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Nuclear Saturation and Two-Body Forces. II. Tensor Forces
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The method developed in a previous paper for the treatment of the problem of nuclear saturation has been
extended to the case of tensor forces. The general result obtained expresses the many-body potential energy
as a function of the triplet and singlet eigen phase shifts for scattering. One consequence is that the tensor
force, which averages to zero if Born approximation is used to evaluate the scattering, now gives a very
sizable contribution to the potential energy. Phase shifts have been determined for a specific potential model
derived from pseudoscalar meson theory, and are shown to give scattering up to 90 Mev which is in good
agreement with total cross section and in approximate agreement with angular distributions. Use of these
results to evaluate the total energy (neglecting Coulomb effects) in heavy nuclei shows that for a typical
case (A =300) saturation occurs at a radius 1.15X 10 "A& with a binding energy of 10 Mev per particle. If
surface effects are neglected, however, the density at saturation increases by a factor of 1.74 with an increase
in mean binding energy to 39 Mev. The potential energy per particle has also been determined as a function
of its momentum. In the finite nucleus (A =300) the potential depth varies from —82 Mev for a particle
of zero momentum to —32 Mev for a particle at the top of the Fermi momentum distribution. Arguments
are presented which suggest that this effect is to a large extent independent of the model used.

I. INTRODUCTION

" 'N a previous paper' (to be referred to as I) the rela-
~ ~ tion of nuclear saturation to two-body forces was
discussed making use of an approximation method
which allowed an exact treatment of the coherent par-
ticle motion in the nucleus. This method is in essence
an "optical model" approximation in that the potential
felt by a particle is expressed as an average of the
forward scattering amplitudes over the nuclear mo-
mentum states. In such an approximation, coherent
modes of motion appear which are particle-like but.
which are not simply related (except in an average
sense) to the motion of a "bare" nucleon. Thus the
"independent particle" given by the model does not
refer to "independent nucleon" motion but rather refers

to a type of collective aspect of the nuclear state. The
detailed relationship of the approximation methods of
I and of this paper to other models and methods will

form the content of a paper to be published separately.
In I it was found that if tensor forces (which average

to zero in first approximation) and surface effects were

neglected, two-body potentials derived from meson

theory' and in agreement with low-energy scattering
parameters were sufhcient in themselves to give satura-
tion with about the correct values of density and bind-

ing energy, i.e., E= j..15&&l0 "3' cm, E= —12 Mev. It
is the purpose of this paper to consider the eGects of
tensor forces and also to compare the scattering ampli-

tudes used with the nucleon-nucleon scattering over the
range of energies which are important in the saturation
problem. We shall also discuss some of the simplest
surface eGects which arise from the modification (by the
finite surface) of the nuclear states. We shall not, how-

'Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217
(1954).

2K. A. Brueckner and K. M. %'atson, Phys, Rev. 92, 1023
{1953).

ever, in this paper discuss the Coulomb eGects or the
tendency of the tensor force to distort the nucleus.

In Sec. II we shall summarize briefly the formulas
which we shall need in our consideration of the satura-
tion problem with tensor forces and discuss the computa-
tional techniques used in determining the phase shifts
for scattering; in Sec. III we shall compare with experi-
ment the scattering predicted by the potentials we have
used; in Sec. IV the eGects of finite nuclear size will be
discussed; in Sec. V the saturation problem will be
evaluated; and finally in Sec. VI some concluding
remarks will be made.

II. FORMALISM

In I it was shown that in order to determine the
eGective "potential" in the saturation problem, it was
sufficient to evaluate the sum

(U) =-', P [(k,, k,
~

t'.,a
~
k;, k;)

—(k;, k;it', ,hik, , k;)], (I)

where the t"s are the scattering amplitudes in the
momentum states k, , k, evaluated at the kinetic energies
in the nuclear medium. t'„d and t',„,h are, respectively,
the ordinary and exchange matrix elements of the
scattering amplitudes. This result is further expressible
in terms of the scattering amplitudes in the forward
direction in the substates of spin and isotopic spin,
which we denote by a,& where s indicates the spin state
and X the isotopic spin state. As a function of these, the
potential energy is

4A
U= — P(k)dk[u„+3a„+3a,e+9att j, (2)

7l t8 0

with P(k) the probability (unnormalized) of finding the
relative momentum k in the nuclear ground state. It is
this integral which we wish to express in terms of the
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phase shifts for scattering with the tensor force eGects
included. It is clear that in this treatment we do not
consider the possible eGects on the energy arising from
spin polarization and distortion of the nucleus from a
spherical shape; these are specifically surface e6ects
and small compared with both the volume energy and
with the simple surface eGect which we discuss in
Sec. V.

