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The skew symmetric tensors satisfying the general criterion of spherical symmetry, derived in Part I,
contain certain arbitrary functions which indicate axial symmetry. These functions are removed. It is found
that in addition to the "radial" components found by Papapetrou, the tensor has "transverse" components.
In Maxwell's electrodynamics and in general relativity there are solutions which represent spherically
symmetric 6elds of skew tensors with these transverse components. But in the unified field theories of
Einstein or Schrodinger it is found that such solutions describing fields of skew tensors with nonvanishing
transverse components do not exist. Thus the solutions found by Papapetrou, Wyman, and Bonnor are the
only spherically symmetric solutions allowed by the unified field theories. The spherically symmetric
solution found in general relativity for a radiating star has no counterpart in the unified field theories.

For comparison, it is noted that the same is the case with the field equations of Dirac s new electro-
dynamics. Spherically symmetric nonstatic solutions of Maxwell s electrodynamics have no counterpart
in Dirac's electrodynamics.
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Here capital letters stand for arbitrary functions of
(r,t) while small letters are functions of 8, ie, whose
forms are specified in I. In addition to the well-known
radial components g~4 and g23, this tensor also contains

the transverse components gi2, g~4, gi3, and g34. Now

the transverse components of a skew spherically sym-
metric Geld will lie on the tangent plane to the sphere
through the Geld point. From the familiar case of an
electromagnetic Geld, we know that in this tangent
plane the transverse components-may take up any two
orthogonal directions depending on the polarization of
the corresponding wave. Thus a polarized electromag-
netic wave can choose a preferential direction through
polarization even when it is spherically symmetric.
This polarization (or preferential choice of a direction)
will be exhibited in the tangent plane to the sphere at
any field point. Hence e6ects of polarization will be

' P. C. Vaidya, Phys. Rev. 90, 695 (1953).This paper is-referred
to hereafter as I.

1. INTRODUCTION

~N I,' we have shown that a spherically symmetric
~ ~ tensor Geld g;& must satisfy the criterion

$.'g s+P, ~g;.+g s,.+=0,

where the P are the contravariant components of an
inGnitesimal rotation of a sphere about a diameter.

/=0, /=A cos(iv+8),

ts= —A sin(g+8) cot8+C, t4=0, (1.2)

where A, 8, and C are constants.
We have given one tensor field which is skew sym-

metric and satisfies the criterion (1.1). It is

found on these new transverse components and are
not to be traced in the earlier radial components found

by Papapetrou. The functions n and v of 0 and p, which
occur only in the transverse components of g;~, can

therefore be taken to indicate the corresponding
polarization of the field.

But there is another way in which functions of 0 and

p may occur in our tensor fieM. If the infinitesimal
rotation (1.2) is given about a diameter QOQ' of the
sphere, it is clear that those tensor Gelds which have
only axial symmetry round QOQ', but which are not
centrally symmetric round 0, will also satisfy the
criterion (1.1) and so may be present in a solution of
&q. (1.1). It is easy to see that functions indicating
axial symmetry round QOQ' will also be functions of 8,
p. The function tv(8, q), arbitrary functions of which
occur in our solution (1.3), can easily be seen to be
such a function. We have noted in I that m is propor-
tional to the cosine of the angle I'OQ, where P is the
field point on the sphere at which the value of the
tensor is taken. It is therefore clear that arbitrary
functions of tv (which occur in the radial as well as the
transverse components) are indicative of the axial
symmetry round the axis of rotation. In I we had
taken m, along with e and v, as indicating polarization
of the Geld. This was a mistake. We now remove these
functions of x by putting them equal to unity in our
tensor. We then get a spherically symmetric skew

tensor Geld of the following form:
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where p, q, E, and II are functions of r and t. The form
(1.4) is obtained by so choosing the orientations of the
axes of our polar coordinates that we get simpliGed
values of the functions N(8, q) and v(8, ie):

'v=0~ I= 1.
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2. SKEW TENSOR FIELDS IN GENERAL
RELATIVITY

A spherically symmetric Geld, in the scheme of
general relativity, will be expressible in terms of a line
element

(2.1)ds'= e"d—r r(—d8'+sin't)d qP)+ e"dt'

X=X(r,t), v= v(r, t).

