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Spatial Distribution of Energy Dissipation by High-Energy X-Rays
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The space distribution of energy dissipated by betatron x-rays results from the combined propagation of
the x-rays and of their secondary electrons. This distribution has been calculated for a 40-Mev brems-
strahlung spectrum incident on a mass of water. The calculation is described and the results are compared
with related experiments.

I. INTRODUCTION pendicular to the surface. The medium will be assumed
to extend over all the space, even behind the entrance
surface. The analytical transformations required to
derive the moments have been given by Lewis' for
electrons and by Spencer and Fano' for x-rays. For
x-rays it has also been possible to utilize the values of a
few moments and a rough knowledge of the trend of
penetration to give a rather accurate description of the
whole x-ray distribution. ' Efforts to achieve the same
results for the distribution of electrons derived from a
collimated electron beam have not yet been successful.
However, the combined penetration of x-rays and
secondary electrons, which gives rise to the transition
curve, offers a somewhat easier problem because the
deep penetration is controlled by the x-rays rather
than by the electrons. The solution of this problem for
a typical example is reported in the present paper.

If the energy of the incident x-rays (or of incident
electrons) is sufficiently high the electrons generate a
large amount of bremsstrahlung and the bremsstrahlung
a large amount of high-energy pair electrons which
yield more bremsstrahlung. The transition curve goes
over, then, into a shower curve. The work reported
here concerns a combination of source energy and
medium for which the bremsstrahlung of secondary
electrons represents a minor effect which has been dis-
regarded. The detailed calculation of a shower process
would be only a little more complicated in principle
and moderately more laborious in practice; it represents
the next logical step in the program of this laboratory.

The experimental arrangement corresponding to the
calculation described here is the following: A beam of
40-Mev electrons strikes a thin tungsten target in a
betatron. Electrons leaving the target are removed
(magnetically) and the (collimated) bremsstrahlung
beam enters a tank of water. The calculation predicts,
the energy dissipation in a plane section, perpendicular
to the direction of travel of the incident radiation, as a
function of penetration distance in the water.

The calculation is accomplished in four stages: (1)
spatial moments of the x-ray distribution resulting from
scattering and absorption of the incident x-rays are
calculated by the method of reference 3; (2) these
moments are then used to calculate the spatial moments

HEN an x-ray beam passes through a medium,
~ ~ ~it dissipates energy by ionization and excitation

of the atoms. At depths in the medium greater than the
range of secondary electrons, the different forms of
radiation are, to a considerable extent, in equilibrium
with each other and the energy dissipation follows
approximately the x-ray spatial distribution, slightly
displaced forward because of electron travel. Close to
the entrance surface in the medium, on the other hand,
there is little energy dissipation because the x-rays
have not yet had much chance to produce secondary
electrons which in turn dissipate the energy. Hence,
the energy dissipation rises from a low value at the
surface to a maximum further in (transition curve),
then falls off with the x-ray distribution.

The transition curve is of considerable radiological
interest because the energy dissipation is a measure of
the biological effect. The position of the maximum
depends on the x-ray energy and attains depths of the
order of 1—10 cm for x-rays from multimillion volt
accelerators. In medical applications requiring irradia-
tion at a spot inside the body, it may be desirable to
select a source such that the maximum of the transition
curve will fall on the target, so as to minimize unneces-
sary irradiation of other areas. A certain number of
measurements of transition curves have been made in
the multimillion volt range' but there has been no
previous attempt to perform a detailed theoretical
calculation which takes into account the penetration,
degradation, and diffusion of the x-rays and of their
secondary electrons.

The equations that govern this phenomenon lend

themselves to a straightforward calculation of the
moments of the distribution of radiation, provided that
the boundary effects can be schematized in the following

manner: the x-ray beam will be assumed to be generated
at the position of the entrance surface and to be per-
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of the electron and positron distribution which is pro-
duced directly by the x-rays through Compton scatter-
ing and pair production; (3) the moments resulting
from (2) are used as the source in an electron diffusion
equation the solution of which yields spatial moments
of the electron distribution at various stages in the
slowing-down process'; and (4) the moments resulting
from (3) are used to construct the spatial distribution
of electrons of each energy from which the energy dis-
sipation as a function of depth is directly calculated.

