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The Schwinger and Kohn-Hulthbn variational principles are adapted to scattering problems in which
only a part of the scattering potential is small.

I. INTRODUCTION

S EVERAL authors' ' have discussed the problem of
scattering by a potential, only part of which is to

be considered small. It is found that the scattering
operator can be written as the sum of two terms: the
6rst is the scattering operator which would be obtained
if the small part of the potential vanished and the
second is a term involving the eigenfunction of the
entire Hamiltonian. The 6rst term is assumed known.
Hence to 6nd the scattering operator of the problem
one needs to find the second term only. In the present
paper it is our objective to show how the Schwinger
and Kohn-Hulthen variational principles can be used
to 6nd approximate expressions for this term.

by

t f(a)3(a,b)da= f(b),

if the range of integration E. includes 5;

)t f(a)b(a, b)da=0,

if E. does not include b. Integration over a is to be
interpreted as summation when a lies in a discrete
spectrum.

The completeness of the set of eigenfunctions

~
&,B;E,a& is expressed by the relation

E. t Z,B;E,a)=E(Z,B;E,a).

Assuming the eigenfunctions normalized we have

(2)

II. THE VARIATIONAL PRINCIPLES

We shall brieQy review the scattering operator
formalism and indicate the usual form of the variational
expressions. In scattering problems the total Hamil-
tonian H is broken up into two parts,

H=E+V,
where E is the unperturbed Hamiltonian and V is the
scattering potential. Usually the eigenvalues of E are
degenerate. It will thus be convenient to introduce
additional operators collectively denoted by 8 which
together with E form a complete set of commuting
variables. Using a slightly modified form of Dirac's
bra and ket notation' we denote the eigenvector of E
and 8 belonging to the eigenvalue E of E and e of 8
by ~E,B;E,a&. Hence,

~
Z,B;E,a&dEda(Z, B;E,at =I,

where I is the identity operator.
We shall assume that the continuous spectrum of JI

coincides with that of E and hence that the degeneracy
of the continuous spectrum of H is the same as that of
E. We can therefore introduce operators, collectively
denoted by A, which together with H form a complete
set of commuting variables such that the eigenvalues of
3 have the same range as those of B.We shall concern
ourselves with two sets of eigenfunctions belonging to
the continuous spectrum of H. One set is commonly
called the set of "outgoing eigenfunctions. " Eigen-
functions of this set are denoted by

~
H, A;E,a& . They

satisfy the equation

~H, A;E,a& = iE:,B;E,a&+~ (E Z)V ~H, A;E,a&—, (5)

where
y (x)= limt 1/(x+ie) J=—itchy(x)+ (P/x). (6)

(E B F b
~

X B E a& =5 (E—F)b(a b) (3) Here P/x means the principal part should be used in
integra, tions over x. The second set of eigenfunctions
which we denote by ~H,A;E, a&+ are called the "in-
coming eigenfunctions. "They satisfy the equation

where h(a, b) is a suitably generalized 5 function defined
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) H, A;E,a&+=
~
&,B;E,a&+V+(E &)V

) H, A;E,a&+, (7)—
where

y+ (x)= lim/1/(x is))=+isr' (—x)+ (P/x) (6a).
r

The operators g. (E J") and 7+(E E—) are the—
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Hermitian adjoints of each other. We note the identity, by
lim e'&~ ~&'jH, A;E,a)+=S 'lK BE a) (14)

t-+—oolim e'& "y (E K—)=0,
t~+oo

lim e'&~ ~"y~(E K)—= &2rrib(E K—).
t—+goo

(8)
and

We should note that we have reversed the usual co
vention of denoting outgoing and incoming eigenfunc-
tions. In the usual convention outgoing eigenfunctions
are denoted by + and incoming eigenfunctions by —.
We have reversed the convention because in a more
rigorous treatment' the outgoing and incoming eigen-
functions are specified in a time-dependent fashion by
conditions at 1=—~ and t=+ ~, respectively. It can
be shown from (8) and (5) and (6) that

It can also be shown that

(K,B;E,bj V jH,A;E,a)„=(K,B;E,aj VjH, A;E,b) *, (16)

where the asterisk means complex conjugate. Equation
(16) is called the reciprocity theorem. A final identity
which might be noted is

,(H,A;I', b
l H, A;E,a) =(K,B;F,b

l
S

l K,B;E,a),

(H A'E aj -H, A;F b)+=(K,B;F,bjSI K B E,a)*

(17)
lirn e'«e '«jH, A;E,a)~= lim e"'~ e"jH,A;E,a)gt~+~ t~+~

(10)= jK,B;E,a). =(K,B;E,ajs jK,B;F-,b). (18)

(9)
(K,B;F,b jS 'j K,B;E,a) =b(E—F)b(a,b)

n- +27rib(E F)(—K,B;E,bl V lH, A;E,a) . (15)

This means that for values of t—& —~ we have

)= ''I )

Thus the out:going eigenfunction
l H,A;E,a) is specified

by the condition that the solution e '~'jH, A;E,a) of
the time-dependent Schroedinger equation with the
Hamiltonian II shall behave at t = —~ like the solution
e '~'jK, B,E,a) of the equation with the Hamiltonian
E. A similar statement can be made with respect to
the relation

jHAE )= jK E )

for t=+~.
The scattering operator 5 is defined by

lim e'~'e '~'jH, A,E,a) = lim e"~ s"lH, A;E,a)
t-++oa t~~

=S
j K,B;E,a).

