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A simple model is proposed for the description of the scattering
and the compound nucleus formation by nucleons impinging upon
complex nuclei. It is shown that, by making appropriate averages
over resonances, an average problem can be defined which is
referred to as the “gross-structure” problem. Solution of this
problem permits the calculation of the average total cross section,
the cross section for the formation of the compound nucleus, and
the part of the elastic-scattering cross section which does not
involve formation of the compound nucleus. Unambiguous
definitions are given for the latter cross sections.

The model describing these properties consists in replacing the
nucleus by a one-body potential which acts upon the incident
nucleon. This potential V'=V,+:V; is complex; the real part
represents the average potential in the nucleus; the imaginary
part causes an absorption which describes the formation of the
compound nucleus. As a first approximation a potential is used
whose real part Vo is a rectangular potential well and whose
imaginary part is a constant fraction of the real part Vi=¢V,.

This model is used to reproduce the total cross sections for
neutrons, the angular dependence of the elastic scattering, and
the cross section for the formation of the compound nucleus.
It is shown that the average properties of neutron resonances,
in particular the ratio of the neutron width to the level spacing,
are connected with the gross-structure problem and can be
predicted by this model.

The observed neutron total cross sections can be very well
reproduced in the energy region between zero and 3 Mev with a
well depth of 42 Mev, a factor ¢ of 0.03, and a nuclear radius of
R=1.45X10"84% cm. The angular dependence of the scattering
cross section at 1 Mev is fairly well reproduced by the same
model. The theoretical and experimental values for the ratios of
neutron width to level distance at low energies and the reaction
cross sections at 1 Mev do not agree too well but they show a
qualitative similarity.

I. INTRODUCTION

HIS paper deals with the interaction of nuclear
particles with complex nuclei in nuclear reactions.

A model is proposed for the description of the energy
exchange between the incoming particle and the target
nucleus. The considerations are restricted to neutron
reactions with incident energies between 0 and 20 Mev.

One usually describes the interaction of nuclear
particles with complex nuclei by means of the concept
of a compound nucleus which is formed after the nucleon
has entered the nucleus. Before the striking success of
the nuclear shell model was known, it was generally
assumed that the quantum state formed by the particle
entering the nucleus is one in which the motions of all
particles are intimately coupled. We will refer to this
assumption as the ““strong-coupling model.”” These ideas
- led to certain general qualitative conclusions in regard
to the cross sections for nuclear reactions. Several
authors! have attempted in previous papers to derive
approximate expressions for the cross sections of nuclear
reactions with a minimum of special assumptions in
addition to the main assumption of the validity of the
strong-coupling model. We summarize the main results
of these qualitative considerations.

1. Particle widths.—The particle widths of nuclear
resonances with respect to particle emission are related
in a general way to the average spacing D of the levels
of the compound nucleus. For example, the width for
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the emission of neutrons with zero-orbital angular
momentum is given approximately by

I (2/m) (k/K)D, (1.1)

and the widths for the emission of other particles are
equal to the above expression multiplied by the pene-
tration factor of the potential barrier. Here %k is the
wave number of the incoming particle, and K is the
wave number in the interior of the nucleus; K is of the
order of 10¥ cm™.

2. Potential scattering.—The elastic scattering arises
from a superposition of a resonance amplitude and a
slowly varying potential scattering amplitude. The
former is important only in the immediate vicinity of
the resonance; the latter is equal to the scattering
amplitude of an impenetrable sphere of a radius
approximately equal to the nuclear radius.

3. Neutron total cross section.—The neutron total
cross section averaged over resonances is equal to the
total cross section of a spherical potential well whose
depth is such as to give rise to an internal wave number
K~108 c¢m™ and which possesses an absorption for
the incoming waves such that the waves are absorbed
inside within distances of the order K. These condi-
tions were expressed approximately by Feshbach and
Weisskopif? in the form of a boundary condition on the
incoming wave function #/7 at the nuclear boundary:

du/dr=—1Ku.

Formula (1.1) and the other consequences of the
strong-coupling model have been found correct as to
the order of magnitude. However, as a consequence of
point (3), the neutron total cross sections when averaged

2 H. Feshbach and V. F. Weisskopf, Phys. Rev. 76, 1550 (1949).
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over resonances should all be smooth functions of the
energy which decrease monotonically with increasing
energy and whose form is rather similar for all atomic
numbers A. Also the dependence on 4 at constant
energy should show a continuous, slowly increasing
trend with increasing A. The measurements of neutron
total cross sections by the Wisconsin group and by
others have clearly demonstrated that this is not so.
The neutron total cross sections exhibit typical devi-
ations from the predictions of the strong-coupling
model. (See Fig. 3.) The shape of the energy dependence
of the neutron cross sections changes significantly over
the range of 4 ; however, this change is not random but
gradual. Nuclei with small differences in A show almost
the same behavior. One concludes, therefore, that these
characteristic shapes do not depend on detailed features
of nuclear structure but on some general properties
which vary slowly with 4, say, the nuclear radius.

The success of the shell model has cast some doubt
upon the fundamental assumptions of the strong-
coupling model. Does the particle necessarily form a
“compound state” after entering the nucleus? The
shell structure furnishes much evidence that a nucleon
can move freely within the nucleus without apparently
changing the quantum state of the target nucleus. This
is a consequence of observations made at the ground
state and at low excitation energies, and it is question-
able whether this apparent absence of interaction
between one nucleon and the rest is valid also at those
excitation energies (~8 Mev) which are created in
nuclear reactions with neutrons of a few Mev. Further-
more, there is some reason to believe that at higher
energies, 15 Mev and up, the interaction between the
entering nucleon and the target is appreciable, since
the reaction cross sections at those energies have been
found?® to be equal to the geometrical cross sections
[x(R+%)%]. Hence, for such energies it happens rarely
that a neutron enters the nucleus and leaves it again
without sharing its energy with the rest.

It seemed worth while, therefore, to investigate the
consequences of a reduced interaction between the
nucleons for the theory of nuclear reactions in the energy
region of a few Mev. This reduced interaction will
manifest itself in the following way: The incident
nucleon can penetrate into the nucleus and move within
the boundaries of the nucleus without forming a com-
pound state. Hence, in this case, the target nucleus
acts upon the incoming nucleon as a potential well.
The actual formation of a compound state occurs only
with a probability smaller than unity, once the particle
has entered the nucleus. It has a finite chance of leaving
the nucleus without having formed a state in which it
has exchanged energy or momentum with the rest of
the nucleus. The formation of the compound state
then would have the aspect of an absorption. Hence,
the effect of the nucleus upon the incident particle

3 Phillips, Davis, and Graves, Phys. Rev. 88, 600 (1952).
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could be described as the effect of a potential well with
absorption, where the absorption coefficient within the
well would be an adjustable parameter. It is obvious
that this description represents an oversimplification
which naturally cannot reproduce all features of nuclear
reactions. Specifically, it will not reproduce any reso-
nance phenomena which are connected with the many
possible quantum states of the compound system. We
therefore expect that this model will at best describe
only the features of nuclear reactions after averaging
over the resonances of the compound nucleus.

The formulation of this attempt to construct a simple
model for nuclear reactions requires a study of the
definitions of the various cross sections; in particular,
the meaning of the cross section for the formation of a
compound nucleus must be clarified.

We introduce the following cross sections: oy, the
total cross section, which can be split into

gi=0eat0as

where o, is the elastic scattering cross section, and o,
is the “reaction cross section.” The former is defined
as the cross section for scattering without change of
the quantum state of the nucleus. The particle leaves
by the same channel by which it has entered. The
elastic scattering has an angular dependence which we
express by the differential cross section do.i/dS,

da'el
Oel= f (a)dﬂ
aQ

The reaction cross section includes all processes in
which the residual nucleus is different from or in a state
different from that of the target nucleus. These are all
processes whose exit channels differ from the entrance
channel. It will be practical later on to subdivide the
elastic cross section into two parts:

Oel=0geT0ce

We call the second part, o, the ‘“compound elastic”
cross section. It is the part of the elastic scattering
which comes from the formation of the compound
nucleus and the subsequent emission of the incident
particle into the entrance channel. The first part we
call “shape elastic” cross section; this is the part of the
elastic scattering which occurs without the formation
of a compound. The exact definition of this split will
be given in Sec. II. We note that such definitions will
be possible only for the average cross sections, averaged
over an energy interval containing many resonances,
if such resonances are present.