It should be noted that the method of calculation
aGords the convenience of proceeding from one set of
moments to the next, without actually reconstructing
detailed spatial distributions until the final stage of
the calculation.

II. X-RAY DIFFUSION

The spectrum of x-rays emerging from a betatron is
not known in detail; however, the spectrum given by
Bethe and Heitler4 (or that of Schiff, ' which is essen-
tially the same) is believed to be reasonably accurate. '
We assumed the (40-Mev) source spectrum striking the
plane water barrier (perpendicularly) to be of this form.

Considering the integral of the radiation over an
in6nite plane perpendicular to the incident radiation
renders the problem one-dimensional in space. This is
equivalent to considering diffusion from a plane mono-
directional source which is laterally in6nite in extent.
The diffusion equation for this situation is reduced in
reference 3 to a set of interlinked integral equations.
The solutions of these integral equations yield Legendre-
Laguerre coeKcients Hg„which are de6ned as follows:

tion, the source spectrum was that of SchiK Straight-
forward numerical techniques were used, a detailed
discussion of which can be found in a report by Berger
and Doggett. The solutions were carried to the lowest
energy of x-rays which can give rise to electrons with
1 mc' kinetic energy (see Sec. III).

G(E,8,s) = dk "dQ'P(k, E,O)H(k, 8',s), (2)

where p(k, E,O') is the probability per unit photon path
length per unit solid angle that a photon with energy
between k and k+dk produces an electron (or positron)
of kinetic energy E traveling at an angle 0 with the
photon direction. The integral over k includes all
photon energies capable of producing an electron of
energy E.

It is easy to see that (2) implies a similar relation
between the Laguerre coefficients:

(3)

III. ELECTRON SOURCE

The next step in the calculation is to determine the
Legendre-Laguerre coeKcients of the electrons which
are generated by the x-rays. We designate the dis-
tribution of these secondary electrons by G(E,8,s) and
write down the expression which relates G(E,8,s) to the
x-ray distribution H(k, 8,s), namely,

H(„(k)= dsL„(as) dQP)(cos8)H(k, 8,s),

where k is the photon energy in mc' units, 8 is the angle
between the photon direction and the direction of
incidence, s is distance of the photon from the incident
plane, e is a parameter which we take to be the narrow-
beam attenuation coeflicient of the 40-Mev radiation
component, and H(k, 8,s) is the x-ray distribution func-
tion. I'~ and J.„are the Legendre and Laguerre poly-
nomials of the /th and eth degree, respectively.

It should be noted that the use of Laguerre coefB-
cients instead of moments represents a convenience
without loss of generality; the eth Laguerre coe%cient
is a linear combination of the erst e moments and vice
versa. (See Sec. V for further discussion. )

Our 6rst objective was the calculation of H&„ for
1, n&3. This was accomplished by solving ten of the
integral equations given in expression (10) of reference
3. The attenuation coefBcients used were those of
White; and, as discussed at the beginning of this sec-

' H. Bethe and W. Heitler, Proc. Roy. Soc. (London) 146, 83
(1934).' L. I. Schiil, Phys. Rev. 83, 252 (1951).

e H. W. Koch and R. E. Carter, Phys. Rev. 75, 1950 (1949).' G. R. White, Natl. Bur. Standards Rept. 1003 (unpublished).

Further, by using the addition theorem of spherical
harmonics, one obtains a convenient relation between
the Legendre-Laguerre coe%cients of G and H:

(4)

where

G,„(E)= dsL„(crs) fdQPi(cos8)G(E, 8,s),

p~(k, E)= dQPg(cos8)P(k, E,8).