The state e '~'SjK,B;E,a) represents the final state
(which like the initial state is an eigenstate of K) when
the initial state is e 'fir'jK, B;E,a). From (9) and (5)
it is clear that

lim e't~ ~"jH,A)E,a)t~

From Eq. (13) it is seen that if we knew
(K,B;E,bl V

l H, A E',a), we should know the scattering
operator. Both the Schwinger and the Kohn-Hulthbn
variational principles are concerned with finding this
quantity.

The Schwinger variational principle is based upon
the two equations

8 =Ep) (18)

) = 1/(a', y) = 1/(y', a)

X (v', v) = (v',Rv)/(a', v) (v', a),

(19)

(19a)

respectively, where (w, v) indicates the Hermitian inner
product of the vectors m and v. It can be shown that
the first variation of X(v', v) due to variations of v' about
y' and v about y is zero. Hence, since X(y',y) =X we have

1/(a', y)—(v', Rv)/(a', v) (v', a), (20)

where v' and v approximate y' and y, respectively.
We can write (5) and (7) as

where a and u' are given vectors, y and y' unknown
vectors, and 8 and R' are given operators which are
the Hermitian adjoints of each other. We dehne X and
X(v', v) by

=
l K,B;E,a) 27rsb(E K) V

l
H—,A;E,a)—, (12)

l ) j )
and hence from (11) the scattering operator in the K
representation is given by and

—Vy (E K)V lH, A;E,a) (21—)

(K,B;F,b l
S

l K,B;E,a)=~(E F)b(a,b)—
2~s&(E—F)(K,B;E,bl V lH, A—;E,a) . (13)

Similarly, the inverse scattering operator 5 ' is defined

' H. K. Moses, New York University, Institute of Mathe-
matical Sciences, Research Report CX-12, 13, 1953 (unpublished).

V lK,B;E,b)= V lH, A;E,b)

—Vy+ (E K)V j H, A;E,b)+. —(22)

We identify a and a' with V
l K,B;E,a) and

VlK, B;E,b), respectively; y and y' with lH, A;E,a)
and lH, A;E,b)+, respectively; and R and 8' with
V —Vy (E K) V and V —Vy+ (E K) V—, respectively. —
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Hence relation (20) becomes

~((H,A;E,bl V la, A,E,a&, +,—(H,A;E,bl Vy (E K)—VlH, A;E,a) g

[(K,B;E,bl via, A;E,~& j '
(K,B;E,bl via, A;E,a) „,(H,A;E,bl vlK, B;E,o)

(23)

where lH, A;E,b)+, and lH, A;E,a) i are states which

approximate lH, A;E,b)+ and lH, A;E,a), respectively
In the Kohn-Hulthen variational principle one

introduces the functional A ( l H, A,E,a) ~, l H,A;E,b)+,)
dehned by

potential. We de6ne 1.by

L=K+ Ui.

Hence H, as defined in (1), is also given by

H=L+U2.

(28)

(29)

A(la, A;E,a& „la,A;E,b)+,)
= »m „(H,A;F,bla —Ela,A;E, a& .

+(K,B;E,bl V
l H, A;E,a),.

Here

Let us denote the incoming and outgoing eigenvectors
of L'with respect to K by lL,C;E,u)~, where

(24) IL,C;E,~4= IK,B'»p&+~+(E—K)vilI-C E~)+ (3o)

+pi(H, A;E,bl Vy (E K)V!K,B;E,a)—

+(K,B;E,bl v7 (E K)via, A;—E,a),
+,(H,A;E—,bl v~ (E K)via, A—;E,~),

+,(H,A;E,bl V~ (E K)V& (E K)—V la, A;E,,&—,.

(26)

III. FINAL FORM OF THE VARIATIONAL PRINCIPLES

We shall now give the form of the variational princi-
ples for the case discussed in the introduction, namely,
when the scattering potential is the sum of two parts,
one of which is to be considered small. Accordingly
we write

V= Vi+V2, (2"/)

where V2 is to be considered the small part of the

l H, A;E,a)~,= l K,B;E,a)+y~(E K) V
l
H—,A;E,u)~i.