From this line element we can calculate

In order to gain increased con6dence in these new
transverse components of the tensor, we shall give in
the next section the spherically symmetric solution in
general relativity which describes skew tensor Gelds
with nonzero transverse components. That solution will
also provide the background for the corresponding
solution of the unified field theory which we are inves-
tigating in this paper.

satisfy all the field equations of Maxwell. Here again
the charge-current vector J„is not zero, but

J„J&=0. (2.6)

This last relation suggests that solutions of this type
cannot exist in the scheme of classical electrodynamics
recently proposed by Dirac. 4 For in that scheme the
vector J„is proportional to a unit vector e„and there-
fore it cannot be a null vector as in (2.6). We have
actually verified that spherically symmetric solutions
with nonvanishing transverse components of the skew
tensor F„,do not exist in Dirac s electrodynamics. This
may be a consequence of the nonlinearity introduced by
Dirac in the originally linear Maxwell scheme. %e now
proceed to show that even though the nonlinearity
introduced by general relativity allows such solutions,
the unified field theories do not allow spherically sym-
metric skew fields with nonvanishing transverse com-
ponents.

T "=——(Z "—-'g "R)
Sx

(2.2) 3. SOLUTIONS IN THE UNIFIED FIELD THEORY
OF EINSTEIN

It is, however, known from Maxwell's electrodynamics
that'

I' v . p pea+ 1.
g vp epae (2.3)

where F„„is the skew symmetric electromagnetic field
tensor obtained from a potential four-vector A„:

(2.4)F„„=A„„—A„„.
Equating the two values of T„",we shall find that'

Fg4=0, F23=0,

Fis———(m'/m)ps4 m'(4rr f) ——Ig,

Fi,———(m'/m)Fs4 m'(4rrf) ——Ie sine,
-

(2 5)

where 2m=r(1 —e "), m'=8m/Br, m= 8m/Bt, and f is
a function of m. This spherically symmetric skew field
has nonvanishing transverse components of the form
(1.4). This field satisfies all the equations of Maxwell
and the charge current vector J„is not zero, but it is
null.

In this section we shall search for solutions in the
unified field theories which will correspond to the solu-
tion giving the gravitational Geld of a radiating star
mentioned in the foregoing section. For that purpose
we take the complete tensor g;~ of the form
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The diferent functions introduced here are functions
of r and t. It will be seen that we have taken g;g, from

general relativity and g,~ from (1.4). In general, we

can impose four coordinate conditions on this g;~. Two
of them have already been imposed when we took the
orientations of our axes of coordinates for which v=0,
m=1. Two more coordinate conditions can be imposed
by properly choosing ~ and t. Consider an arbitrary
transformation,

J„J~=0. (2.6) r= r(r', t'), t=t(r', t'), (3 2)
The gravitational field represented by it is the field
outside a radiating star. However, our interest in this
solution, at present, is that it gives the same form of
the spherically symmetric skew tensor as the one
obtained by us geometrically in I.

It is further found that it is not necessary to introduce
the curved space-time of general relativity to obtain
such a spherically symmetric skew field in the scheme
of Maxwell's electrodynamics. It can be verified that

Fg4=01 F23=0) F]3—OP F34—01

F is Fs4 f(t r), —— —— —
s V. V. Narlikar and P. C. Vaidya, Proc. Natl. Inst. Sci. (India)

14, 153 (1948).' P. C. Vaidya, Proc. Indian Acad. Sci. A33, 264 (1951).

of the coordinates (r, t) l:o the coordinates (r', t'). It is
easy to verify that if we choose r and t of (3.2) to satisfy
the equations

p(Br/Bt')+q(Bt/Bt') =0, (3.3)

(pa+qci) (Br/Br') (qa py) (Bt/Br') —=0, (3.4)—
then after the transformation we shall find that g~4'=0
and gi4

——0. But this is possible only if the Jacobian of

the transformation does not vanish, that is, if

p'y+2pqa q'n/0— (3.5)

Similarly it is possible to find transformations of (r, t)

' P. A. M. Dirac, Proc. Roy. Soc. (I,ondon) A212, 330 (1952).
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which will lead to gi3'=0 and g~4' ——0, again only if