Electrons of kinetic energy 1 inc' have a range of
about 1 mm in water. Electrons of lower energy than
this will be considered to lose all their energy at the
point of origin. We, therefore, want to calculate G~„(E)
only for E&1 mc'. The processes which are effective in
water in yielding electrons with such energies are pair
production and recoil from Compton scattering.

The cross section per atom for recoil from Compton
scattering (in units of the Thomson cross section) can

M. J. Berger and J. A. Doggett, Natl. Bur. Standards Rept.
2224 (unpublished).
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be obtained from the Klein-Nishina formula':

a~~(k,E,Z)

3Z1 E jV
=——1+ (E—2)+ t, (6)

4 k' 2k(k —E) k(k —E) I

section): For k&15,

3 Z' 1 4 (E+1)(k—E—1)
oo~(k,E,Z) =— —1——

2s. 137 k 3 k'

2(E+1)(k—E—1) 1
X ln (10)

k 2'

3 Z'
os~(k,E,Z) =— 4J

Ss 137 k —21+k) E q 1

cosO' =
k EE+2I

(7)
XL1+0.135(C —0.52)J(1—J)'3, (11)

whereHence

oxN(k E O~ Z) J=2[x(1—x)]&, x=
k—21+k( E

&E+2)
)k—2q' ikq

C =2.32~
E k I E2)

= (2s.) 'o~N(k E,s)5 cosO"—

where the energies are expressed in mc' units and Z is f 2(k(1gand for 2& &15,
the nuclear charge. In the Compton effect, fixing k and
E also fixes the angle of scattering:

where 5 is the Dirac delta function, and 6nally

1+k t' E
o P~(k, E,Z) =o~"(k,E,s)Pi

k &E+29
where

1+k) E0(-
k &E+ 2i

For pair production, in water, at the range of energies
of interest, the unscreened Born approximation as
calculated by Bethe and Heitler4 is adequate. The
expression for the angular distribution" is, however,
quite cumbersome and its Legendre expansion" is
unwieldy. Fortunately, high-energy pair electrons are
mostly produced within a cone of about angle 1/E with
respect to the incident photon direction. This means
that the coeKcients of the Legendre expansion of the
cross section tend to decrease in size quite slowly with /.
Since we only need the 6rst few coeKcients, we assume
for simplification that these coeKcients are all equal,
i.e., given by the Bethe-Heitler expression' integrated
over all directions.

All coeKcients would be equal if the electrons were
generated traveling in the direction of the pair-pro-
ducing photon. For low-energy electrons, the range is
small and therefore the directional assumption is un-
important. A simple calculation indicates that the above
approximation never displaces electrons more than
about 1 mm from their true position.

We found it convenient to use Hough's simplihed
forms for the unscreened Bethe-Heitler cross section. "
These are the following (in units of the Thomson cross

' A. T. Nelms, Natl Bur; Standar. ds Circ. 542 (unpublished)."F.Sauter, Ann. Physik (5) 20, 404 (1934)."H. Brysk, Natl. Bur. Standards Rept. 2277 (unpublished).
~ P. V. C. Hough, Cornell report reproduced in part in Phys.

Re&. i3, 2S6 (&94S~.

and A (k) is a graphed correction term. The second term
in the brackets of (11) is to be dropped when it becomes
negative.

For our purpose no distinction need be made between
electrons and positrons, since their diQ'usion properties
do not dier appreciably in low-Z materials. The cross
section for electron production should then be multiplied
by two.

Pair production can also occur in the field of an elec-
tron, though it is less probable than pair production in
the field of a nucleus by about a factor (1/Z) at high
energies. This cross section also falls oB more rapidly
at low energies and vanishes for k &4 mc'. The angular
distributions of the two kinds of pair production are
closely similar. "We accounted for electronic pair pro-
duction by increasing the nuclear pair production by
10 percent (Z=10). This is correct for high energies,
and the overestimate at low energies is never more
than 1 percent of the over-all electron-producing cross
section' because the Compton effect then overshadows
pair production from all sources.