It can be shown' that the first variation of
A (l H,A;E,a) ~, l H, A;E,b&+i) due to variations of

H,A;E,a) i and la ,A;E,b)~i a'bout lH, A;E,a) and

O,A;E,b)+, 'respectively, is zero. Hence, as can be
shown, since

A (l H,A;E,o), l a,A;E,b),)=(K,B;E,b
l
v

l
H, A;E,o&,

we have

(K,B;E,b l
V

l H, A;E,~)

A(l H,A;E—,a),
l
H, A;E,b)+ ), (2S)

where
l
H, A;E,u) i and

l H, A;E,b)+i approximate

l H,A;E,a) and
l H,A;E,b&+, respectively. By rewriting

the expression for 3 one can get a more useful expres-
sion, namely:

We assume these eigenvectors are known. In reference

2, it is shown that the quantity (K,B;E,bl V
l H, A;E,u)

which we seek can be written as

(K,B;E,bl VlH, A;E, ) =(K,B;E,bl V lL,C;E, )
++(L,C;E,bl Vg la, A;E,a) . (31)

Equation (31) is the decomposition of the scattering
operator referred to in the introduction. It is our
objective to obtain variational expressions for

+(L,C;E,blv&la, A;E,a) only, instead of the entire
quantity (K,B;E,bl Vla, A;E,a) . The possibility of
obtaining such expressions is based on the fact that the
eigenvectors la, A;E,a&+ which satisfy (5) and (7) can
be shown also to satisfy the equations,

l
II,A;E,a&g l

L,C;E,a)g-—

+v+(E L)V ! H, A;E—, &+. (32)

The equation of (32) with the minus subscript is proved
in reference 2. The equation with the plus subscript is

proved analogously.
The Schwinger variational principle for

,(L,C;E,b l
V, l H,A;E,a)

is obtained by rewriting (32) as follows:

V2lL, C;E,a& =Up!a,A;E,a&

—U2y (E L)V2lH, A;E,a)—,
(32a)

V, l L,C;E,b)+ V, la,A;E,b)+——
—Vgy~(E L)V2

l H, A;E,—b)~.

We identify a and a' of Eq. (18) with V&lL,C;E,u)
and V2lL, C;E,b&~, respectively; the vectors y and y'
with la,A;E,u) and lH, A;E,b)+, and R and R' with

V2—V2y (E—L) V2 and V2 —Vpv+(E L) V2. Then-
Schwinger's variational principle yields

~,(H,A;E,bl lv, H; AaE&, —~,(H,A;E,bl v,y (E L)v, la,A;E,a)—
L+(L,C;E,bl V2la, A;E, ii) ]'=, (33)

+(L,C;E,bl v, la, A;E,a& „,(H,A;E,bl V2l L,C;E,a)
' H. E. Moses, Phys. Rev. 92, 817 (1953).
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where
~
H, A;E,a)~& approximate j H, A;E,a)~ respec-

tively. Incidently, equations (32a) yield a reciprocity
theorem, namely,

+(L„C;E,b ( V,
~
H,A;E, a&

=,(H,A;E,b~ V, t L,C;E,a)

= (L,C;E,al Vsl, H,A;E,b)+*. (34)

Borowitz and Friedman' use this form of the Schwinger
variationaI principle in a special case.

The Kohn-Hulthen variational principle uses the
functional A ( ~

H,A;E,u), , ~
H,A;E,b)+,) defined by

A(iH, A;E, u& „iH,A;E,b&+,)
= lim +,(H,A;F,b

~
H E~ H,—A;E,a&,

++(L,C;E,bi Vs i,H,A;E,a) &, (35)

where
~
H,A;E,a)+, are defined by

(H,A;E,a)~,= iL,C;E,a)~

+yg(E L)VsiH,—A;E,a)~i. (35a)

As in reference 6, it can be shown that the first varia-
tions of A due to variations of ~H,A;E,a)~t about

' S. Borowitz and B. Friedman, Phys. Rev. 89, 441 (1953).

~
H, A;E,a)~, respectively, vanish. Since also

A(~H, A;E,a), t H, A;E,b&,)
=p(L&C&E&b~ Vs ~H&A&E&a) & (36)

we have

+(L,C;E,b( V, |H,A;E,a)

=A(l H,A;E,a) , I H-,A;E,b)+ ), (»)
where ~H,A;E,a)~& approximates ~H,A;E,a)+ respec-
tively. Using an alternative form for A obtained by
substituting (35a) into (35) we have

+(L&C&E,b
~
Vs

~
H&A &E&a) ~(L&C;E&b

~
VQ [ L&C;E&u)

++&(H,A;E,b
~
Vsy (E L) Vs

~

L—,C;E,a)

+~(L,C;E,b~ Vsy (E L)Vs~H—,A;E,a) &

—~,(H,A;E,b
~
Usy (E—L) Vs

~
H, A;E,a),

++&(H,A;E,bI Vsy (E L)V2y —(E L)UQ~H—&A&EG) 4.

(38)

If we assume that V~=0, that is V= V2, then the
Kohn-Hulthen and the Schwinger variational principles
(38) and (33) reduce to (26) and (23), respectively, as
required, for in this case L=K and

i L,C;E,a)g ——
i E,A;E,a&.


