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A cross-section theorem is derived for systems consisting of several identical particles. The total cross
section for all processes; elastic, inelastic, and ionization is given in terms of the imaginary part of a linear
combination of direct and exchange forward amplitudes.

N a recent paper! the total cross section for the

scattering of unpolarized low-energy electrons by
hydrogen was estimated. This estimation was accom-
plished by using the relation

47
Q=" Im f1(0)= f d9L| f2(6,6) "+ 20T, (1)

in which formula k¢*4%/2m is the energy of the incident
electrons, fo and g, are the direct and exchange ampli-
tudes for ground state scattering, and dQ is the element
of solid angle.

One of the early forms of the cross-section theorem
was derived by Feenberg? for the case that exchange
does not occur; the physical statement being that the
integrated flux of current vanishes for steady state
processes, the existence of sources and sinks being
excluded as well as spin-dependent forces. It is easy to
extend this conservation law for systems that include
several identical particles, the electron-hydrogen prob-
lem being presented as the first application.

The antisymmetrical wave function is constructed
from the unsymmetrized solutions of Schrédinger’s
equation and is

V= (Yr2—yar)xs+ Wratver)xa, (2)

with xs and x4 the symmetrical and antisymmetrical
spin functions, respectively, and the asymptotic coor-
dinate functions are:

Pra(ri—> 0 ) =m0 ¥ighy (1) +§ ritetnmig, (1) fu(61,00),
Yia(rr— o) =§ rite*nmag, (11) gn (02,62),
Yai(ra— o0 ) =etomo 12y (ry) +Zﬂ: ri e, (11) f (02,62),
Ya(ri—oo)= g rienmig, (12)gn (01,61).-

¢ are the hydrogen functions, n, is the unit vector in

the direction of incidence, and ), means a sum over -

all discrete states and an integration over the continuum.

( lH())ward Boyet and Sidney Borowitz, Phys. Rev. 93, 1225
1954).
2 Eugene Feenberg, Phys. Rev. 40, 40 (1932).

One calculates the three-dimensional current j given
by

j=Im(h/m) T ( f drT*V, ¥+ f drl\If*Vz\If), (3a)

spin

and requires that the integrated flux over spheres of
infinite radius be zero; that is,

Im(fdrgfi~dsl+fdr1fi-d52)==0. (3b)

The sum over the spin is effected to get

Imfdrzfdsl'[¢12*V1¢12+¢z1*vl¢21
=3 W Vi * Vi) ]=0, (3c)

the term /dr,/'j-ds; providing an identical contribu-
tion. The asymptotic forms of the wave functions are
employed in (3c) to get

kn
R AREPCE (TR YNES

ik 1
+Im f er"iko cosG—l—e”‘”(‘“““‘”(———o—--—
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1ko
X[ fo(0,0)— %go(ﬁ,d’):]-l—T cosBl fo*(6,¢)
— B (6,6) e~ hort—oom) } —0. (@)

In (4) terms in r~! with />2 are dropped. A partial
integration is effected on the second integral of (4) to
give the result

Q= (47/ko) Im[ f0(0)—320(0) ], ®)

with Q the total cross section for all processes: elastic,
inelastic, and ionization, Q) being given by the first
integral of (4). ‘

Equation (1) is obtained by omitting the cross terms
in (3c), or the equivalent way by using ¥=y;, and
omitting the spin summation in (3b), low-energy elec-
trons being assumed.

For energies sufficiently low to insure purely elastic
scattering, (5) takes a familiar form in terms of phase
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shifts as now demonstrated.

1 o
fo(8)+20(0) = IZ (214-1)[exp (i2n:) — 1]Pi(cosbh),
1R =0

1 «
Fo(8)—g0(6) =E Eﬂ (21—{—1)[exp(i2nl_)— 1]P:(cosb).

Consequently, from (5) Q becomes a well-known form:

Q=”7r; f (24-1)[3 sin’y+-sin’nit].