(3.5) holds.
However, there is another simpli6cation possible

whether the condition (3.5) is satisled or not. We choose
our r and t of (3.2) to satisfy the equations

p(ar/at')+q(81/81') =0, (3.6)

y(8t/Br')'+2a(Bt/Br') (Br/Br') rr(8—r/Br')'=0 (3 7)

J.'hen after the transformations we shall 6nd that
g34'=0, gII'=0. %e can factorize the quadratic left-

hand member of (3.7) into distinct factors each of which
will be linear in the partial derivatives. Now it is
always possible to choose one or the other of these two
factors in such a way that the selected factor equated
to zero, together with Eq. (3.6), will dehne a trans-
formation of (r, t) into (r', ]') whose Jacobian will not
vanish. Hence this type of transformation is always
possible. It may be noted that these coordinates (r', 1')

are similar to what we have called "Newtonian" coor-
dinates in general relativity. '

Ke use these "Newtonian" coordinates and take our

g;I, of the form

g4sI kl 2gkl, ~ 2gl~, k 2g~ al 'gksI il gslI k4 ~ (3 14)

It was found that E;I, contained terms in cot'8. This
means that though g;I, is spherically symmetric, while
8;I, is not. The situation is similar to the one discussed
by Takeno and others, ' who were using Papapetrou's
form of spherically symmetric g;I,. Now in all the

unified .6eld theories, there is one field equation of the
form

8;I,=Xg, I,. (3.16)

[In Schrodinger's theory P WO, while in Einstein's
theories X=O.j In all the cases mentioned above, we
have foundr that (3.16) eventually leads to equations
of the type (3.10):

Having found I'I, ~' from (3.13) and (3.14) for all the
three cases mentioned above, we calculated E;~ from

&'&=I'.t. ', .—I''. 'I'~a' —a (I''.'. k+1'a. ', ')+I''k'I'. ~'. (3 15)

0
0

—p sin8

. a—H

0P-
—E sin8

0

One of the 6eld equations is

p sin8
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(3.8)

f(r,t)+ qr(r, t) cot'8=0,

which, in their turn, have eventually led to p=O in all
cases. Hence solutions with nonvanishing transverse
components do not exist under any scheme of field
equations which contain equations of the type (3.16).

4. CONCLUSION

For i=4, this leads to

(3.9)

8
$P(p'+E')A$ fp—EHA j cot8=0, —(3.10)

Bt'

It is therefore clear that, as A/0,

(3.11)

pEH= 0. (3.12)

in the form

gA, l gia~lk gakr il =0y (3.12)

g', I t~'= ggl i'+2gt; I+—2g'e, t+, ga.I 'i'+g. tI a", (3 13)

~ P. C. Vaidya, Nature 171, 260 (1933).

The case p=0 gives the known solutions of Bonnor.
Therefore, from (3.12) we conclude that EH=0. We
have worked out the detailed solutions in all the three
cases (i) E=O, H=O; (ii) E=O, HWO; (iii) E&0, H=O.
YVe found the quantities F;; by writing its defining
equation,

Ke have shown here that spherically symmetric
solutions with nonvanishing transverse components of
the skew tenor g;I, are not allowed by the uni6ed 6eld

theories of Einstein. Corresponding to a solution of the
point charge in general relativity there are the solutions
of Papapetrou, Wyman, and Sonnor in the uni6ed
field theory; but corresponding to the solution of a
radiating star in general relativity there are no solu-
tions in the uni6ed field theory.

Here we have an analog in the c1assical electro-
dynamics. Corresponding to the well-known solution
for a point charge in Maxwell's electrodynamics, we
have a solution in the new electrodynamics proposed
by Dirac. (It is only a gauge transform of the Max-
wellian solution. ') However, corresponding to the non-

static spherically symmetric solution of Maxwell's
electrodynamics given here in Sec. 2, there is no solution
in Dirac's scheme.

If, however, we want axially symmetric solutions,
we can introduce arbitrary functions of m in our g,.I,
as in Eq. (1.3). Solutions of this type are now being
investigated.

' Takeno, Ikeda, and Abe, Progr. Theoret. Phys. Japan 6, 842
(1931).

