)4(2s.) 4

~s ~s

)(exP( ism—s isu—'K') (Kt—ggs), (1)

Kp ——(2m+ (1—u)ys. , exp[is(1 u) (—ys)')},

Kt ——-', exp(isK')y„(m p(7r—K),—

e Pris(v( —K))'3l7., (2)

where u= s(s+1) ' and t is the "proper time" variable
(corresponding to s) for the photon. '

After the photon summations (i.e., the K integration
and the summation over p in y„y„) are carried out,
hM cannot be expressed in a closed form as a function
of the external field F„„and px in such a way that
matrix element between electron states can be taken
directly. The customary technique is therefore to ex-
pand the exponentials in powers of eA and then ex-
hibit the result in gauge invariant form. But it will be
noticed that eA occurs in the exponentials in two ways:
multiplied by s alone, and multiplied by Ns. If the
former are expanded in powers of eA, correspondingly
higher and powers of s occur, The E integration and
subsequent vanishing of (ps-+m) (or pp+m) on the
extreme left and right by virtue of the Dirac equation
introduce a factor of exp( —isum') everywhere, instead
of the previous exp( —ism'). The s integration will

therefore produce higher and higher powers of I '
and consequently divergencies of arbitrarily high order
at 0=0.

This is the origin of the infrared divergencies. They
are clearly due to an unallowed expansion in which it
is assumed that seA«sum', an expansion in powers of
eAm 'u ' rather than the alleged eAnz '. As soon as a
small photon mass is introduced, however, the ex-
pansion is correct. Such a mass causes, via the photon
Green's function, an additional factor of exp( —isu 'c').
The expansion then becomes one in powers of eA (m'u

' See reference 2, for example.' The notation is the usual one, with h=c=1, ~=p —eA; the
Dirac matrices used are such that the Dirac equation reads
(ys.+M)iP =0.
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+&2) ', which for fixed e can be made uniformly small
by assuming eA small enough. If the expansion is done
in the presence of a 6nite photon mass, therefore, as it
has been in the past for the purposes of cancelling the
divergencies of separate calculations, it is correct
(provided the resulting series of 6nite terms converges).
But it is, at least partly, an expansion in powers of

In order to correct this situation one must, then,
avoid any expansion in powers of $ alone, while one in
powers of N$ is permissable. Such a technique will be
introduced below in the special case of a uniform field.

II. CALCULATION

The starting point of the calculation is the following
theorem which holds for any uniform electromagnetic
6eld F„„= ie —'[ir„p„7 a.nd any 4-vector E„, all of
whose components commute with all components of m„.

It is well known that

—e"'=e"' f'+ [f—'f j+ [[—f'f3 f3+
8

f
1 1

8$ 2t 3I

Therefore

8
e "' e"—' s = 2i{EE'ir+is[EE'ir EEir])

8$
= 2~:(KZ'~ esKZ'F—Z'E)

=2i(EE'~+-', K(1—Z') K). (7)

Equations (6) and (7) yield

—exp( is(—m. K)—') = ( —is~—r' isK—EK)
8$ 8$

Xexp (—is (m —E)')+exp( —is (ir —E)')
exp[ is(ir —E)']—

=exp( —isir') exp( i sKZK) —exp(2isEZir)

=exp(2isirZE) exp( —isEEE) exp( —isir'),

where
p8

K'(s)„„=(e"'~')„., E(s)=s ')' dsE'
D

= (e'"~ 1)/(2esF—)

To prove (3) we first observe that

1

[ir„,exp( —i'')) = is t —dv exp( —is(1—i)ir')

8
Xexp( —2isKE~)—exp(2isEZm). (8)

8$

(3) The differential equation (8) is clearly solved by the
first line of (3), with the correct boundary value at
s=0. The second line of (3) is proved similarly by
means of (5').

Equation (3) allows us to separate out the factor
exp( —isn') from ggi in (2) before the E integration is
carried out. For a constant field, then

exp[is(y(ir —E))'j= exp(-,'iesaF) exp( —isEKE)

Xexp ( isir') —exp (2isEEm.)

X [7r„,ir'] exp( ismr')—
i

=2esJ dv exp( —is(1—i)m')F„„7r„exp( isvir')—
0

t'ai

i

=2es exp( — isi)r,Fp.,+ (2es)'
~

di 1 d82i 1

Xexp( —is(1—vie2)m')F„iFi„m. „exp(—isvivi7r')

=exp(-', iesa.F) exp( —isEZE)

Xexp(2isirEE) exp( is~') —(9).
We shall now assume that the electric 6eld vanishes

and there is only a constant magnetic field B in the
direction of the x axis:

F„= ze if~„~,]=H—,=H-,

=exp( —is+') [exp(2esF) —17„„ir„.