'On the basis of the compound nucleus assumption,
we consider all actual reactions to occur after compound
formation. Hence, we introduce a cross section o, of
compound nucleus formation:

0c=0cct 0,
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and obtain, naturally,
o= O'se+0'c-

The nuclear model which we propose here is expected
to predict only the cross sections ¢, and o,. It considers
only the conditions in the entrance channel, that is, in
that part of the phase space in which the target nucleus
is in its initial state. Hence, the compound nucleus
formation is considered as an absorption of the incident
beam, although part of it, namely ., leads to an
elastic scattering process. The model consists in de-
scribing these conditions by means of a one-particle
problem. The nucleus is replaced by a complex potential,

V=Vot+iVy, (1.2)

acting upon the incoming neutron. The scattering
which the neutron suffers in (1.2) should reproduce the
shape elastic scattering o.; and the absorption which is
caused by the imaginary part V; should reproduce the
compound nucleus formation.

It is probable that the potential functions in (1.2)
vary somewhat with the incident energy. For example,
one might expect an increase of the imaginary part with
increasing energy. If an approximate description of the
facts is possible by means of a potential (1.2), the shape
of the potential will be indicative of the type of nuclear
interaction which a neutron suffers in the nucleus. The
real part Vo would describe the average potential energy
of the neutron within the nucleus, and its shape would
give indications as to the form of the potential “well”
inside the nucleus. It is similar to the potential encoun-
tered in the shell model of the nucleus, although we do
not pretend that an incident neutron of several Mev is
faced with exactly the same potential which acts upon
the nucleus in the ground state. The imaginary part V,
would indicate the strength and location of the processes
that lead to an energy exchange between the incoming
neutron and the target nucleus.

We expect the potential ¥ to depend in a simple way
upon the mass number 4. Its dependence on 7 should
be similar for all nuclei. The simplest choice would be
a square-well potential:

Vo=—U for <R,
V=0 for r>R,
V1=§‘V0.

In general, we might express it in the form V=V (r/R),
R=roA%. However, there might be a region near r=R
in which the features depend on r and not on (r/R);
the thickness of that part of the potential which
represents the surface might be independent of the
radius.

With a given V(r) and its dependence on 4, it is
possible to calculate the cross sections o, o5, and o,
each as functions of energy and mass number, and also
the angular dependence of the scattering. The next
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section contains the definitions of the cross sections
involved, and the following sections describe the tech-
nique of calculating the cross sections and their com-
parison with experimental material.

II. THEORY OF AVERAGE CROSS SECTIONS

All nuclear cross sections exhibit strong fluctuations
with energy which are generally referred to as reso-
nances, especially in the lower part of our energy range.
As the energy increases, the width of the resonances
increases too; and, for not too light nuclei, the width
becomes comparable or larger than the level distance
at energies above a few Mev. Hence, we find the cross
sections at higher energies to be smooth functions of
energy with little fluctuation. We will refer to the
lower-energy region as the ‘“resonance region’” and the
upper as the “continuum region.”

The behavior of the cross sections in the resonance
region does not lend itself to a description by a simple
one-particle potential (1.2) because of the rapid fluctu-
ations with energy. However, the averages of the cross
sections taken over an interval 7, which includes many
resonances, will be shown to be the cross sections
belonging to a new scattering problem with slowly
varying phases, which we will call the “‘gross-structure”
problem. In this problem it is possible to define cross
sections for the formation of a compound nucleus
which also includes the compound elastic scattering.
It is this gross-structure problem and mnot the actual
rapidly varying cross sections which we intend to describe
by means of a one-particle problem with the potential (1.2).

We bombard a nucleus X with particles @ and consider
the total cross section oy, the elastic cross section o,
and the reaction cross section o,. 6;=0q+0,. Each of
these cross sections will be subdivided into their parts
coming from different angular momenta /, e.g.,

ai=y 0.
1

(2.1)

These cross sections can be expressed in terms of the
amplitudes of the wave which describes the situation in
the entrance channel. We consider the subwave #;/r in
the entrance channel with the orbital angular momen-
tum / (r is the channel coordinate), and we write the
wave in the form for

1’—)00’

pr—const[ exp(—1 (kr—3lr)) (2.2)

—mn1 exp(4i(kr—3im)) .

The complex reflection factor #; is connected with the
complex phase shift ¢; by n;=exp(2i¢;), and the cross
sections are given by the well-known expressions for
the elastic cross section:

o’ez(l)=1r?\2(21+1) | 1—7’);'2, (23)
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and for the reaction cross section,
0,0 =mR(2+1) (1= [m[?),

where X is the wavelength of the incoming particle
divided by 2.

The reflection factor #; is a complicated function of
the energy of the incoming particle. It exhibits rapid
fluctuations coming from the numerous close-spaced
resonances of the compound nucleus. We will make the
assumption that one can average over these fluctu-
ations; that is, we assume that the average reflection
factor,

(2.3a)

1 et+1/2

mo= f i, (2.4)

is a smooth function of e if the interval I contains many
close-spaced resonances. We also define average cross
sections in the same way, and we can write

= (D) — X2 |2
Oel TR (2l+1)|1 'I’]ll, (25)

5,<l>=7rx2(2l+1)(1—l—ml_2),

where the bar over an expression signifies its average
over the interval /. It is also assumed that 7 is much
smaller than the energy e such that slowly varying
functions of e, like A%, need not be averaged.

One can easily verify the following relations:

G =aRQ+D{[1=7[*— [7[*+|m|?}, (2.6)
and especially
GO =aRQ2+D){|1—7)2+1—|5]2.  (2.7)

Hence, the average total cross section depends only
upon the average reflection factor (2.4). [This follows
directly from the fact that the total cross section is a
linear function of the real part of the phase 7;.]

We now divide the average elastic cross section into
two parts, the ‘“‘shape elastic” cross section ¢;,) and
the “compound elastic” cross section* ¢.., by writing

00D =R (2H1) [ 1—70]2,
(21 1= 2.8)

0P =R ){ [n:]2— [ 7|2}

Furthermore, we combine o, and &, into a
new cross section ¢,®, which we call the cross section
for the formation of the compound nucleus

o W=0,D45P=rRQ2+1){1—|7]%. (2.9
We can see from (2.3) and (2.3a) that ¢5,'? and ¢,®
have just the form of a scattering and a reaction cross

¢ This terminology will become obvious later on. B. T. Feld
[Experimental Nuclear Physics, edited by E. Segré (John Wiley
and Sons, Inc., New York, 1953), Vol. 2] calls o, the ‘“capture
elastic” cross section.

451

section of a new and different problem, whose phase is
the slowly varying function #%;. In other words, by
replacing n; with 7,;, we obtain a new problem, which we
have called the ‘“‘gross-structure problem.” The elastic
scattering cross section o, of this problem is only part
of the actual scattering; it is the ‘“‘shape elastic”
scattering. The other part, the “compound elastic,”
appears incorporated into the absorption or reaction
cross section o, of the gross-structure problem together
with the actual reaction cross section.

One is therefore led to consider the ‘“‘compound
elastic” scattering as that part which comes from the
formation of the compound nucleus and its subsequent
decay into the entrance channel, hence its incorporation
into o.. After the averaging, o.. appears as part of the
absorption from the incoming beam, which corresponds
to the idea that the formation of the compound nucleus
can be considered as an absorption whatever happens
afterwards, re-emission or not.

It is the gross structure problem which we intend to
reproduce by the interaction of the incident particle
with the potential (1.2). The resulting scattering cross
section should represent the shape elastic scattering,
and the resulting absorption cross section should repre-
sent the compound formation. The latter contains the
part o of the actual scattering.

When the energy is high enough above the resonance
region that the continuum region is reached, the cross
sections and phases are no longer rapidly varying
functions of energy. Then the gross-structure problem
is equal to the actual one and 7;=1;. It follows from
(2.9) that ¢.,=0. One also can see this from an appli-
cation of the compound nucleus assumption to the
continuum region. The overlap of the resonances can
be interpreted as a consequence of the fact that the
probability T',* of the decay of the compound nucleus
in the state s into the entrance channel « is much
smaller than the probability of the decay into other
channels. This follows from the well-known relation
that any channel width TI's* cannot be larger than
D/2w (D is the distance between resonances of the same
J value). Hence, if the total width is much larger than
D, the contribution to I' from decays other than the
one through @ must be overwhelming. In the continuum
region, therefore, the cross section for the formation of
the compound nucleus is identical to the average reac-
tion cross section &,, and ¢, is negligible.