We further remark here that any contribution to the
scattering which is due to the tensor force and which can
be legitimately treated in Born approximation gives
no contribution to the integral of Eq. (2). This result
is the consequence of the averaging to zero of the tensor
force operator upon spin averaging and is the analog
in our method of the absence of a tensor force contribu-
tion in an uncorrelated medium.

It is next convenient to summarize formulas for
tensor scattering which express the phase shifts in terms
of the eigen phase shifts of the scattering matrix. In
this we make use of results which are implicit in the
work of Blatt and Biedenharn. ' An explicit derivation
of these formulas is given in Appendix A. For the singlet
scattering and for the uncoupled triplet states (with
L=J), this introduces no change from the usual results.
For the coupled triplet states with L=J&1, however,
application of the results of Blatt and Biedenharn leads
to useful relations between the usual phase shifts
(functions of LJm) and the eigen phase shifts. In the
notation of Blat t and Biedenharn, we have (see
Appendix A):

'+ = (tane+Cote) {Coteri + taner)p

—
LJ/(J+ 1)7'*(n-—np)),

rig+I '+ = (tails+cote) {tanerl +coteI)p

+I:J/(J+1)j *'(n-—np)),'
(3)= (t Rn+eceo)t{cotE'g +taner)p

+I:J/(J+1)1 '(n- —np)),

'gg+I ' = (t R+ncet )oe{tanerf +cotegp'
I J/(J+1)—]'(n. np)), —

where

r)I,~" sinbr, ~~e "—s— g =e"~ sin6. , etc. (4)

The eigen phase shift 8 is the L=J—.1 dominant
phase shift; at low energy as the mixing parameter e

goes to zero, the scattering in a given J state is domi-
nated by the L=J—1 state.

Application of the formulas of Eq. (3) leads to simple
expressions for the forward scattering amplitudes
averaged over spins. We denote the coupled phase
shifts by rI z„(o=n, P) where s.= —(—1)~ is the

parity, and the uncoupled states by p J&,. Application
of the usual scattering formulas4 then gives for the four

' J. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952).' See, for example, J. Ashkin and Ta-You Wu, Phys. Rev. 73,
973 (1948).

substates of spin and isotopic spin:

IJ zoo(2J+1),
J odd

ka, g
——g Ij+ggp(2J+1),

J even

3ka„= P (2J+1)(q+g I+rf+gpl)
J odd (5)+ Q (2J+1)y+ggI,

J even &2

3&a,~= P (2J+1)(rl z I+I) zpt+u+zzt)
J even

+ g (2J+1)P ~gt.
J odd

where p 1,(c) is determined by the central odd-state
potential alone.

We note that the results of Eq. (5) depend on the
eigen phase shifts alone, the parameter ~ having dropped
out on performing the spin sum. We also remark at this
point that we take proper account of the standing wave
boundary condition' which is correct in the saturation
problem by replacing the complex e" sinb by tanb. It is
here that the convenience of expressing the scattering
in terms of the eigen phase shifts is apparent since it is
only in terms of the eigen states that a stationary de-
scription of the problem is possible.

The phase shifts for the coupled J=1 even parity
state were determined by numerical integration of the
coupled equations; as a check, an iteration in the in-
tegral equations was made. Two independent solutions
were constructed by so choosing the amplitudes and
slopes at the core as to satisfy the orthogonality condi-
tion. ' From these two solutions, the eigen states and
mixing parameter were determined following the meth-
ods of Appendix A. For the remaining states, the poten-
tial for the uncoupled D waves is quite strong so that
this phase shift was determined by numerical integra-
tion. The other D phase shifts were determined by Born
approximation, as were the quite small I'-wave phase
shifts, both coupled and uncoupled.

III. SCATTERING RESULTS

The intimate connection between the saturation
calculation and the scattering phase shifts which is
characteristic of the methods used in I and in this paper
makes a parallel discussion of both desirable. We shall

' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).' W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).