Combining the over-all pair production cross section
with the Compton recoil cross section, we have for the
3th Legendre coe%cient of the total probability for elec-
tron production

pi(k, E)=P N,y,oPN(k, E,Z;)'
+2.2 Q N,iso~~(k E Z,), (12)

where g; is the number of atoms of each kind per unit
volume and gs is the Thomson cross section. In order to
obtain the Legendre-Laguerre coeKcients of the elec-
tron source, i.e., the Gi„, we entered these pi(k, E) into
the integrals (4) and carried out the integration
numerically.

"K.M. Watson, Phys. Rev. 72, 1060 (1947).
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IV. ELECTRON DIFFUSION the upper limit,

The diGusion of electrons is represented by the Lewis
equation, ' which relies on the approximation of con-
tinuous energy loss, according to which the energy of
an electron at each point of its track is identi6ed by its .

residual range r (i.e., by the initial range minus the
path length s already traveled). "The Lewis equation
pertinent to a problem in plane geometry is the
following:

~1
f~„(r)=— — P (l+ 1) f~+t, ~(r') dr'

2l+1 ~ J,

+l fs t, (r')dr' —
~

/sI(r') f~„(r')dr'

+ g(„(r')dr' (1.5)
8 8—+cosg—f(s,g,r) = (2v-) 'Xtt s dQ'
Bt' Bs Changing over from residual range to energy as the

XQ( gl ) f( g )$ rt( O)+ ( g ) (13) variable for convenience we set

where f(z,g, r) is the distribution function and g(s, g,r)
is the source function. The corresponding Legendre-
Laguerre coefficient equations are

Then

f,„(r)dr=a,.(E)dE,

g(„(r)dr =Gr„(E)dE,

k((r)dr ~Er(E)dE.

(16)

f(.(r)+ ——Q L(l+1)fi+r, (r)+lf~r„.(r)J
Br 2l+1 ~

/s~(~)f~-(—&)+g~-(&) (14)

tdE)
Pr-(E) I

—
I

=—
I dr)

(l+1)) ~~~-(E')dE'
2l+1 ~

where k~(r)=ÃpsLoP(r) —o~a(r)j, and n is the scale
factor already mentioned. Lewis obtains formally closed
solutions of these equations in terms of the quantity
exp( —J'k~(r)dr). However, the integral cannot be
performed analytically, and it turns out to be computa-
tionally simpler to convert the diGerential equations
into Volterra integral equations of the second kind.
These integral equations are similar to those in the
gamma-ray diBusion problem and can be solved nu-

merically in an analogous manner. We integrate (14)
over the residual ra, nge from r to oo. Since f is zero at:

300

l00—
80—

RO 30 40 50
E. in mc UNITS

Fro. I. The parameter A, whose reciprocal indicates the thick-
ness required to bring electrons of difFerent energies to equi-
librium with the p-ray spectrum.

' Lewis uses s as variable for an electron of given initial energy.
For electrons of difFerent initial energies, s no longer uniquely
determines the energy, but r does—hence our modi6cation.

+ t Gr (E')dE'. (17)

For the electron scattering cross section, we used a
screened Rutherford cross section with the relativistic
correction in low-Z approximation":

Z(Z+1) 1—P' sin'(8/2) I~R,
P'P' [1—cosg+2g]' l

(18)

Here the substitution of Z(Z+1) for Z' accounts
roughly for electron-electron deQections. " For p we
used Moliere's value, '~

r) =0.0000686t (1—P')/P'7
XZ1$1.13+3.'/6(Z/13/p)'J. (19)

Correspondingly, we obtain for the ICr(E),

I

(E+1)
K((E)=cVd s4Z(Z+ 1) C, (~), (20)

lE(E+2)
where

p' 1—P' sin'(v/2)
«(n)= ~ L1—Er(cosg)id(cosg). (21)

t (1—cosg+2r))'
'~N. F. Mott and H. S. W. Massey, The Theory of Atonsic

Collisions (Oxford University Press, London, 1949), second edi-
tion, p. 80.