We now illustrate the averaging process described
above by using cross sections as given by the Breit-
Wigner formula. We consider a nucleus with resonances
at the energies €;, and we restrict our considerations to
neutrons with /=0. We also restrict the discussion to
low energies so that the following two magnitudes are
small: One is 2R and the other is I'/D, with R the
nuclear radius, and T' and D the average values of the
total width of and the distance between neutron
resonances.
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We have derived in the Appendix exact and approxi-
mate expressions for the scattering amplitude 7o and
for the cross sections in this energy region. For the
present purposes, we will use the following form (see
A.14b), which is valid in a region D, including a
resonance e, as indicated:

ilg*
no= g 2FR/(9 (1_._ __._)+,,0*’
e—e+1i0'%/2

, I
no*= *QikR'(‘)(—'—'——“—Gl‘f‘iCﬁ‘i‘Ga), (2.10)
e—e,+10¢/2
for
et e1<2e<esp1tés.

Here R’ is a length and a slowly varying function of
the energy. (A function is slowly varying if it changes
value appreciably only over intervals large compared
to D.) The length R’ is of the order of magnitude of
nuclear dimensions. It plays the role of a scattering
length and takes on both positive and negative values.
The quantities I's* and I'* are the partial width and the
total width, respectively. The terms Gy, G5, and G; are
real functions of e of the following order of magnitude:

Gi~T/D, Gy~(To/D)L(I'/D)+kR], Gs~To/D, (2.11)

where the omission of the superscript signifies the aver-
age value of the magnitude in the interval I.

The first term in 7o incorporates the contribution
from the resonance level e, whereas n¢* contains the
contribution from the other resonances; the first term
in n¢* represents interference effects between the reso-
nance ¢, and other resonances. It will appear later that
n0* contributes negligibly to the average of 7o.

The cross sections in the immediate neighborhood of
the resonance (]|e—e;|<<D;) follow from (2.5) and
(2.10) by neglecting no*, since, in that region, they
contribute terms much smaller than the others.

T (5—T4%)
(e— e+ (07/2)?
UCIL
e— e, +il?/2|
[e—es| KD.

7, (O =7R2

(2.12)
T @ =mR2| (2B — 1)+

The reaction cross section is just the sum over 8 of the

one-level Breit-Wigner cross sections
I‘QSPBS

O "7 X2

(e—e)*+(I'/2)?

for the reaction leading from the entrance channel « to
an exit channel 8. (I's® is the partial width of decay
into the channel 3.)

The elastic cross section contains a “potential”

(2.13)

Tap
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scattering amplitude

P=gitR' (91

which corresponds to a scattering at a hard sphere of
a radius R’, where R’ is not identical to but only of the
order of magnitude® of the nuclear radius and is a
slowly varying function of the energy.

We now determine the average value of the scattering
amplitude 7, over the resonances in the interval I:

1 1
ﬁo=—f7]ode= <—f no(e)de> ,
I I Ds Ds I

where the symbol {( )7 signifies an average taken over
all resonances within 7. The random position of reso-
nances allows us to write

1 pestDi2
0="= f no(e)de,
DV,

—D/2

(2.14)

S

where D is the average level distance within the interval
I'; typical average values of I'* and T',® should be used
in the expression (2.10) for 7.

Evaluation of (2.14) gives

flo=e**[1— (aTs/D)],

when all magnitudes of the order (T',I")/D? or (T's/D)kR’
or smaller are neglected. It is seen in each interval D,
that the main contribution to the average comes from
the main resonance. The contribution of neighboring
resonances which are expressed by 7¢* in (2.10) con-
tribute only to expressions which are smaller than (2.14)
by a factor of the order I'/D or kR.

We now use (2.14) for the calculation of the “shape
elastic” scattering and get, with the help of (2.8),

(2.15)

00e® =7K2| (2*E' — 1) 41T,/ D|2. (2.16)
For small 2R’ this becomes
02O =47R[1+ (aTo/2kR'D)*].  (2.17)

The magnitude [#1'/2(kR’D)J? is usually rather small.
[It is of the order of 1072; see, for example, the estimate
in Blatt and Weisskopf,® Chap. VIII, Eq. (7.14).]
Hence, 0..© is very nearly equal to 4wR’? for kR'<1.

We get the cross section for the formation of the
compound nucleus according to (2.9),

7 =202/ D) (1— 42T/ D). (2.18)
5 The appearance of the length R’ is a consequence of our
general treatment of the nuclear resonance in the Appendix. In
the special derivation of the Breit-Wigner formula, as given in
Feshbach, Peaslee, and Weisskopf (reference 1) or J. M. Blatt
and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley
and Sons, Inc., New York, 1952), assumptions are made which
make R’ constant and equal to the nuclear radius R. It is shown
in this paper that these assumptions probably are valid only in
special cases as in the case of strong coupling, for example.
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The average total cross section then becomes

09 =0,,040 O =47 R"?+27*XT,/D. (2.19)

The second term in this expression is proportional to
(1/v).

It is interesting to compare o, with the average of o,
which, according to (2.12), is

5,0 =278 (I'y/D)(I'—T,)/T. (2.20)

Hence, the difference between the two, the “compound
elastic” scattering, is [neglecting the small factor
7o/ (2D) ]

000 =2m*RT,2/DT. (2.21)

This is just the average of that part of the elastic
scattering (2.12) which corresponds to the resonance
amplitude only, namely, of

.
(e—es)2+(T%/2)*

It is the cross section which one would get for the
re-emission into the entrance channel from the Breit-
Wigner expression (2.13).

It is significant that expressions (2.15), (2.18), and
(2.19) do not contain the total width I but only the
channel width T',. The “gross” properties (total, shape
elastic, and compound nucleus formation cross sections)
are independent of the nature of the other exit channels.
They would remain unchanged, for example, if the exit
channels B7%a were closed. It would only increase ..
at the expense of &,, as seen in (2.20) and (2.21). This
is connected with the fact that a change of I' with
constant T', changes only the width of the resonance,
but not its area.

At the energies considered here, the cross section for
the formation of the compound nucleus contains only
magnitudes (T, and D), which can be determined by
studying the neutron resonances. Hence, investigations
of slow neutron resonances are useful to check the
theoretical predictions of ¢, at low energy. The “shape-
elastic” scattering, on the other hand, in this energy
region is almost entirely given by 4wR’? and is therefore
essentially independent of the neutron resonance values.
Apart from the small correction *A%(I's/D)?, it is equal
to the potential scattering as shown in (2.12) and,
therefore, can be measured also by studying the cross
sections near and between resonances.

III. POTENTIAL-WELL MODEL

o=mA

In this section we shall employ a potential-well model
to determine the gross-structure cross sections. We have
adopted for the purposes of a preliminary survey the
simplest type of potential well:

V=—Vo(14i),
V=0,

r<R,
(3.1)
r>R,
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where Vo and ¢ are constants and R is the nuclear
radius. The use of the complex potential is necessary
to obtain nonzero values for the cross section for the
formation of the compound nucleus. A similar model in
which {~1 was employed by Bethe.® Fernbach, Serber,
and Taylor” have used the same model in order to
describe nuclear scattering at very high energies. A
model in which {=0 was used by Ford and Bohm? in
discussing zero-energy cross sections. It is essential
that the crudeness of this model be emphasized. We
have, for example, omitted any spin-orbit terms which
play an important role in the shell model, but which
we expect will not affect the over-all qualitative features
which we seek here. The constants in (3.1) may well
turn out to be energy dependent. We particularly
expect this for ¢, since we know that &, is large at high
energies, while the success of the shell model indicates
that ¢ should be zero for the ground states of nuclei.

We give some of the details of the calculations with
potential (3.1). For each ! we calculate the value of the
logarithmic derivative,

fi=R(u! /ur)r—r. (3.2)

The average reflection factor #; is then
ﬁl=e—2isz(1_~i), (3.3)

M+iN,

where

§1=tan"1(— 7 (x)/n(x)), (3.4a)
Atisi=14ah! @)/, (3.4b)
M,=s,—Imf, N;=—A+Ref.. (3.4c)

The functions 7; #7;, and %; are the spherical Bessel,
Neumann, and Hankel functions, respectively, while x
is, as usual, kR %;/(x) is the derivative of k;(x) with
respect to x; A; and s; are both real magnitudes and
are defined as the real and imaginary part of the
expression on the right of (3.4b).

For potential (3.1), f; may be written down directly

fi=1+X35/(X)/j(X), (3.5)

where

X=x24+ X2(14i0), Xo*= m/B?)V,Re.

This is, however, not the most convenient form for
determining the real (Re) and imaginary (Im) parts of

fi. We have instead employed recurrence relations for
these quantities based on recurrence relations for ;.