For the triplet odd states (a~~) the scattering is rather
weak and may be treated in Born approximation; for
this reason the tensor contribution averages out in the
saturation calculation for this state. Thus we may write
for a« the simpler expression

ka„= g (2L+1)p 1,(c),
L odd
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therefore in this section describe the scattering~ which
is predicted by the phase shifts we are to use in the
discussion of saturation. These have been determined
for the meson theory potentials we have specifically
considered. ' First, we shall qualitatively describe the
p-p scattering as given by our results and the compari-
son with experiment. "The calculated cross section
together with the experimental results are shown in
Fig. 1. The potentials we use are characterized by quite
short range in the singlet state and by a nonmonotonic
quite strong tensor force together with a weak central
force in the odd state. The combined effect of these is
the following: at 32 Mev, the small D-wave scattering
(0.80' D phase shift) is almost completely masked by
the quite appreciable tensor scattering (peaked at 90')
which combines with the central scattering (peaked
at 0') to give an almost isotropic scattering. The mag-
nitude of the scattering is slightly larger than the ex-
perimental results; the tendency of the S-wave repulsion
to diminish the S-wave scattering is only slightly felt
at this energy. At 90 Mev, the central scattering now
shows very pronounced S-D interference which, how-

ever, is still masked completely by the tensor scattering
which gives a quite appreciable fraction of the scatter-
ing. The resulting cross section (nuclear scattering only)
is still quite isotropic; the cross section is rather small
with the rapidly dropping S phase showing the core
e8ect. The magnitude of the scattering is perhaps
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' In this section we have drawn extensively on the ideas and
results of R. Christian and E. Hart, Phys. Rev. 77, 441 (I9Sp};
R. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950).

W. K. H. Panofsky and F. I. Fillmore, Phys. Rev. 79, 57
(1950); Cork, Johnson, and Richman, Phys. Rev. 79, 71 (1950).

9 R. W. Birge, Phys. Rev. 80, 490 (1951); R. W. Birge, Phys.
Rev. 83, 274 (1951).

FgG. 1. Differential cross sections in the center-of-mass system
for p-p scattering at 32 and 90 Mev, neglecting Coulomb egect.
The experimental results are well fitted by pure S-wave nuclear
scattering; the magnitudes of the nuclear scattering alone which
agree with the experimental results are shown by the dashed
curves.
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FIG. 2. Di8erential cross sections in the center-of-mass system
for n-p scattering at 40» and 90» Mev. The solid curves are
calculated; the dashed curves represent an approximate fit to the
experimental results.

slightly too small although not outside of the experi-
mental errors, and is actually in good agreement with
a recently reported value" of 4.6 millibarns for the
differential cross section at 90 degrees. These results
show certainly a good agreement with the high-energy
p-p scattering and, of course, agree with the low-energy
scattering data which were used in determining the
parameters of the potential.

The situation is not quite so satisfactory in the n p-
scattering. The potentials in this case are more compli-
cated than in the p-p case with twice as many states
(because of the effects of the exclusion principle) and
the even-odd state interference makes the analysis less
simple. Qualitatively, the potentials which did not act
on the p-p system are characterized by the dominant
tensor force in the triplet even state and the strong
repulsion in the singlet odd state. The even-state tensor
force gives most of the scattering of the partial waves of
high angular momenta since it is of considerably 1arger
range than the very short-tailed central triplet even
force. The cross section drops quite rapidly in magnitude
as the repulsive cores affect the S-wave scattering quite
appreciably even at 40 Mev.

The quantitative results of the scattering at 40 and
90 Mev are given in Fig. 2. It is apparent that although
the cross sections in magnitude agree very well with
the experimental results, ""they are in error to some
extent in having somewhat too much exchange scatter-
ing and too little scattering of high partial waves; i.e.,
the odd-state potentials are somewhat too strongly
repulsive, and the even-state potentials are not long-
tailed enough. It is possible that these diBFiculties might

"V.E. Krnse and J. M. Teem, Phys. Rev. 95, 662 (A) (1954).
"Hadley, Kelley, I eith, Segre, Wiegand, and York, Phys. Rev.

75, 351 (1949); R. Hildebrand and C. E. Leith, Phys. Rev. 76,
587 (1949).