Therefore,
ir„exp( —isir') =exp( —iso')E'„„m „.

Similarly,
exp (—isir') n.„=ir „Z„„'exp ( isvr')—

By means of (5) one then obtains

8—exp( —is (ir—E)')= i (7r'+E' 2E7r)— —
8$

while all other components and commutators vanish.
This yields

(~) Z'ii= 1, E'i2 =Z'33 ——cos(2esH),
E 2.'5 — E 32 —sin(2esH),

Eii= 1, E22=E33——sin(2esH)/2esH,

Z23 ———Z32 ——sin'(esH)/esHt. , (10)

while all other components vanish. If we set

~Jg V~V)

[n'2, ir'3] = ieHX', 7i sin (esH)/esH,

ir's2+m. '3i = (irp'+~/)X'.
where the subscripts l and r indicate that m is to stand
to the left and right, respectively, of the exponential.

Xexp( is(ir K)—')= —i (~P 2EE'ir„+2EE'E—E)— —
then it is easily checked that

Xexp( —is(ir —E)'), (6)
(12)

(13)
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In the following we shall use a special sunrnlation
convention: the subscripts "—"shall take the values 1
@ed 4, while ")&"ties throggh 2 aed 3. One may thus
handle m= as c numbers. Because

e(A+B) —eAeBe—)[A,Bj (14)

goo ~00

I= dE2 dE3 exp[is(1 —u ')K']

where

Xexp( —ispu-'E&&') exp(2isE2m'2)

exp(2isEgr':) Xexp[2is'X'K2E3eH], (16)

p = 1—u[1—(2esH) ' sin(2esII)]. (17)

We first carry out the E3 integration by shifting E3 the
amount —up '[vr'3+ (esH) ' sin'(esH)E2] which is
allowable since no commutation between ~'2 and x'3
is necessary during this integration. Next all terms con-
taining E2 are moved onto the same exponential by
means of (12) and (14), and then E& is shifted by the
amount

where
—(7r'2+up, 9,'eHrr'3)ugly' ',

p,
'= [u'+A4(useH)']l.

The two E integrations are now ordinary Gaussian
integrals. We obtain

I= ious '—u '(tl, "-/tl, '—
)

if [A,B]commutes with A and 8, and because of (12),
one easily obtains

exp[ —is(m —E)']=exp( —is~')

Xexp{ is—[E '+K&P sin(2esH)/2esH])

Xexp (2is9PE2E3eH) exp (2isE~~'2)

X exp(2isK37l 3). (15)
Consider the integral

The order in which the integrations are done is, of
course, arbitrary. Had we carried them out in the
opposite order, m2' and x3' would have been interchanged
in (22).

The E~ and E4 integrations are trivial, and we obtain

(dE)' exp[is(1 —u ')K'] exp[ —is(~—E)']
im—'u's 'tr, '(Il,"/p') '* exp( —isn') exp(iusvr ')

Xexp(-,'isuu '~'32) exp(isuyp' 'vr'22) exp Pisup '~'32)

= (~'2 and m'3 interchanged). (23)

So far no approximations have been used, but from
this point on we shall restrict ourselves to terms up to
the order (eH), inclusively. A strict expansion will not
be possible, but we shall drop terms which are o(eH)'
as eH~O.

Now (tJ,'u' ' 1)=tA' —'(useH)9, 4 and X &1; p' and p,

can vanish only for I=1 and esH=-,'n~. These zeros
of p' and p will never cause divergencies. ' The factor
(u'p' '—1) may therefore be handled as one of the
second order in eII, since expansion in (useH) is allowed.
Similarly {[x.'2p. '3]us) is of order (eH). Therefore, to
the order (eH)' inclusively,

exp(-,'iusu 'm. 'P) exp(iusljn' '~'22) exp(2iusp 'vr'32)

', {exp[i-usta, '(p'u' ' 1)m'P]—, exp(-', iusp '~'3')

Xexp(iusp, '~'P) exp(-', iustr '~'32) ). (24)

It can easily be proved that near a= 0,

i[exp(hap') exp(aq') exp(hap')

+exp( —',aq') exp(ap') exp(2aq')]

=exp[a(1 —a'/3!) (p'+q')]+O(a'), (25)

2[exp(srap') exp(aq') exp(-', ap')

—exp(-', aq') exp(aP') exp(r~aq')]=O(a'). (26)
Xexp[isutr y,

' '(~'2+ up
—93eH~'3)—']