6 H. Bethe, Phys. Rev. 57, 1125 (1940).

7 Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).

8 K. W. Ford and D. Bohm, Phys. Rev. 79, 745 (1950).

9 This follows the notation of Morse, Lowan, Feshbach, and
Lax, U. S. Navy Department of Research and Inventions Report
No. 62.1R, 1945 (unpublished).
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For =0, we get
f() =X COtX,
X sin2X ;4 X, sinh2X,

Ref(]: y (36)
cosh2X,—cos2X,
X2 Sianl— X1 sinh2X2
Imfo =
cosh2Xs—cos2X;

where X =X;+1X, The recurrence relations which
follow from

XZ
fi= —1
I— fi
are
Ref___ (‘le2 — X22) (l— Refl_l) — 2X1X2 Imfz_l_ l7 (3.7)
(I—Refr1)*+ (Imfy 1)
(X12—‘ X22) Imfl_1+ 2X1X2 (l—' Reflﬁl)
Imf,= . (3.8)
(I—Refr1)*+ (Imf;_4)?
The asymptotic expression for f,
er—>X cot(X—3%Im), 3.9

unfortunately cannot be generally employed. The
fractional error in (3.9) is I(l{4+1)/(X sin2X), from
which we learn that (3.9) is not sufficiently accurate for
12> 2, while for /=1 it will fail for small X or for X =#.

The total cross section, as well as the cross section
for the formation of the compound nucleus, may be
easily obtained

(ﬂ(l) 4 M cos26,—N; sin2é;
-2=—2(2H—1)[sin25l+st :I,
X

. Ml2+iV12

PACH! —Imf, 7 QDT
=_(21+1)sl[ ]E , (3.10)

mR?  «? M24N72 a?

5=2150, ce=Y10.0,

where the 7, may be interpreted as penetrabilities.
These cross sections will have characteristic large-

scale resonances, which are present in the experimental

data. In the /=0 case, these resonances occur when

X02§-2
X=X +a?)i= nt+-PHr+———,
22n+1)w
where # is an integer and where we have assumed that
§Xo*/nr<1. The width of the large-scale resonance is
2xh*/mR?, which in the experimental range is of the
order of Mev. For a given energy, the /=0 cross section
will give maxima as a function of R. The width of

these maxima against changes in R is approximately
(2¢R/X?), independent of R.
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The angular distribution for shape elastic scattering is

dose A2
——=—[22(204+1) (1—#;) P1(cosd) |2.
aQ 4 1
Therefore
1 dos,
———=(Re 2)*+(Im }°)?, (3.11)
R? dQ
where
x o
Im ) =-3 ——Pi(cosh),
4 1 7R? (3.12)
1 M ;sin26;+ N ;cos26;
Re > =—3 21+ 1)[sin261— 251 ]
2% 1 Mp2+N2

Before we can compare the theory with the experi-
mental data on angular distributions, it is necessary to
add the compound elastic scattering. From our general
qualitative ideas, we may break the process up into
the formation of the compound nucleus and the
re-emission of the incident particle into a particular
I state, which will naturally have a very definite
associated angular distribution. The result is particu-
larly simple in the case of a target nucleus of spin zero
and an incident particle of spin zero, since here the
angular momentum of the incident particle cannot
change in an elastic scattering process. We may
therefore write

doee

aQ

=3 0.0 Vio| 0y, (3.13)

where ¥y are the normalized spherical harmonics and
w; is the probability that the compound nucleus formed
by the absorption of a particle of angular momentum !
will decay by emission of the same particle without
loss of energy or change in angular momentum.

This simple result cannot be applied to the neutron
case because of the possibility of spin changes of the
neutron and re-orientation of the spin of the target
nucleus without any change in the energy of either the
neutron or the target nucleus. The formalism which
needs to be used here has been worked out by Hauser
and Feshbach'® and by Wolfenstein.!* The target nucleus
and neutron system is now characterized by the spin of
the target nucleus 7, its 2z component #, and spin of
the neutron 7, the channel spin s(s=i+1), the angular
momentum of the incident neutron I, and its z compo-
nent which is zero, and of course the parity of the
system. The compound nucleus will have a total angular
momentum J, z component #, and will decay into a
residual nucleus of spin I’ and a particle of spin 7'.
These form a final channel spin §/(s’=1"+1’), 2 compo-
nent m—m'. The system will have an angular momen-
tum /, z component /.

10W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
1T, Wolfenstein, Phys. Rev. 82, 690 (1951).
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To obtain the desired cross section, we must now
introduce the assumptions of the statistical nuclear
theory. We assume that, upon appropriate averaging,
the various J levels do not interfere, that there is no
residual interference between the various I’s which
can form the given compound state J, or between the
various /’s into which it can decay. We then break up
the process of compound elastic scattering into the
cross section for the formation of the compound nucleus
in state J, with incident particles of angular momentum
1, multiplied by the probability that it will decay by
emission of a particle of angular momentum 7/, leaving
the residual nucleus in the ground state with spin I.
The formation process is given first by the cross section
for the formation of the compound nucleus which,
because of our simple assumption (3.1), depends only
on / and is ¢.®. This must be multiplied by the proba-
bility of forming the system with angular momentum J,
using incident particles of angular momentum 7. Again,
because of the absence of any spin-dependent forces,
this is simply the square of the Clebsch-Gordan coeffi-
cient | (IsOm|IsJm)|% On the emission side, we will need
the probability of forming J with particles of angular
momentum /. This is given by | ('s'm'm—m'|I's'Tm)|2.
We need the relative probability of decay with emission
of I particles leaving the nucleus in the ground state
which we will denote by w())<1. The limitations of
the relative probability of different kinds of emission
arising from angular momentum conservation are con-
tained in the Clebsch-Gordan coefficients. The function
w contains all the other dependence. Because of our
assumption of spin-independent forces in Eq. (3.1), it
will depend only on /’ and the parity of the system. The
angular distribution of the emitted particles is | ¥y, m |2
Combining these results, we have

da'ca
i (2i+1)(2I+1)
X | s'm'm—m'|Us'Tm) |20 (@) | Virm: |2

3 6P| (Is0m|IsTm) |2

(3.14)

The indicated sums are over m, m', s, s', I, I/, and J.
The spin factor in front arises from the average over
initial spin states, which involves the sum over m and 7'.

By employing methods due to Racah®? and discussed
by Blatt and Biedenharn,® the sums over m and m’
may be performed yielding

doce 1
i@ 4w(2I+1)(2i+1)

oDl

2041

XZ(UJIT 3 sLYZ(VJUT ; s'L)Pr(cosf), (3.15)

where the Z factors are defined by Biedenharn, Blatt,

12 G. Racah, Phys. Rev. 61, 186 (1942); 62, 438 (1942).
13 J, M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24
258 (1952).
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and Rose and for which tables!® are available. The
sums are over J, /, I/, and L. Only even L will occur.
This result is given in reference 10.° We have not
introduced a specific notation to describe the role of
parity, so it should be understood that parity is con-
served both in the formation and in the decay of the
compound nucleus.

The total compound elastic cross section may be
easily evaluated from (3.15) and gives the expected

result
- 2741
T (I41) (2i+1) (2+1)

Expression (3.15) simplifies considerably in two
special cases (a) I>>1 and (b) I=0. In case (a), it
follows from the sum rule (see reference 10),

e (25 1) | Z(TLT 5 sLYZ(VTVT 3 S'L) | PL
= (27 +1)2(21+1),

that do../dQ is approximately independent of angle. We
note that if I>1, the factor 25’41 is approximately
a constant, the error being of the order of (1/I). In
case (b) we note that s=s’=% and that /=1’ because
of parity conservation. We therefore find for this case
(placing i=3%)

o Dw(l)
aQ Lz 4x(4+2)

+Z2(l7 l_%) l’ I—

o Pw(l).

Oc

(3.16)

doce

3% L) 1PL.

The factors w which may be computed as outlined in
reference 10 depend on the details of the levels of the
residual nucleus. There it is shown that

w(l)=Tv(E)/Lpas To(EJ)-

The quantity w(/’) lies between 0 and 1. The values
of T, are calculated in reference 10 under the assump-
tion of strong coupling. The ideas underlying the
present theory would change these factors to those
given by Eq. (3.10). Since the compound elastic scat-
tering is not very large compared to the shape elastic,
we have only determined the upper limit for o.., which
is given by putting w(’)=1. We expect o.. to be near
this upper limit at energies for which there is little
inelastic scattering or capture, and to be near zero
when inelastic scattering or other nuclear reactions are
appreciable.