's O. Chamberlain and J. W. Easley, Phys. Rev. 94, 208 (1954).
This paper gives a list of references to earlier work.
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be eliminated by alteration of the potentials we have
used. In view of the semiquantitative agreement, how-
ever, and of the great arbitrariness which enters in
much alteration of the interactions, we have not at
present made further investigation of the origin of the
detailed discrepancies. It might be pointed out, how-
ever, that the difFiculty appears to originate in the too
short-tailed character of the triplet even-state po-
tentials which can be altered without upsetting the
good agreement of the predicted p-p scattering with
experiment.

In concluding this section, we remark that the agree-
ment with experiment of the scattering predicted by
the phase shifts we have calculated is quantitatively
quite good, particularly in the p-p scattering. We there-
fore feel that the use of these scattering amplitudes in
the saturation discussions of Sec. V will not introduce
appreciable errors. This is particularly true since most
of the contribution to the potential energy comes from
rather low relative momenta (corresponding to energies
in scattering of less than 40 Mev) where the agreement
with experiment is particularly good.

IV. SURFACE EFFECTS

Before proceeding to a discussion of the saturation
problem, we shall develop some results which we use in
the next section. Specifically, we shall discuss a surface
eGect which in this model appears to be of particular
importance, i.e., the eKect of the finite nuclear volume
on the distribution of momentum states. This e6ect
appears very directly in the kinetic energy which is
increased when the nuclear particles are localized in a
finite volume. A further e6ect arises from the alteration
of the distribution of states of relative momentum for
two colliding particles which has a pronounced e8ect on
the potential energy.

To account for this effect in an approximate (and
very simple) way, we make use of a result of Wheeler
and Hill" who show approximately that the number of
states per momentum interval (assuming spherical
symmetry) is given by

( tt s ~dk
»(k)dk=

I

&2~' 16k~I 4~

X(k)dk=r L1—3s/4kR],
(2s.)'

where E. is the nuclear radius. We note that the number
of states goes to zero at

k =3s-/4R=—kp, (9)
"D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

where e is the total volume and S is the surface area. In
this expression a small term linear in the nuclear dimen-
sions has been dropped. For a spherical nucleus, this
can be written

which is reasonable since

Xp ——2s./kp ——8R/3, (10)

The total number of particles (with 4 per momentum
state) is

4~ 4x
A = —kF'(1 ——,'kp/kr),

(2s.)' 3
(12)

defining Ep as a function of A, the density, and of kp

(or of R). Further, we have for the mean kinetic energy

4 &k .k, ~ sk~
(13)

A " 2M 5A3fm' 4 4 kp]

These results can be expressed conveniently in terms of
the limiting case of A~~ for constant density. In this
case we introduce the dimensionless density parameter
g by the relation

n= (4/3) a R'= (4/3) s-rp't)'A, (14)

where rp is the mean spacing between nuclear particles
(rp ——1.40&&10 "A& cm) and rl is accordingly of the
order of one. In terms of this parameter, the Fermi
momentum for an infinite medium is

k„= (9s/8) l(rprl) '= 1.521J/ri

Using Eq. (9) for kp, we finally find

kp
1——,

' (3m')'—A
—

&k„kg

(15)

(16)
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FIG. 3. KRects at constant density of finite nuclear size on the
maximum momentum kz and the average kinetic energy Tz in
the degenerate Fermi gas. The ratios of kg and T~ to k„and T
(kr and Tr for an intinite medium) are given.

is approximately the longest wavelength which can
have nodes in the nuclear volume (—', wave falling in the
nucleus). (The factor 8R/3 appearing instead of 4R
represents a crude correction for the surface curvature. )
Thus, we write

vdk ( kp)
cV(k)dk=

(
1——i.

(27r)' L k f
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I.P I I I I I i I t This distribution is given in Fig. 4 for several values

of A. The shift to higher values of relative momentum
with decreasing radii is evident.

and
Tp t ki"i ' k„

=~ —
(

1-s(3~s)l—~-l .
Ek„J

These results for k~/k„and T~/T„are given in Fig. 3
as a function of A.