Equations (24) to (26) and the fact that (u'p' '—1)gexppslp 'x 3'j. =O(eII)' have as a consequence that
The equation" (for [q,p]=i),

f(p)g(q) =a(q i~/~p)f(p), — (20)

', [exp(-', iu—sp '7r'P) ex-p(iuspp' '7r'2')-
Xexp(-', iud-'m'32)+ (m'2~~'3)]

whose consequence is

where
exp( —ap2) exp(bq') exp(ap') =exp[b(q+2iap)'], (21) A=7'p, '—1—-'p 9'(useH)'. (28)

=exp[ius(1+A)m&&']+o(eH)', (27)

allows us to write [since vr'2s(eH) l (sinesH) ' and
~'3s(eH)~(sinesH) ' obey the same commutation rela-
tions as q and p]

The integral appearing in (23) is also needed with a
factor of E in the integrand. This is obtained in a
manner similar to the above. By means of (27) and

I= —im.s 'p '(p"/p') & exp(-', isup '7r'3')—
Xexp(isuup,

' 'm. 'e2) exp(-,'isup 'm'P)

' See reference 2, Eq. (2.7).

(22)

A simple way of proving this is to envisage the u integration
as extending only up to ~2 say, for the purposes of the present
procedure. The remaining u integration from $ to 1 is then
handled by straightforward expansion in powers of the field,
where no trouble at @=1ever arises,
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the relation

yx4r'x ——X exp(-', isea H)yxmx exp( —', is-ea" H), (29)

which is easily proved, the result may be formulated as
follows:

kr 'u 's' (dE) exp[is(1 u—')K']

Xexp[—is(4r —E)'](1,yE) =p '[1+y 94(useH)'] '*

Xexp( is—m') exp(~2isea H)C exp( ',i—ser-r H)

+o( eH)'=y, '[1+I4 94(useH)'] & exp( ,'is—ea-H)C

Xexp(-,'isea" H) exp( —is4r2)+o(eII)', (30)
where

C= —,{exp[ius(~'+A~x')], (1, uy~+uByx~x) },
B=Xp, '—1.

Equations (33) to (35) are used to simplify D. The
result is then expanded in powers of (useH), with co-
efficients which are polynomials in u, whose coefficients
in turn are bounded functions of (eHs). Since the in-
tegrals are still too complicated to be feasible, we also
expand exp(iusA4r&P) in powers of (usmx2). We shall
assume that m.x2=0(eH) and retain terms accordingly.
The zero-order Dirac equation yields'

7r '=e4r H —(m2 p'+p—') (36)

(pp —m' —pp) is not ))eH. (37)

After the expansion the u and s integrals can be
carried out. They are all of the following form,

Since p& and po commute with everything in the present
problem, they may be assigned arbitrary values, for
example such that po' —pp=m'. Our assumption, that
7rx2=0(eH), is therefore the assumption that

where f is a polynomial in u, (eHs) ', sin(eHs), and
cos(eHs) in such a way that it is finite for eHs=0. I is
easily evaluated by repeated partial integrations on u
until all the inverse powers of s have disappeared. The
boundary terms, coming from u= 1, can be expanded in
powers of eH, while the remaining double integral can
be carried out in straightforward manner. One example
will suffice to illustrate the procedure:

1

AM~ ———(n/44r) ' du dss 'exp( —iusm')

X{@'[1+p, 94(useH)] &D+2m(1+u)}+o(eH)',

D= exp( —2isea. H)

X-,'{exp[ius(ea H+Amx')], 4u(y4r+Byxnx) cos(esH)

—{exp(isea H), m+uy4r+uByx7rx} }exp( ',isea—H—)

+2i sin(esH) [oyxmx,

pCO

I= ' du dss '(useH) exp( —isum')
"o "o

X[(eHs) '—(eHs) ' sin(eHs)]exp[iusA4rx' is(1 —u)err —H]], (32)

0 =+1=0 2 8 =1+2+8.
where

du dse—'"'x (s
—'—s—' sins);

o 4o
The following three relations, in which the zero-order
Dirac equation has been used, are easily proved: by change of scale in s, eHs—&s, and E=m'(eH) '.