(3.17)

(3.18)

( 14 Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249
1952).

151,. C. Biedenharn, Oak Ridge National Laboratory Report
ORNL-1501, May 28, 1953 (unpublished).

16 Tt is worth while noting that Eq. (3.15) may be derived from
the general analysis of Blatt and Biedenharn by combining the
definitions of average cross section as given in Sec. II and the
statistical assumptions. The chief elements of the latter are (1)
nonoverlap of resonances and (2) random phases for the scat-
tering matrix so that, upon averaging over possible ways of
forming the compound nucleus, interference terms average to zero.
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IV. ISOLATED RESONANCES

We should like to establish a correspondence between
the parameters describing a single compound nucleus
resonance and the parameters which describe the aver-
age potential (3.1). This is most easily done for the
low-energy case. We evaluate the cross sections for
very low energy on the basis of the potential (3.1) and
by comparing them with the expressions for the average
cross sections which were derived in Sec. IT in terms of
the resonance parameters. The only two resonance
parameters entering here are the ratio I'y/D of neutron
width'” to level distance and the radius R’ of the
potential scattering.

We start with the evaluation of the results from
(3.1). The only contribution comes from /=0 and we

get from (3.3)
f ot+ix

o= 6-42im
fo—ix

— ,—2iz(l—a)
’

1)

where « is a complex number:
a=(1/x) tan~(x/ fo)==1/ fo,

and f, is given by the expressions (3.6).

This should be compared with (2.14) in order to
express the two relevant magnitudes R’ and T',/D in
terms of X; and X,. Equating (2.14) and (4.1) gives
in the limit of £#—0, a limit which also implies T'y/D—0:

R'=R(1—ay), (7/2%)To/D)=ay,

where a; and a, are the real and imaginary parts of a.
From (3.6) we can easily obtain the following
relations:
a= fil=a1}iay,

| XuB— XA sin2X,
“TIXP B424 cosiXs

| X.B—X,d sin2X,
“TIX]E Bt24 cosX,

with A=1/(2 cosh?X3), B=tanhX,.

We now distinguish two limiting cases: the cases of
strong and weak coupling. In the first case the absorp-
tion is so strong that the neutron is completely absorbed
in a distance of a nuclear radius within nuclear matter:
exp(—X»)<1. In the case of weak coupling we assume
X1,

Hence we get, for strong coupling: 4—0, B—1, and

a=Xy/|X|*=1/Xy, a=X,/|X|*=1/X/,

and R'=R(1—-1/X,), I'y/D=2x/wX,. The length R’
is almost equal to R since (X2')™! is a small magnitude.
The expression for I'y/D is the same as that used by

7 From here on we use the symbol I'y for “neutron width”
since the entrance channel « is a neutron channel in all cases
which we treat in this paper.
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Feshbach, Peaslee, and Weisskopf with the only
exception that X, replaces X;. The former magnitude
is somewhat larger than X,.18

Strong coupling therefore leads essentially to the
same results as Feshbach, Peaslee, and Weisskopf:
The potential scattering length is roughly equal to R
and I'y/D=2(x/7X/").

In the weak coupling approximation we get

A=% B=Xx1, |X[?=X2
and hence

1 sin2X;
R'=R<1——————),

2X1 X22+C052X1
', 2x 1—(1/2X,) sin2X,
—=—"0, B=X, .
D X, Xo?cos’Xy

Here R’ and 8 are functions of X, and hence of R, with
a characteristic resonance denominator. The shapes of
these functions are reminiscent of optical dispersion
and absorption curves, respectively. The maximum in
B occurs when X¢=(n+3)7 (» integer), the value of 8
being 2/[ (n+3)w¢] and the width of the peak at half-
maximum (%4 3)w¢. The minimum value of 8 is about
(n+3)7¢/2. Figure 1 shows both magnitudes plotted as
a function of X, for a value of {=0.03.

O - w s o N ® o8

T T

i
™NL T T
10415 20 25

rrrrrrrrrrrT

s W e
I - I SR

Fic. 1. Potential scattering length R’ and the ratio I'y/D of
the neutron width to the level distance at low energy as a function
of Xo=K,R for {=0.03. R’ is plotted in units of R and T'y/D is
given in the form of the parameter 8= (7/2)(Vo/€)}(Ts/D), where
€ is the energy of the neutron. The atomic-weight scale corre-
sponding to X, is shown also for a potential-well depth V,=42
Mev and radii R=1.45X10"184% cm.

18Tt is plausible to assume that, in the case of strong coupling,
the imaginary part of the potential is of the same order as the
real part. An imaginary part that is much larger than the real
one would imply that the absorption takes place over distances
small compared to the wavelength in the interior. Hence Xy’ is
about twice as large as X, which leads to a I'q/D half as large as
in Feshbach, Peaslee, and Weisskopf. This strong coupling result
is somewhat more consistent than the result in Feshbach, Peaslee,
and Weisskopf. In the latter paper the boundary condition was
chosen such that the wave inside the nucleus is a sine wave
sin(K»—38), an assumption that is contrary to the idea of strong
compound nucleus formation. In fact, a wave exp (4Qr) sin (Kr—3)
with @~K would be more consistent and does lead to the same
result as the one above.
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R=145 x 107" cm
Vo = 42 Mev
£-0.03

>
»} 170
>>> 160
»» 140
» ¥
»» -zo\N E\G\,\’(\
100 \\]\\O
\P‘o v,

R=145 x107°A" cm
Vo = 42 Mev
1=0.05

Fi16. 2. (a) Calculated neutron total cross sections as a function of energy and mass number, for a well depth V=42 Mev,

radius R=1.45X10"184% ¢=0.03. The energy ¢ is expressed in te

rms of

wt=[A43-4/10(4+1)]e,

where e is in Mev. (b) The same for ¢=0.05.

V. COMPARISON WITH EXPERIMENTAL RESULTS

Figure 2a shows a profile presentation of the calcu-
lations of the neutron total cross sections on the basis
of the potential (3.1) with a depth V=42 Mev and a
radius R=1.45X10"34% cm. The constant ¢ is assumed
to be 0.03 which corresponds to an absorption coefficient
of k=4.2X10" cm™ in nuclear matter for neutrons of
zero energy in free space. This means that the intensity
of a beam of slow neutrons is reduced in nuclear matter

to 1/e at a distance of k'=2.4X10"2 cm. The cross
sections are plotted as a function of the energy in units
of = (R/X)? and of the atomic weight. The letters
denoting the maxima indicate the character of the
resonance causing the maximum. Figure 3 contains a
profile presentation of the observed cross sections
plotted against the same coordinates.

The experimental curves in Fig. 3 are averages over
resonances. For higher 4 and small level distance this
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R =145 x 107® A% cm

F1c. 3. Observed neutron total cross sections as a function of energy and mass number.
The energy is expressed in terms of a2 as in Fig. 2, (a) and (b).

average was done by the measuring apparatus itself,
for lower A the averaging was done in the drawing.
The theoretical and the experimental curves do not
extend to zero energy. They are broken off at an energy
of about 50 kev. As is well known, the curves should go
approximately as ¢* at very low energy. The experi-
mental curves are compiled from measurements by
many workers.1®~2

The comparison of these two figures shows that the
theory can account for a number of striking features of
the experimental results. In particular, the theory
reproduces the drop of the cross sections at low energies
in the regions 4~40 and 100<4 <140.

It also reproduces the large cross sections at low
energy in the regions 4~60, A~90, and A~150. The
large values at A~90 are ascribed to a P resonance;
whereas the other two regions are supposed to contain
S resonances. P resonances are expected to fall off
towards low energies; whereas the .S resonances merge
directly with the (1/v) rise. The observed energy
dependence indicates the P-resonance behavior in the
region A~90 and shows typical S-resonance behavior
at A~60 and 150. There is an indication of P-resonance
at low energies for A~30 as the theory predicts.

19 H. H. Barschall, Phys. Rev. 86, 431 (1952).

( 2 Miller, Adair, Bockelman, and Darden, Phys. Rev. 88, 83
1952).
( 2 Walt, Becker, Okazaki, and Fields, Phys. Rev. 89, 1271
1953).

2 Okazaki, Darden, and Walton, Phys. Rev. 93, 461 (1954).

2 N. Nereson and S. Darden, Phys. Rev. 89, 775 (1953);
Phys. Rev. 94, 1678 (1954); and unpublished data on Li and B
(private communication).