We next need the e8ect from this change in the mo-

mentum distribution on the distribution of relative
momenta. In evaluating the potential energy, we en-

counter an integral of the form

cV(ki)dkilV(ks)dks f(-,'k, —-'sks) ) E(ki)dkt. (1&)

Transforming to relative and total momentum coordi-
nates and introducing the results of Eq. (11), we find
for this integral

~
ky'

32~ dkf(k)E (k),

where P(k) is the probability (unnormalized) of finding

a relative momentum k, and is equal to (with x= 0/ki )

3kp) ' kp
l (k) =k

]
1———

)
1——;~+-;~—3—(1—x—-', *')

2kpJ kp

f'kp ) '
+3I —

) (1—
—s,x), x&~-', ;

&ki

3 kp)-'
=k

~
1———

~
1—-', *+-;*

(20)

kp( 1)—3—
f

—+-'."+—
/

kp & 3xl

(kp q'1
+3] —

I
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Eks) 2x
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K/k„

FIG. 4. Probability of the relative momentum k in a degenerate
Fermi gas, showing surface effect. The vertical scale is arbitrary;
the horizontal scale is in units of k .
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Fro. 5. Singlet S(sp) and 5-dominant 7= 1 even-parity (b~) phase
shifts. The abscissa is in units of pc= 140 Mev/c.

V. SATURATION

A. Average Energies

We now proceed to relate the results of the preceding
sections to the saturation problem. The phase shifts
which we need are simplified by the averaging out of all
tensor force contributions which need be considered
only in Born approximation. For this reason, the tensor
force aGects only the coupled '5-'D and the remaining
D phase shifts. The contributing states are shown in
Figs. 5, 6, and 7. In evaluating the integrals over rela-
tive momenta which give the potential energy, the
passage of the large phase shift 8 through 90' at a
relative momentum of about 0.64 pc gives rise to a
singularity in the integrand (as tan8 passes through
the singularity at 8 =~/2). This does not give any
difhculty, however, since the integral about this point
has the character of a principal value and the integra-
tion through the pole gives a finite result, the contribu-
tion from the vicinity of the pole actually giving only a
small contribution to the result. It might be remarked
that the occurrence of this pole is a consequence of the
presence of a bound state for the triple even state.

The energy is finally determined as a function of the
number of particles and of the density by use of Eqs.
(2), (5), (6), (20), and the values for the phase shifts.
These results are given in Fig. 8. They show the re-
markably large eGect of the surface, not only in the
kinetic energy but also to about the same extent in the
volume energy. It is perhaps not possible to take these
results entirely seriously since the treatment in which
surface eGects are so important is probably less reliable
than the treatment of a volume eGect alone. Never-
theless, it is dificult to believe that these sects do not
exist to a very considerable extent in nuclear structure
in any model. They represent qualitatively very reason-
able modifications in the kinetic energy (due to restric-
tion in volume) and in volume energy (due to shift to
population to higher momenta and hence to less strongly
interacting states).
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FIG. 8. Average energy per particle as a function of density
and of total number of particles. The density parameter q is
de6ned in Eq. (14).

of nucleons, and the momentum of the particle. These
results show that in the absence of surface e6'ects, the
binding energy per particle is 39 Mev at an equilibrium
radius of R= 0.85)(10 "2'' cm, and thus that saturation
in the usual sense does not occur at normal density.
These results diGer markedly from the results of I,
where central forces alone were considered, in that the
strong low energy scattering arising from the tensor
force considerably increases the interaction energy for
low momentum encounters. This effect is, of course,
absent in a method which treats the scattering in Born
approximation and which further assumes uncorrelated
nucleon positions.

If, however, a finite nucleus is considered (as, for
example, with 300 nucleons) the surface effects increase
the kinetic energy and decrease the potential energy
with the net result that a more reasonable value of
binding energy of 10 Mev per particle results at an
equilibrium radius of 1.15)&j.0 "A & cm. These modifica-
tions are the consequence of the alteration in the density
of momentum states (compared with a Fermi gas), and
are analogous to a surface energy with origin in both
kinetic and potential eGects. Such eQ'ects are a natural
consequence of the specific model used but would also
appear in a qualitatively similar way in any model
which attempts to deduce the potential of an "inde-
pendent particle" model from the two-body interactions.

Another striking eGect is the strong dependence of
the potential felt by a particle on the particle mo-
mentum, reRecting the decrease in the scattering ampli-
tudes as the relative momentum in collision increases.
This behavior almost certainly is present, in a qualita-
tive form at least, in any nuclear model treating particle
motion to a first approximation as independent. The
size of the eGect can be seen in Fig. 10 which shows the
decrease in potential energy from —82 Mev at zero

momentum to —32 Mev at the top of the Fermi dis-

tribution. A curious anomaly appears here also in that
the relatively weak potential felt by the rapidly moving
particles of maximum kinetic energy results in a posi-
tive total energy; i.e., these particles are unbound. The
precise meaning of this result depends on a thorough
understanding of the nature of the nuclear surface, and
more particularly, of the relation to the nucleons of the
independent particle modes of the coherent motion. It
is not clear, for example, that the requirement of binding
for the physical nucleons is not more closely related to
the average binding of the coherent modes than to the
binding of the mode of highest momentum.