I is to be evaluated to order E '. The s ' term is once,
and the s ' term twice, partially integrated with re-

= —{om+~iyxnx sin(2useHA), exp(iusAmx2)}, (33)

{oy 4r, ezp(iuSA~X') }

pl
If (31) is substituted in (1) and (2), the y y sum- I du I dss 1 exp( iusm2)(useH) f(u eHs) u)

mation carried out, and one sets ym. = —m on the outside J o aJ p

by virtue of the zero-order Dirac equation, one obtains

{yx~x, exp (iusA7rx') }
=m '{(mx ea2H)[1 iaAuseH (A—useEI)2—

+ (5/3)io (AuseH)'], exp(iusA4rx') }
—i(16m) ' sin'(2AuseII)

X {Vx&x &[Vx4rx exp(iusA4rx')]} (34)

[ayx4rx, exp(iusA4rx' —is(1—u)ea H)]

=i{sin[s(1—u)eH] —
~ cos[s(1—u)eH] sin(2AuseH) }

X {yx~x, exp(jusA4rx') } (35)

00

I= 'dse "x(s ' s—' sins —iEs ' sins)——

1 00

+,'iK t duu' ' dse ' "x(1 3iuE sins)—J,
1 t" (1 1 1

dse "'x] s iE+ iEs'+—. —— —
)

1

+— du{ ', u -',E '[(uE-+—1) '+(uK 1) ']}—
2 'o

= -', (eH/m')'(-' —log
~

eH/m' I )+0(eH)'.
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2eHn (eH~' 13 8=——
I
—

I
—+-»g

4s. ( m'j 9 3 m'

ps' —m —(p HIHI ') 293 272
+

m' 45
log2

15

16 eH p (eH)' eH )+—log —+OI I

—
I log —I, (39)

3 m' 4 Em'1 m' &

hp o. (eH) s 83 332 28 eH
1+

I

—
I

——+ log2+ —log-
p 2a k m') 45 15 3 m'

p feH~' eH ) )+OI I

—
I

l g
—

l~( &m'J ms i
The following part of Am/m comes from the expansion

of exp[ —its(1 —X') (s. '+m') 1 in powers of (s. '
+m')/m'.

n f'eHp a. '+m'( 119 116 4 eH p+»82+- log—
4~~ m') m' E 45 15 3 m' i

Notice that 0~& (1—)') ~&1, and therefore one could,
instead of expanding in (7r '+m')/m', state that for
any ~ ', m' ought to be replaced everywhere by m'

+e(Pss —Pis —m'), with 0&~e&~1, which is always larger
than m'. But e, of course, differs from integral to in-
tegral. It is, nevertheless, clear that for large energies
the expansion is one in powers of eH(ps' —m' —pis) '
rather than eHm '.

The first term in (40) is the anomalous magnetic
moment (first derived by Schwinger'), while the second
is an induced magnetic moment, as a factor of H a
field-dependent magnetic susceptibility of the electron.

A term proportional to (eHm ')'log(eHm ') was
first obtained by Gupta, ' but his result difkrs from

' J. Schwinger, Phys. Rev. 7B, 416 (1948).

After the evaluation of a number of integrals of the
foregoing type the result obtained is given in the next
section.

III. RESULT

We shall write the mass separator in the following
form.'

aM=am —~~~ H. (38)

The suggestiveness of (38) is clear if the Dirac equation,
including one-photon radiation processes, is multiplied
by (m —ysr) on the left to read

[7r'+ (m+6m)' —2mo H(p+Ap)]/=0,
p=.h/2 mc.

Am is a field-dependent change in the rest mass of the
electron, while Ap is a field-dependent anomalous mag-
netic moment. Their values are found to be

ours. Both terms propoi'tional to (eHm ')'log(eHm —')
and to (eHm ')' log (eHm ') were obtained by Demeur, "
his second-order terms agree with the ones in (40),
while our third orders disagree. Both these authors
used methods significantly diGerent from ours in two
ways. They used a special state of the electron in which

p, =m and p H=O, and a special gauge. Their results
are therefore neither clearly gauge nor Lorentz in-
variant and they do not obtain the term in (ps' —m'
—p HIHI —'). Furthermore, an expansion and later
resummation of part of the series is used. This latter
procedure is never necessary in the present method.

The process used to obtain (39) and (40) is clearly
gauge invariant. Potentials, in fact, are never used. It
is also evidently Lorentz invariant. Equations (39)
and (40) are valid whenever E H=O, i.e., F„„F„.e=O,
while in the general Lorentz frame

H ~g ~p p~ jll v

H'[(p HI HI ')' Pp']~„—F„,F,) 7ri,+ ',7r„'Fi,.Fi,-.

Although there exists no physical transformation from
a frame in which E=O, H/0, to one in which H=O,
EWO, (39) and (40) are clearly valid also in the latter
frame. With the Dirac equation,

[s'+ (m+6m)'+2m(p+d p)y4y Ejp=0,

Dm and hp are obtained from (39) and (40) by the
substitution H2—+—E'.