24 C, F. Cook and T. W. Bonner, Phys. Rev. 94, 651 (1954);
McCrary, Taylor, and Bonner, unpublished data on Li (private
communication).

25 Neutron Cross Sections, U. S. Atomic Energy Commission
Report AECU-2040 (Technical Information Division, Depart-

ment of Commerce, Washington, D. C., 1952), and three supple-
ments (unpublished).

The theory also reproduces the type of maxima
(D maxima) which are found for energies corresponding
to #’~3 in the regions 4~40, and A~140. It seems
that the predicted F-wave maximum near A~200 is
also observed. It is remarkable that one finds reasonably
good agreement in the shape of the curves even at very
low atomic numbers: 4 <20.26

We are using here a different depth of the potential
than in the calculations published previously by the
same authors.? The previous calculations were based
upon a well depth of only V=19 Mev. The change to
Vo=42 Mev was suggested by Adair?® and improves
the agreement considerably. At the time of the first
calculation only measurements for 4>60 were used.
The similarity between the theoretical results for
Vo=42 Mev and V=19 Mev for 4>60 can be ex-
plained as follows:

S-wave maxima at low energy occur if RKo=r443K,
~(p+3)w and P maxima if 743K nr, where K,
= (2mVo/h2)%. For Vo=19 Mev and 7o=1.45X 1073 cm,
one gets therefore S maxima at 4~38 and 170, and
P maxima at A~11 and 90. For V=42 and the same
7o one gets S maxima at A~11, 55, and 150; P maxima
at A~27, 90, and 216. Hence, the P maximum near 90
and the S maximum near 160 are reproduced by both
potential depths. The behavior of the curves in the
neighborhood of these maxima also must be similar, in
particular, the depression at low energy for values of 4
just below an S maximum. However, the experimental
data for nuclei below 4 =60 definitely indicate another
S maximum near 55 and a strong low-energy depression
for A~40 as predicted by Vo=42. These features are

( 28 Sc)ze also C. E. Porter, Bull. Am. Phys. Soc. 29, No. 5, 25

1954).

27 Feshbach, Porter, and Weisskopf, Phys. Rev. 90, 166 (1953).
28 R, K. Adair, Phys. Rev. 94, 737 (1954).
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not reproduced by the theoretical curves for Vo=19.
We therefore believe that V=42 Mev yields a better
model. It should be noted that the agreement is not
very sensitive to a change of potential Vo with a
corresponding change of 7, such that Vilro stays
constant.

The shapes of the total cross section curves are quite
sensitive to the value of the absorption constant {. An
increase of ¢ flattens the maxima and minima. Strong
fluctuations in the calculated curves occur only at lower
energies for values of ¥<1.5. This is below 2 Mev at
A~60 and below 0.6 Mev at 4~200. At higher energies
the contributions of the numerous angular momenta
prevent the appearance of any pronounced maxima or
minima. Therefore the determination of { by fitting the
calculated curves to the experimental ones only gives
the value of { for relatively low energies. We cannot
exclude a change of { at energies of, say, more than
1 Mev or fluctuations in { from one value of 4 to
another although below 1 Mev it seems that { cannot
vary much as a function of 4. In the low-energy region
the determination is quite accurate. A change of { to
0.05 or to 0.02 would give rise to a worse agreement
with experiments. Figure 2(b) shows the total cross
sections for {=0.05, and it is obvious that the maxima
and minima are not as pronounced as in the experi-
mental data.®

We now turn to the calculations of the angular
distribution of the elastic scattering. Figure 4 shows the
experimental results at 1 Mev as measured by Walt
and Barschall.®® The most characteristic features are
the flat distributions around 4A~60, a very strong
forward peaking and a rise at backward angles at
A~140, and the appearance of a second maximum at
90° around A~180. The calculation of the angular
dependence (Fig. 5) is not unambiguous since the
amount of compound elastic scattering is difficult to

Fi1G. 4. Observed angular distribution (in barns/sterad) of the
elastic 1-Mev neutron scattering as a function of cosf and the
mass number 4 as measured by Walt and Barschall.

2 The disagreement is worse for high values of 4. This might
be an indication of a slight decrease of ¢ with the mass number.
If the absorption were concentrated in a surface layer of given
thickness, one would expect a similar effect [see M. H. Johnson
and E. Teller, Phys. Rev. 93, 357 (1954)].

% M. Walt and H. H. Barschall, Phys. Rev. 93, 1062 (1954).
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SHAPE-ELASTIC
R=1.45 X 107 A3cM
v, 42 Mev
£ =003
Eq 1 Mev

F16. 5. Calculated angular distribution of the elastic neutron
scattering (shape elastic only) as a function of cosf and the mass
number 4 for a well V=42 Mev, R=1.4541X10™8 cm, and
¢=0.03.
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Fic. 6. Calculated angular distribution of the elastic neutron
scattering (shape elastic plus maximum compound elastic) as a
function of cos§ and 4 for a well Vo=42 Mev, R=1.454X10"18
cm, and {=0.03.

determine. Furthermore, the angular dependence of the
compound elastic scattering depends upon the spin of
the target nucleus. We therefore have shown in Fig. 5
the calculated angular distribution of the shape elastic
scattering only. In Fig. 6 the compound elastic scat-
tering is added in full which would correspond to the
case in which the compound state decays exclusively
via the entrance channel. The target spin was assumed
to be zero. The actual do./dQ must lie somewhere
between Fig. 5 and Fig. 6. For nuclei with strong
inelastic scattering, Fig. 5 should be the better approxi-
mation.

It is seen from Figs. 5 and 6 that some of the main
features are again reproduced by the theory. The flat-
ness of the distribution around 4~60 comes from the
fact that the P contribution is very weak in this region
and, at small angles, of opposite phase to the S scat-
tering. This occurs always at values KR somewhat
below a P resonance. The second maximum at 90° at
high mass numbers is not too well reproduced. The
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V, = 42 MEV
R=1.45%10734"3cm

£=003
£=005

1
100 150 200 250
ATOMIC WEIGHT

Fic. 7. Ratio T'y®/D of neutron width to level distance for
low energies as a function of 4. Here Tq@=T,(e®/e)} is the
“reduced” width, and € is taken to be 1 ev. The curves represent
the calculated values for {=0.03 and 0.05. The points represent
the observed values and the limits of error.

theory shows it only between 4 =150 and 4 = 200. The
angular dependence above 4=200 does not seem to
agree too well with the experiment. The angular
distributions are not very sensitive to the choice of
constants. The results with V=19 Mev are not very
different from the ones shown here.

The agreement with experiments is also less satis-
factory for the cross section o, for the formation of the
compound nucleus. It is difficult to measure o, directly
since it includes the compound elastic scattering besides
the reaction cross section, and the former cannot easily
be separated from the shape elastic scattering. At very
low energies, however, the formation of the compound
nucleus can be measured by studying the individual
resonances (see Sec. III). The relevant magnitude is
the ratio T'o/D of the neutron width to the level
distance, averaged over a number of neighboring reso-
nances. The theoretical values T's/D expected on the
basis of V=42 Mev are shown in Fig. 7 together with a
compilation® of the measurements®®> 4 of T',/D. Only
recently has it been possible to measure the neutron
widths of several resonances in one isotope, so that
the average I', and the level distance can be determined
to some degree of reliability. It is seen that the expected
maximum of I'n/D at A~155 is noticeable, but it is
not as strong as the theory predicts for the same value

3 R. S. Carter ef al., Phys. Rev. (to be published).

2 F. G. P. Seidl, Hughes, Palvesky, Levin, Kato, and Sjéstrand,
Phys. Rev. 95, 476 (1954); and private communication.

( ;35% S. Carter and J. A. Harvey, Phys. Rev. 95, 645(A)
1 .

3 Foote, Landon, and Sailor, Phys. Rev. 92, 656 (1953).

35 Sailor, Landon, and Foote, Phys. Rev. 93, 1292 (1954).

3 Pilcher, Carter, and Stolovy, Phys. Rev. 95, 645(A) (1954);
and private communication.

37 Hughes, Kato, and Levin, Phys. Rev. 92, 1094 (1953);
and private communication.

38 R. L. Christensen, Phys. Rev. 92, 1509 (1953).

( 2 l\/gelkonian, Havens, and Rainwater, Phys. Rev. 92, 702
1953).

L. Bollinger, unpublished data on Sb (private communi-
cation). We wish to thank Dr. Bollinger for making his results
available in advance of publication.