In conclusion we would like to comment that further
extension of the methods of the previous paper (I) and
of this paper cannot be made until the nature of the
nuclear surface and of the "particle" coupling to the
surface is understood. The strikingly large eGect of the
surface considered somewhat crudely in this paper
shows the importance of a quantitative understanding
of the surface phenomena. These topics form a subject
outside of the scope of this paper; it is expected that
work along these lines will be published separately in

the near future.
The author is indebted to Dr. C. A. Levinson and Dr.

H. Mahmoud for helpful discussions of some of the
topics of this paper, and to Professor John A. Wheeler
for a very stimulating discussion of the implications of
these results. The author would also like to acknowledge
the computational aid of Dr. John Chappelear.
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FIG. 9. Potential, kinetic, and total energy per particle in an
in6nite medium as function of momentum. The abscissa is meas-
ured in units of the Fermi momentum. The evaluation has been
carried out at the equilibrium density indicated in Fig. 8.

APPENDIX A. TENSOR SCATTERING AND
EIGEN PHASE SHIFTS

We consider the scattering in a state with total
angular momentum J, parity ~= —(—1)~, and with
two coupled orbital angular momentum states with
L=J&1.We introduce the eigenstates of the scattering
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matrix which are characterized by the fact that in
scattering, such states experience the same phase shift
in the two coupled states with I.=J~1. These states
we call gJ- and gJp, they have, respectively, the
asymptotic forms

'Jjq, q I ta—ne'gq, q~I sin[br —sIc(J—1)+f/ ]
gsa

1+tan'e kr
(A1)

'jjq, g I +cote'1Jq, ~+I sin[br —sIr(J —1)+8p]
gJP~

1+cot'e

where ~ is the real parameter which determines the
asymptotic ratio of L=J 1and L—=J+1 states in the
eigenstate and 6, 6p are the eigen phase shifts. We use
these equations to de6ne generalized spherical harmonics

40-
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+ -l20-
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I

0.2
I I

o.4 O.e

4/II, ,

I

O.B I.O

Ig (e) = ( gz, g I —tane'JJg g~t ) (1+ta11 e)

Izp (e') = ( JJg, J' I +cote JJg, gyt ) (1+co't c)

FIG. 10. Potential, kinetic, and total energy per particle for a
(A2) "nucleus" made up of 300 nucleons (with Z= N) as a function of

momentum. The evaluation is at equilibrium density.

or collectively, introducing the transformation coeffi-
cients B(JLm

l
Jom),

I&. =+I B(JLml Jarm)&Jr") o =n) p) (A3)

spherical harmonics to find

Pm Pm+
kr

and their inverses XC(JL'ml SL'Om)B(Joml JL'm) (—i)~'

XB(JLm
I
J~m)C(SLm —m. 'm, 'l JLm)

~2i5a

X Yz, "''/f *' (AS)

g»"——2 B(J~ml JI.m)I,.-. (A4)

[exp (2i f/c )) 1]—fJ ——P A .I&. sin[br —-', Ir (J—1)+f),]/kr. (AS) y p m+.
o=a, P kr 2i

With this notation it is now simple to get expressions 2i
for the phase shifts in terms of the eigen phase shifts and
the transformation coefficients B(JLm/J~m). First we In terms of the usual complex phase shifts f/I, the

write the total wave function in the asymptotic region wave function has the form

The incoming wave is

——P CI,YI,'XI sin(kr sIrL)/kr—
=P crc(JLm

l
sLom)B(Jom

l
JLm)Iq

Xsin(kr —-', IrL)/kr,

XC (SLm, —m, 'm, 'l JI.m, )

xc(JImlsLom)YI, ™XI"'.(A9)

(A6) Comparison of Eqs. (A8) and (A9) gives:

exp (2i//1, ~ ') 1—c(JL'm
l
sL'om)

where the C(SLmrmsl JLm) are the usual Clebsch-
Gordan coefficients. Using this result and choosing the
coeKcients A in such a way as to have only outgoing
spherical waves, we find