"This point was obtained in detail by Fano while the work was
in progress [U. Pano, Phys. Rev. 93, 117 (1954)7. The Z(Z+1)
approximation represents an underestimate of 0+ of the order of
4 percent. The error introduced in the Gnal result is of course
much less.

'" G. Moliere, Z. Naturforsch. 2a, 133 (1947).
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Fro. 3. The fraction of the incident p-ray energy dissipated per
unit thickness (g/crn'). The solid line is the theoretical energy
dissipation distribution. The circles represent the measurements
of Zendle and Koch corrected to include oG-axis radiation. The
dashed hne represents the uncorrected Zendle-Koch data (nor-
malized to agree with the theoretical value at the peak of the
transition curve).

space distributions for each electron energy and for
selected s's. Figure 2 shows the number of electrons as
a function of s for various electron energies.

The energy dissipated by electrons of each energy E
is obtained by weighting the number of electrons having
energy E with the stopping power (dE/dr). The total
energy dissipated at s is then given by the expression
I(s)=J'Fs(E,s)(dE/dr)dE. " We evaluated these in-
tegrals for several values of s. The resulting distribution
is shown in Figs. 3 and 4.

Figure 5 shows the electron spectra at several depths
s. The quantity plotted is for convenience (E/P)
&&e*Fp(E,s), and is proportional to the density of energy
carried by electrons of energy E because &s(E,s), a
flux, is proportional to the velocity P.

VI. CORRECTIONS AND CHECKS

A number of minor approximations were made in
the course of performing the calculations which will be
discussed in this section. Internal checks in the calcula-
tion are also mentioned briefly.

~ Note that FD(F.,s) has dimensions track length per unit thick-
ness of medium per unit electron energy; per unit incident y-ray
energy so that I(s) is the fraction of the incident energy dissipated
per unit thickness. The integral Jo"I(s)d» must therefore be unity.
For a discussion of the units of the space integral of Fs(E,s) see
11.Fano, Phys. Rev. 92, 528 (1953),or L. V. Spencer and U. Fano,
Phys. Rev. 93, 1172 (1954).
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Fro. 4. A comparison between the energy dissipation curve
I(s) (solid line) and the energy dissipation curve calculated as if
the electrons deposited their kinetic energy precisely where they
are generated.

The detailed calculations described in the preceding
sections were performed for electrons with kinetic
energies greater than 1 mc' and for x-rays with photon
energies sufhcient to give rise to electrons with such
energies (k) 1.37 @re') E.lectrons with kinetic energies
lower than 1 mc', which are not penetrating and do not
dissipate a large fraction of the total energy input,
were treated in a cruder approximation. These low-
energy electrons arise in several ways, namely:

(1) from source x-rays with energies below the
"threshold" adopted for the detailed calculation or
from x-rays achieving an energy below "threshold"
through Compton scattering (8 percent of the total
energy input),

(2) from high-energy x-rays directly by Compton
recoil or pair production or from high-energy electrons
which have lost most of their energy in electron diGu-
sion (9 percent of the total energy input), and

(3) from annihilation radiation (2 percent of the total
energy input).

We assumed that low-energy electrons contributed
by (1) are distributed spatially exactly as are the lowest-
energy x-rays treated in the detailed calculation of the
x-ray distribution. We assumed that low-energy elec-
trons contributed by (2) and (3) are distributed spa-
tially like the 1 mc' electrons.

These assumptions shouM be quite adequate since
low-energy x-rays and electrons tend to maintain a
relative equilibrium with components of slightly higher
energies. One may question whether this is the best
way to treat annihilation radiation, which has an addi-
tional fairly large path length after the positrons are
stopped. However, annihilation radiation represents
only about 2 percent of the input energy and since the
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annihilation photons travel in opposite directions the
"center of mass" of the radiation remains at the end
of the positron range.