IV. DISCUSSION

In the presence of artificially produced fields, the
corrections given in (39) and (40) are, of course, much
too small to be measurable. The expansion parameter is

eHm '=2 36X10 '4XH in gauss,

eEm '=2.36X10 "XE in esu.

In the inner shell of heavy atoms or inside nuclei, how-
ever, such corrections are not negligible.

Because of the presence of the logarithms each term
in the expansion of Ap and Am has an extremum. The
maximal magnetic moment correction is attained for a
magnetic field strength of about 6.3X10"gauss and its
value is —9.6 percent of the anomalous magnetic
moment. In view of the fact that at this extremum the
expansion parameter has the rather small value 2.06
X10—' the next terms will presumably not alter its
value appreciably. The maximal correction to the mass
has a value of

hm/m =2.4X 10-',
I

"See reference 4. The discrepancy between our results is pre-
sumably due to an error on his part. Starting from (22), p. 79,
of Demeur's paper one obtains agreement with the present result
if a method of expansion in ex alone is used, which obviates the
necessity for resumming the series that leads to divergencies.
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which is attained at (eHm 2)2= 3X10 ' (approximately
'1.6X10"gauss}.

In the 2s level of hydrogen the addition to the
anomalous magnetic moment is obtained from (40) in
an approximate fashion by setting

eE/m'=n'/e4= 2.44X 10 ',

&'p/p= (n/2~) XO 9X10 ".

b,m n (2eE) 2 13 (2eE) 2

l
—+logl

m 12~im'3 12 &m')

Let us take this field dependence of the mass for the
moment at face value and neglect all other radiative
eA'ects due to a spacial inhomogeneity of the field. We

may then ask classically what the resulting forces
between stationary charged particles are by simply
taking the radial derivative of the energy. Due to the
radiative eGects now not only the Coulomb potential
energy but also the rest mass is a distance dependent

part (via its dependence on the Coulomb field) of the

energy. Therefore, with the simplest radiative correc-
tions classically incorporated, the radial derivative of
the energy between two charged particles at rest,

cj(mi+m2+eie2r ')/Br,

vanishes, provided that

R'= Ki (logR+ Kg),

"R.Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).

(42)

This is to be compared with the fourth-order radiative
correction to the magnetic moment, "

—(n/2~) X1 38X10 2.

The contribution to the Lamb shift due to the second
term in (40) is therefore entirely negligible.

Apart from a constant change in the magnetic mo-

ment, then, the lowest order radiative correction to the
behavior of an electron in the presence of a uniform

electric field manifests itself in the form of a rest mass
change:

where

R= (mcus ')(2n) '* exp( —25/48)rmleie2l &(1ye)—',

(8/37r)(n/2)' exp( —25/16)ei'l eie2l '*st(e,e,),

K2 ——-', flog(1+e) —e(1+&) ' log[e(e, /e, )']),
6= (m /im )2'(e /2e )i',

and I is the mass of particle 1 in units of electron
masses, e~ and e2 being the two charges in units of the
electronic charge.

At the distance which solves (42) two charged par-
ticles can stay at rest with respect to each other. The
following can be shown easily (in case one particle is
much heavier than the other, say): By decreasirIg the
charges (in order not to increase the multiple photon
effects) the expansion parameter eE/m' at the rest
distance can be made as small as 0.18 in the case of
opposite charges. By decreasing the mass of the lighter
particle, we can make the rest distance as large as we
please. Hence, if one believes in the convergence of
the expansion at eE/m'=0. 2 one can conclude that
oppositely charged particles of arbitrarily small charge
and mass would have repulsive cores of arbitrary
extension.

In the case of charges of equal sign, (42) has a solu-
tion only if e2&10 'e&'. Then there will be two solu-
tions, representing the boundaries of an attractive
shell. At the inner boundary 0.09&eE/m'&0. 18, and
at the outer, eE/m'&0. 09. Therefore, again, if there
were particles of arbitrarily small charge and mass,
they would, if of equal sign of charge, have attractive
shells of arbitrarily large size.

For physically real particles conclusions as to the
existence of a repulsive core cannot be drawn with any
assurance because the expansion parameter becomes too
large at the rest distance. The first term in the series
will then no longer suffice, even if the series still con-
verges. (For an electron-proton pair, eE/m'=11 at the
rest distance of 10 "cm. ) It is, nevertheless, perhaps
of some interest that even on the basis of such a very
simple approximation the radiative eGects provide
charged particles with strong forces opposed to the
Coulomb Geld.
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