4'Oz +O'J 4'OJ

2i I" C (JIm
l
SLOm)

XB(Joml JL'm)B(JLml J)rm)

(2L'+1) i e"' —1

x
l
—

l
. (A10)

~ 2L+1) 2i

Using the transformation coeffIcients B(Jom
l
JLm) and

their inverses, we finally get for no= &1,=foe + Q CI,C(JLmlSLOm)
kr

(A7)
r/g I '+ = (tails+cote) [cote)/ + tane)/p

—(JlI+1)'(n- np)], —
(A11)

XB(Jo.ml JLm) (—i) Iq (e""—1)/2i.

To get the conventional expression in germs of the usual 'r/~+I ——(tane+ cote) [taneg~+mtegP

phase shifts, we re-express the I~ in terms of the +(JlI+1) '(n- np)]—
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And for m=0

'g J' I ' = (t Rne+ cot e) Lcotert +taneIlp

+(I!I+1) '(n- ne—))
Ilg+I ' —(tane+cote) Ltanerl +cote21e

(I—II+1)'(n- 9e—)),
where

rtI, J™=exp(i81, ~'") sin8I~, etc

(A12)

the relative asymptotic amplitude of S and D waves.
From these two solutions we construct the linear
combinations

P tN —P m+pP m (A14)

If we now impose the condition that the phase shift in
the S and D waves be equal, thus determining the eigen
phases, we find a condition on p and further an expres-
sion for tanb„

Thus the phase shifts for a given J are expressed in
terms of the real parameters e, 8, bp.

To make use of these formulas, it is further necessary
to show how the parameter and the eigen phase shifts
may in practice be determined from the solutions which
are obtained in the numerical solutions of the coupled
tensor equations. We suppose that two independent
solutions satisfying the boundary conditions have been
determined, as for example by so choosing the ampli-
tudes and slopes at the core as to satisfy the orthogo-
nality condition. ' These solutions are asymptotically of
the form (we consider the J=1 even parity state)

P,~= sin(kr+5, ) 'JJIpI"+P; sin(kr —2r+a;) 'JJ 121", (A13)

sinbI+p singes p1 sino 1+pps sino 2 = tan5 p. (A15)
coster+ p cos82 p1 coso.1+pp2 cosa2

tan~=
Pl S1110'1+P P2 SII102

sin51+ p sin82
(A17)

This gives a quadratic equation for p; the two roots
determine the two eigen phase shifts. Thus we can write
for the solution f ~:

=A Lsln(kr+8 ) JJIpI

+tane Sin(kr+8 —2r)'JJI21 ), (A16)

where tane from comparison with Eq. (A1) is, using
Eq. (A15),

where 8, and o., are the (in general unequal) phase shifts This completes the construction from the two original
for the Sand D waves and p, is a parameter determining solutions of the necessary parameters.
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Space-Time Representation in Wave Mechanics: Illustration of the Method

MALCOLM K. BRACHMAN

Texas Instrlments Incorporated, Dallas, Texas
(November 12, 1953)

The basic equations of a new space-time representation are derived in a heuristic fashion, and a simple
application is presented to illustrate the point of view.

A NEW space-time representation has been de-
veloped by Hellund and the present author. '

This paper provides a heuristic derivation of the
Schrodinger equation in the new representation and
illustrates its solution by considering the square-well
potential.

THE SCHRODINGER EQUATION

We consider a one-dimensional system with a Hamil-
tonian H( ibad/Bx, x) in t—he Schrodinger representa-
tion. The Hamiltonian is assumed to have the form

8
H =— +V (x)= T+V.

2m Bx

The wave function 4(x,t) satisfie's the Schrodinger

' E.J.Hellund and M. K. Braohman, Phys. Rev. 92, 822 (1953).

equation

H%'= i'�(W/rlt). (2)

Our task is to find the form of this equation in the new
representation.

The one-dimensional space is split into cells by the
points of division @=L,0.=0, +1,+2, , with L()=0.
The 0-th cell is bounded by the abscissas L, and L
and its length is /, =L,—L 1. In the o-th cell there is
an orthonormal set of functions, Ip;, (x), which is defined

only within the cell. These functions may be conveni-
ently chosen to be of exponential form, and may be
written

k(o)
qp;. (x)= e"~' j=o, +1, +2, . . .

l,