'The detailed calculations for the three cases are appended
here as appendixes I, II, and III.

s K. J. Le Couteur, Nature 169, 146 (1932).
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The tensor is

APPENDIX I

Case (i): E=O, H=O
obtained for the eighteen symbols coming in this set
of simultaneous equations:

0
0

—p sine

0 P sine a
—P 0 0
0 —P sin'8 0
0 0

r '=(H/~)r "=(H/a)r '=(—H/a)r '

= (H/P) cscer23' ——(H'/a') I'2i'

so that
g =«tll g 2II = p(—Pa'+~p')»n'e. = (—2'/a2)r214= (—P'H2y/2Aa2) cote,

I 11

I'132=

I 12

rl2'=
r 24=12

(p2a2/pA) cote,
—r 312= (p/2p) cote sine, I'14' ——r412= 0,
I'„'= —(p2y/2A) cote,
—r213= (Pa'/2A) cote csee,

I'214= (p'a/2A) cote,

where A = a2P —P2y. The value of All is of the following
form:

p'a'(a'p+p'V)
Rll fil(r 3)+

2PA2
cot28,

R11=Xgll will now demand that the coe@cient of cot'0
in All should vanish. Since a'P+P'TWO (because gWO),
this forces the conclusion p=0.

APPENDIX II

Case (ii): E=O, H~O

The 3-index symbols which will ultimately give terms
containing cot'0 in R» are I"»', I'», I'», where k may
be 1, 3, or 4. Their values can be easily obtained from
(3.13), (3.14). We have found that

I', ' sine= (Hy/aP)r 4 csee= (—H/P)r ' csee

= (H/p) (r„'—cote) = (y/a) r„'sine

= (—Hy/a2)r213 sine

=ppHy(a'+H')/2a'A $ cote,

I'„4=
l

P2(a2 —H')/2aA j cote,

where A = (a2+H2)p p2y. The fol—lowing five symbols
can then be obtained by solving the single equation
obtained for each of them from (3.13) or (3.14).

rl12=
l

P2(a2 —H2)/PA J cote,

r 132= $HP(P(a2+H2)+P2y)/2aAP] cote sine,

r, 2= (P/2P) cot8, r,2= ( P'H'p/2aA—P) cote,

I'142= 0.

The values of Rll and R22 are of the following form:

gik=

0
0

—p sine
u—H

0 p sine
—P 0
0 —P sin'8
0 0

The fundamental tensor is

a+H
0
0

p2 (a2+ H2)3P+ a2p4~ (a2 H2)
E11 fll(» ~)+ — cot29,

2Pa2A'

p'~(a'+H')
%2=f22(r, t)— cot28.

2a22

Of the 64 symbols r,2' there are 27 (for which either i,
k, or I is 2) which contain cote as a factor in their
values. These symbols ultimately lead up to cot20 terms
in R;I,. We give here the main results of calculations of
these 27 symbols. First, eighteen symbols are evaluated

by solving a closed set of eighteen simultaneous equa-
tions obtained from Eqs. (3.13) and (3.14).The method
of writing these eighteen equations is a simple one. We
begin with any one symbol, say F»'. We write down

its value from (3.14). Then on the right-hand side I'23'

will appear. Next we write the value of I'23' from (3.13).
Its value will involve two new symbols F»4 and I'24'.

We write down their values again, using (3.13) and
(3.14). We proceed in this way till we come ultimately
to an equation which does not involve any further new

symbol. The solution of these eighteen equations is a
straightforward process. The following values are

R;~——)g;~ will now demand that the coeKcients of cot'8

in the above should vanish. This again leads to p=0,
unless we take a'+IP=O and y=0 which will make
3=0 and so the values of the 3-index symbols will need
revaluation. We do this. Beginning with a2+H2=0,
p=0, we work out the values of these 27 symbols.
Most of them become zero. But when we try to Gnd
I'21' and F21', we are faced with the two equations:

ar214 —Hr214= (Hp2/2ap) cote,

Hr„4+ar,„=(P'/2P) cote.

If neither of I'2l', I'2, ' is to be infinite in value, HP'/P
must vanish, which again leads to p=0 because with
a'+H'=0, H cannot vanish.