In order to determine the amount of energy con-
tributed by (1), (2), and (3), we calculated the total
energy generated in the form of x-rays or electrons
above "threshold" at each stage of the calculation and
made comparisons with the total input energy. This
comparison of total energies generated at each stage
of the calculation serves as an excellent internal check
on the accuracy of the calculations.

Bremsstrahlung from the electrons was neglected
because (a) the cross section is small because of the
low atomic number of the medium, (b) the electron

spectrum is strongly peaked at low energies, and (c) the
bremsstrahlung cross section is also peaked at low
energies.

The boundary would inhuence the x-ray calculation
only for photons below 200 kev." In the electron part
of the calculation, low-energy electrons quite near the
boundary would be affected. However, these are few-
the electron distribution builds up from near zero at
the boundary.

Inasmuch as this was a pilot calculation, many de-
tailed considerations were included which represent
re6nements considerably beyond the accuracy required
for the particular result. A discussion of the simpli6ca-
tions that can be made for a limited objectiv- and
their justification —will be presented in a subsequent
paper.

VII. COMPARISON WITH EXPERIMENT

An accurate experimental determination of the
ionization depth dose of a betatron beam in water
along the axis of the beans was made by Zendle and
Koch. '4 On the other hand, the theoretical calculation
is for the energy loss over the entire plane perpendicular
to the direction of motion. To obtain the latter quantity,
Boag and Zendle" complemented the Zendle-Koch
results by measurements with annular beams. An
absolve calibration of the experimental results was
achieved. Figure 3 presents the theoretical transition
curve (also absolute) together with the final experi-
mental points. It is seen that excellent agreement is
obtained both as to absolute intensities and variation
with depth. For comparison (and caution), Fig. 3 also
includes some of the Zendle-Koch data —the deviation
is essentially due to the fact that in the latter case the
crystal does not see radiation scattered away from the
central axis. Figure 4 compares the depth variation
(found for the energy loss) of the calculated energy dis-
sipation with that which would result from a gamma-ray
calculation disregarding electron travel. The two curves
are seen to be parallel at greater depths, the correct

ss M. J. Berger (private communication).IB.Zendle and H. W. Koch (private communication).
~~ J. W. Boag and B.Zendle (private communication).
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FIG. S. Electron spectra at various depths s.

60

curve being displaced some 4—5 cm deeper into the
medium.

The interpretation of the electron spectra in Fig. 5
follows: The spectrum very near s=0 represents elec-
trons immediately after their production by the x-rays.
On the other hand, at 24 cm the electron spectrum has
reached an equilibrium state which changes only as the
x-ray spectrum changes, i.e., very slowly. The transition
is characterized by an increase in the energy density
carried by electrons of intermediate energies, which
may be produced not only directly from the x-rays but
by the slowing down of higher energy electrons.

The conQuence of all curves on the left side seems
to be accidental. The elementary calculation of electron
spectra by Cormack and Johns" pertains in fact to zero
depth, and the curve labeled "betatron" in their Fig. 7
resembles the 0.9-cm curve in Fig. 5 of this paper.

ACKNOWLEDGMENTS

This work was closely related to previous research
and experience of members of the Nuclear Physics
Section of the National Bureau of Standards, and the
extent of their contributions is only partly reffected
in the references. I wish to thank my colleagues M. J.
Berger, C. H. Blanchard, U. Fano, L. V. Spencer, and
G. R. White for many fruitful discussions. I am in-
debted to J. A. Doggett for the computation of the
A values and for the 6gures. Access to the data of
J. W. Boag, H. W. Koch, and B. Zendle of the Beta-
tron Section in advance of publication was greatly
appreciated. L. V. Spencer kindly undertook the un-
pleasant task of editorial review of the manuscript.

s'D. V. Cormack and H. E. Johns, Brit. J. Radiol. 25, 369
(&9s2).