4V, E. Pilcher and R. S. Carter (private communication).
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of ¢ which gives the best fit for the total cross sections
(£=0.03). Also the values off peak are somewhat larger
than predicted.

The fact that the resonance at A~155 is not as
strong as expected might be connected with the large
deviations from sphericity which are ascribed to the
nuclei in this region.®? If the shape of the potential
well is ellipsoidal, one would expect results which
roughly represent averages over the spherical results
taken over radii which lie between the smallest and
the largest axis. This would give rise to a flattening of
the maxima and a rise of the wings in the theoretical
curves of Fig. 7.8

Although no direct measurement of the formation of
the compound nucleus is possible, the measurements of
inelastic cross sections o, or reaction cross sections o,
can be used to compare with the theoretical predictions
of o.. Evidently ¢;, and o, must be smaller than o..
The difference o,— &, is the compound elastic cross
section which is expected to be rather small if inelastic
scattering or other reactions are strong enough to
compete for the decay of the compound state.

Walt and Barschall have determined inelastic scat-
tering cross sections ¢;, at 1 Mev by subtracting the
elastic scattering from the total scattering. The values
of o:n should be less than or equal to the theoretical
values of o,.

Figure 8 shows a comparison between the observed
inelastic cross sections and the calculated o, at 1 Mev
as functions of 4. The observed values are of the ex-
pected order of magnitude, but they do not agree with
the theoretical curve. The absence of the maximum
at 4 =350 might be explained by the fact that the com-
pound elastic scattering is relatively high for these
nuclei. The same fact explains the low value of the
inelastic cross section in lead and bismuth. However,
the expected maxima at 4 =90 and 150 seem to occur
at higher values of 4. We have no explanation for these
discrepancies.

There are many measurements of inelastic cross
sections at somewhat higher energies. They all indicate
that the values are not too far from 7 (R-+2X)?, which is

¥ )

[o] | QD | o))
(0] 50 100 150 200

A 250

Fi1c. 8. The calculated cross section o, for compound nucleus
formation at E,=1 Mev and the observed reaction cross section
at 1 Mev as determined by Walt and Barschall. R is taken to be
1.45%X10784% cm. In the calculations the parameters Vo and ¢
were taken to be 42 Mev and 0.03, respectively.

2 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab,
Selenskab Mat. fys. Medd. 27, 16 (1953).

4 This thought was suggested to us by A. Bohr and B. R.
Mottelson,
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the value one would expect if the neutron wave were
totally absorbed in contrast to our findings of {~0.03.
Especially the measurements at 14 Mev?® indicate this
fact. On the basis of this evidence one would conclude
that the value of ¢ is strongly energy dependent and
reaches a value ({20.12) corresponding to almost total
absorption in a medium-sized nucleus certainly at 14
Mev but most likely already at energies as low as 4.5
Mev. The latter conclusion is based upon measurements
of inelastic cross sections by Lonsjo, Taylor, and
Bonner.** In this connection it is interesting that the
calculations of Morrison, Muirhead, and Rosser® also
give a very strong increase with energy of the absorp-
tion of nucleons in nuclear matter just in the region
which corresponds to incident neutrons of 1 Mev.
These calculations are based on the Goldberger method*
of the scattering of free particles with the application
of the Pauli principle. The effect of the exclusion prin-
ciple alone causes a sharp drop of the energy exchange
with decreasing energy.?

It is apparent that our model is much less successful
in reproducing the strength of compound nucleus
formation than in reproducing the total and elastic
scattering. It gives too much variation with 4 of T's/D
at low energies and probably too little compound
nucleus production at 1 Mev and higher, although it is
possible to explain the discrepancies at higher energy
by assuming that { increases with energy above 1 Mev.

The discrepancies may come from two possible
sources: (A) The potential V (r) as given by (3.1) may
not be the shape best fitted for the model. (B) The
attempt of this paper, the description of the gross
behavior of a nucleus by a complex one-particle po-
tential, may be unsuccessful. In connection with (A)
it must be noted that the potential (3.1) necessarily is
an -oversimplified version, since it is physically im-
possible that the potential well actually has a discon-
tinuity in the form of a sudden jump at r=R. It might
be that a rounding-off of the corners of the potential
well will improve the agreement with experiments.

The smoothing of the edges of the square-well
potential was of significance for the interpretation of
the elastic proton scattering with heavy nuclei. This
scattering has been measured with protons of an energy
of about 18 Mev by Gugelot,®® Burkig and Wright,*
and by Cohen and Neidigh.®® The results cannot be
interpreted on the basis of a potential (3.1) with sharp
edge, as shown by Chase and Rohrlich.! However,

4 Lonsjo, Taylor, and Bonner (private communication). We
are grateful to the authors for showing us their results before
publication.

4 Morrison, Muirhead, and Rosser, Phil. Mag. 44, 1326 (1953).

46 M. Goldberger, Phys. Rev. 74, 1269 (1948).

47V. F. Weisshopf, Science 113, 101 (1951).

4 P. C. Gugelot, Phys. Rev. 87, 525 (1952).

9 J. W. Burkig and B. T. Wright, Phys. Rev. 82, 451 (1951).

% B. L. Cohen and R. V. Neidigh, Phys. Rev. 93, 282 (1954).

8t D. M. Chase and F. Rohrlich, Phys. Rev. 94, 81 (1954).
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Woods and Saxon®? have shown recently that a round-
ing-off even within the small interval of 0.5X 10~ cm
changes the results considerably and brings them into
much better agreement with the experiments.

It is possible, therefore, that the smoothing of the
discontinuity of V at =R would also improve the
agreement of theory and experiment in respect to
compound nucleus formation. It would decrease the
reflection of the neutron wave at the nuclear surface
and hence increase the cross section o, when all other
constants (Vo,R{) are unchanged. It remains to be
seen whether the rounding-off of the potential well
improves the agreement with respect to ¢, and T'./D
and with respect to the angular distribution of the
elastic cross section, without destroying the agreement
of the total and elastic cross sections.

Calculations are under way to investigate these
possibilities.

It must be pointed out that one should never expect
any exact agreement between the predictions based
upon a model of this type and the observed cross
sections. The very nature of this attempt to describe a
complicated many-body problem by a simple one-body
potential implies that the model can only contain the
main features of the situation. Apart from this general
limitation it should be kept in mind that we have used
here a potential which has a particularly simple de-
pendence on the radius and on the mass number. We
have assumed the same radial dependence for the real
and imaginary part which is very probably too strict
an assumption. We have neglected spin-dependent
forces as observed by Adair and co-workers,* and we
have excluded any special features connected with the
shell structure.

The purpose of the proposed approach is to connect
some characteristic salient features of the nuclear cross
sections with simple nuclear properties rather than to
construct a theory which will produce the exact quanti-
tative details of the observations.
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APPENDIX
The Scattering Amplitude at Low Energies

The scattering amplitude 7 is the diagonal element
Saa of the scattering matrix, where the index o refers
to the entrance channel. The matrix S is given by the

following expression [see Blatt and Weisskopf, formula
(X, 4.11)]:

S,,g=exp[——i(ka+k5)R:|ng’. (Al)
Here R is the nuclear radius, and
S'=1+i®")/(1—i®), (A.1a)

where ®’ is connected with the derivative matrix ® by
Rap’= (kaks) Rap,

and k., ks are the channel wave numbers at the energy
E. The matrix ® is defined on page 545 of Blatt and
Weisskopf. It can be expressed in the following form
[see Sec. X (4.22)7:

YsaYsp
Rap= Z )
s E.—E

(A.2)

where E, are the resonance energies and the y,. are
magnitudes which are connected with the channel
widths I'.* (partial widths for the decay via the channel
a):

0= 2kayod. (A.3)

Each v, is real but its sign might be positive or nega-
tive. We make the reasonable assumption that the
signs are distributed at random.

In what follows we will assume that we work in an
energy region for which, first, k.R<1, and, second,
I'*&D,, where D, is the interval

Ds= % (Es+l"' Es—l),

which includes the resonance E, from mid-point to
mid-point. We also assume that the values I'x* and D,
have the same order of magnitude for all resonances in
an energy interval I which includes many resonances
but which is small compared to energy intervals
occurring in single-particle problems (say I~10 kev
for heavy nuclei).

PORTER, AND WEISSKOPF

Let us surround each resonance E, by an energy
interval D, from 3(E; 1+ E;) to $(E;+E.1). In this
interval we can write the matrix ®Rqg’ in the form

(A4)
where Vo' = (ko)?yse. The matrix gos has no singu-
larities in D, and is given by

Yea'yes'
ts [, — E'

8ap= (Ada)

We now estimate the order of magnitude of gas.
Here it is important to take into account that the signs
of the ' are distributed at random over the different
resonances / and the different channels a.