Hence in this case the only conclusion is p=0.
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APPENDIX III

Case (iii): EWO) H=O

In this case, if we use the "Newtonian" form (3.8)
for g;&, it becomes very dificult to isolate the symbols
which involve cot0 terms from symbols not involving
them. Hence we do not use the form (3.8) but, beginning
with the general form (3.1) we take two cases accord-
ing as (3.5) is satisfied or not.

Sub Case (-i): When (3.5) Is Satisfied

The tensor g;~ can be taken in the form
r

p sing 0
E sin8 0

—P sin'8 0
0

0p—
—E sin0

0

0
—p sing

0

It is now found that all the 37 symbols I';&' for which
either i or h or I is 4, do not contain cotg. I', t' is n'/2a )

These 38 symbols do not contain cote. Of the remaining
26 symbols, I'»', I"»', I'»', and I'»' vanish. The fol-
lowing are the values of the rest.

(—p/2p)l' '=( /p)I' '=( p/E)(I' —' p'/2p)—

I st sing= (rr/2E) (F»'+p'/2n)

= (—a/P) (I'sss —cot8) =x—y cot8,

r„~=r»2 ——r» —r„3=0,
I'„=—I'„=(p/a)(y'/2y+p'/2p

—(E/p) (x—y cotg) 7 sing,

I" '= —I' '=(E/p)r( —p/2E) cotg+E'/2E
p'/2p+ (E—/p) (x—y cotg) 7 sing,

I'»s= I'» —B'/B —n'/2a —p'/2p+ (E/p) (x—
y cotg),

I „i= —I„i= (E/~) $E'/2E B'/B+n'/2~—
+ (p/2E) cotg —(p'/Err) (x—y cotg) 7 sing,

I',ss = —I',s'= (p/o') (p'/2p —(E/p) (x ycot8) 7 sing, —
I,)= ( P'/2~+ (2P'—/~') h'/2~+P'/2P)

(2Es/op) (E'/2E —p'/2p)+ (Ep/np) cotg
—2E(p'p+E'cr) (x—y cotg)/n'p'7 sin'8,

I"ss'=
l
—(I+A'lrrp) cotg —(2Ep/esp)

X (E'/2E B'/B+ '/2cr+ p'/—2p)

+p(p'p+E'n) (x—y cotg)/n'p'7 sin'8,

Sub Case (2)-: When (3.5) Is iVot Satisfied

In this case we can remove both g~l and g44 along with
g~4.' Thus we take our tensor as

0
0

—p sing

0p—
—E sine

0

p sing a'
E sin8 0

—P sin'8 0
0 0.

The following 13 nonzero symbols lead to cot'8 terms
in ~&g.

I'its= (P'/A) cotg+ (r,t),
I"„s=rst= (PE/2A) cot8+(r, t),

I'tss sing= —I'st' sing= (PP/2A) cotg+ (r, t),
I'rss cscg= —I'sts cscg= (PP/2A) cotg+ (r, t),

I'„'=I"„'=( pE/2A) cotg+ (r,—t),
I',.'= I' s, '——(P'P/2aA) cotg+ (r,t),

—I ts cscg=+Fst csc8= (p E/2aA) co'tg+ (r)tj,
A=p' —E',

where the (r, t)'s indicate some additional functions of
r and t.

The coeKcient of cot'8 in Rtt turns out to be p'/2A,
so that the inevitable conclusion is p=O.

) If (3.5) is not satisfied, g44 automatically becomes zero when
we make the transformation for which g34 is zero. We can use the
other coordinate condition to make g~I=O.

x= (2Ey/P) (B'/B+E'/2E u'/—2cr P'/—2P) )

2y=-pp/L-(p' —E')-pp'7,
B2=~ (ps+ E2)-p ps

and a prime indicates diGerentiation with regard to r
(e.g. , n'= gn/gr—). Now R,~ will contain terms in cotg

and cot'8. Here again we shall require these terms to
vanish. Once again we shall be led to p=O, or else
n(P' E')+—PP'=0 from Rtt and n(P' 3E'—) PP'—=0

. from 822. Then, when we write down the value of 833
and use the above two results, we get the coeKcient of
cot'8 therein as —

~ which does not vanish. Hence the
other alternative does not hoM. The only conclusion
s p=0.