First we split gap into the contributions of neighboring
and far-off levels:

gap=gap +7ap,

(A.4b)

where the prime on the summation sign means that the
sum should be extended only over resonances within
the interval I, and the double prime means extension
over the resonances outside I. Because of the random
signs of y;./, the terms in the sums (A.4b) have random
signs for a#B and only the immediate-neighbor reso-
nances contribute appreciably to geg; on the same
grounds 7.5 can be neglected. We, then, obtain the
estimate:

| gas’ | 2| gas| ~(Tal'p)}/D, 7ap=0, axB. (A.5)

We understand by ', (without superscript) the average
value of T',® in the interval I. For a=p, all terms have
the same sign for E;>E or E,<E. Since there are
roughly an equal number of levels above and below E,
in the interval I, we get the following estimate:

gaaINPa/D- (ASa)

The order of magnitude of the contribution 4. from
the faraway levels is quite undetermined. However,
the scattering cross section between resonances turns
out to be 4rR2(14744/%)%. Experimentally, we know
that this cross section is of the order of 4w R?, and hence
we conclude 7qa~kR=x.

It follows from (A.5) and (A.5a) that the g.p are all
small compared to unity in the energy region considered,
and we proceed to expand (A.1) in powers of g. For
this purpose we introduce the factorable matrix

Tas=—9:ay:6/A, A=E—E,. (A.6)
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The following relation holds:
Tr=B"T, n>1,
B=3 5 Tgs.

The quantity B is a number and it is connected with
the total width. T'*=3"4 T's® of the resonance s:

(A7)

=—1T%/A. (A.8)

Hence, if a matrix is a function of 7" which can be
expressed as a power series with powers larger than zero

A(T)=3 anT,

n=1

we get the relation
A ap= B4 (B) T ag. (A.9)

We may now expand (A.1), noting that ®’=Tg:

S
1—i(T+y)
2 11
I L s
2 1 1

...

g 4 1
1—iT 1—¢T 1—4T

From (A.9) we have 1/(1—4T)=1+7/(1—4B), so that

uT (eT+Tg)
S’ =14t 2ig — 2g2— 2| ¥
1—iB 1—iB
Irgr T'g+-gTg+g'T
S*=—2 2%
(1—iB)? (1—iB)

TgTg+ ngT—{—ngTL ) TglgT
2 i .
(1—:B)? (1—:B)?

(A.10)

The scattering amplitude 7o is the diagonal element
Saa. We first note the cross sections which would follow
from (A.10) when we put g=0: (x="Fk.R)

[ 2T ,
770=e—2w< 1+ )=e—21x(1___
N 1-'1:.3

ily®

A+-iT'¢/2

), (A.11)

and hence we get the well-known expressions:

I‘as 2

2 ——
A+iT#/2

o0 =7X2 s

(A.12)
2I‘a‘(I“"—I‘,,,‘)

0O =7k .
A (Ps/2)2
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We now proceed to neglect all terms in the expansion
(A.10) which would give rise to terms in o and o, of
the order of éo, and o, respectively, with

b0, =0,0f, bca=0,0f, (A.13a)

where ¢,®=7XT,I'/[A%+ (I2/4)] and f is a small
number,

f~x or f~T/D. (A.13b)

This means we will neglect cross sections which are
small by a factor I'/D or x, compared to ¢,©, which
can be regarded as the one-level value of the cross
section for the formation of the compound nucleus.

It will be shown below that all terms of (A.10)
contained in S* give rise to corrections in the cross
sections of the order (A.13) or smaller. Hence, within
the accuracy (A.13), we can write S’ in the form:

2(8T+Tyg)

-1

27T
S'=1+

+2ig—2g2— (A.14)

1—1
To prove this point, we first examine the effect of a

small addition Ay’ to #'=S..’ on the cross sections:
We get

Ao =7A22 Re[ (e2*—q") Ap* ]S 4w k2| A’ |,

(A.15)
Ac,=mR22 Re[n"*An']< 2082 Ay |,

where Re(a) is the real part of a. The former relation
follows from the fact that |e?**—y'| <2 and the latter
relation from the fact that || <1. As an example,
we discuss the omission of the first term in the expres-
sion .S* in (A.10). We find according to (A.5) and
(A.5a)

Ll [(r/D
m (r/D)+x],

and hence the contributions to the cross section of this
term are negligible according to (A.15) and (A.13).
Similar considerations show that the other neglected
terms in (A.10) contribute the same or less to the cross
sections.

We now single out the diagonal element of .S” because
of its significance for the scattering amplitude. We can
write Sae’ from (A.14) and (A.13b) in the following
form:

|An' | ~[ (TgT) aa/ (1—iB)*| =

17 e

+2ig0’
3,

—1

2
S’ =Zexp (Zirm)[ ( 1+

4(g'T) e
_z(glz)aa__ : ]
1—B
This expression differs from the diagonal element of
(A.14) by terms which are of the order S* and therefore

negligible, as, for example, 744(g'T)as/(1—iB). We
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can write it in the form

See’ =€xp (217 aq)

2iTee  Taa
x[1+ .+—————G1+iGz+Ga], (A.142)
1—iB 1—iB

or, according to (A.1)
Sea=n0=exp(—2ik.R’)

2iTea Taa
x[1+ + Gri-iGg-}-Ga], (A.14b)
1—B 1—iB
where
R'=R—7aa/ka. (A.16)
tal t, ! 3, / sa’)
Getsr s’ vig' (veg'/y ’
t#%s B Eg—‘E
(A.17)
G2=2gaa,,

Gs=—2(8") e

This is the form which is used in the text. The orders
of magnitude of these real functions are given by (2.11).

The following simplification can be used if one
calculates the scattering cross section o, and the
transfer cross sections g (cross section of the reaction

a—f):

Tap®=1R2] S’ |2 (A.18)

within the limits of accuracy (A.13). It turns out that
the last two terms in (A.14) give rise to nonnegligible
contributions only to o, when expression (2.3a) is used.
In expression (2.3) for o and in expression (A.18) for
oa8, the two last terms of (A.14) give rise to contri-
butions which can be neglected according to (A.13).%
Hence for the calculation of gas® and ¢ ® we may
use the shorter form

S'=14+[2iT/(1—iB) ]+ 2ig,

% At first sight this seems puzzling since o,=2g o4g. It must
be remembered that Eq. (2.3a) uses the diagonal element of S;
whereas (A.18) uses off-diagonal elements. The connection
between these elements is established by the unitary nature of S:
1— | Sea|?=2g#a(Sap)?. In order to insure the validity of this
equation up to the order g2, one must include the last two terms
of (A.14) in Sga, but it is not necessary to include them in Sug'.
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or

Yra'Vrg'
Sap'™00p exp(2i7aa)+2i 3’ ,
T E—E,+il"/2

(A.19)

where the sum is extended over all resonances within
the interval 7. Actually the imaginary part +4I'"/2 in
the denominator of (A.16) should be found only in the
term r=s, but the addition in the other terms leads
only to errors smaller than (A.13). We then get for
the cross section g

yra'yed |
Cap=mAR|Sag |?=4m 2|2 —————|, (A.20)
r E—E,4il'7/2
and for the scattering cross section,
ael=1r7&2l e2i”—Saa'|2,
o 2
=mA%exp(2tkR)— 14+, —— | . (A.21)
r E—E,~4iI'"/2

According to (A.19), the value of gus goes to zero
between two resonances E, and E,;; if the sign of
¥sa'¥sg' Is the same for both resonances. If the sign is
opposite, no zero occurs. Note that this statement is
good only to the accuracy (A.13). At the zero of (A.17)
the actual cross section might still be of the order
(A.13).

We note in (A.21) that the potential scattering
amplitude exp(2¢kR’)—1 corresponds to the scattering
by an impenetrable sphere of radius R’ as given by
(A.16). The quantity R’ itself is a function of the
energy, which is slowly varying and changes only over
intervals much larger than D.

The forms (A.15) and (A.16) correspond to the
Breit-Wigner formulas used in the literature before the
more exact investigations by Wigner and Eisenbud.%
The amplitudes contain characteristic sums over the
contributions of the different resonances with the
imaginary contribution 4I'’/2 in the denominator. It
has been pointed out repeatedly that the forms (A.17)
and (A.18) are not exactly correct. We have shown,
however, that they are valid within the errors given
by (A.13).

% E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).