0° =0

(6)

The derivation of (5) assumed infinite nuclear mass,
consequently, (5) is only approximate. That this result
is true for a nucleus of finite mass is now sketched for
the scattering of protons by hydrogen, the result for
electron scattering will then follow by the appropriate
changes in charge and mass.

Let rp and ry be the proton coordinates and r; the
electron coordinate, all with respect to a fixed coordinate
system. The following coordinate transformations are
used®*:

Li=r11—71N, &=01—TIp,
mri+m(rp+ry)
T OMA4m
Mry—+mry Mrp+mr;
Yi=Tp——————, YT INT
M+m M+m
M1 251 M1
vi=——vi—%&;, &=—vit—&,
m M2 m
M1 M1 M1
vi=——y—%&, Li=—v+—¥,
m §%3 m
mM M(M~+m)
u1= ) M=,
M+m 2M+m

where m=electron mass and M = proton mass.
The transformed Hamiltonian becomes

H—Tz=Tvi+H+Vi=Ty+H+Vy,

with
#? n?
=V Tyi=——V3
22M+m) 2z
. h? et
Him——Vei—,
= 2 &
. 82 -62

=

Ty G/ vet (u/ME]

3J. D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1953).

4Edwin, C. Kemble, Fundamental Principles of Quantum
Mechanics (McGraw-Hill Book Company, Inc., New York,
1937), p. 64. :
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The three-dimensional current is
. 1
j=iIm 3 ( fdwfd&\l’*Vz\If
spin \ 2M +m ’
1
X— fdldei\I’*VEi‘I’
M1
1
“+— fdzfd&\l/*vw\ll),
e

and the conservation of integrated flux is

1
fd‘y,fdfzdeZ‘I/*Vz\I/
2M+m
1
+— defd‘Yffdsfi'\I/*Vfi\I’
151
1
K '

The asymptotic form of the wave functions are

(6a)

Im3"

spin

Ynp(yi—>o)=eikmo-rig,(¢;)

"I"Z 'Yialeik"wfn (gnd’z)d’n(‘fl)a

ynp(vr—o) =2 v le* g, (0:,01)bn (&),
n (6¢)

Y (v ) = ethmo-vigy (&)
+22 v e £ (Or,97) b (£1)

zbeN ('Y@_—)oo ) =Z 7i_-leik7wig’n (ely¢2)¢n (21)7

by noting that (vy;£;) are transformed into (yy,%)
upon interchanging proton coordinates. As in (2) the
antisymmetric wave function is

V= (Ypn—y¥nr)xst+ Wrn-t+y¥nr)xal exp(ik’-z).

The first integral in (6b) gives no contribution since
Z only appears as a plane wave coordinate. The second
integral (£, ) likewise gives no contribution. In fact,
by the use of the integral equation formulation as in
the paper by Borowitz and Friedman® it can be shown
that this integral gives no contribution. Consequently

(6d)

§S. Borowitz and B. Friedman, Phys. Rev. 89, 441 (1953).
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if (6d) is inserted in (6b), (6b) becomes

Imfdzfdfifdsw'[¢PN*V7MPN+IPNP*VW¢NP

—3Wpry*VydnrHYnr*Vyalren)1=0, (Ge)

and using (6¢) (yi—) leads to (5) for the total cross
section. That this, likewise, is valid for the electron-
hydrogen problem follows immediately. (One could use
the [Z,vs,&,] system with the corresponding functions
from (6c) but the results are identical.)

The remaining system containing two identical par-
ticles that is easily treated is the two-body problem.
The result is

Q= (87/ko) Im[ £(0)—3f(m) ]. (7a)

(The additional factor of 2 arises from the fact that
in this problem there are two particles per unit area,
i.e., one particle per unit area in each beam on the
same surface.)® The cross section Q, for this case, is

0= [d9rt1 f00)— S0, +9)]-

It is perhaps interesting to conclude the applications
of this conservation theorem by considering a three-
electron problem; viz., the scattering of electrons from
helium for unpolarized incident electrons as before.

First, the initial state of the target is selected to be a
singlet state. It is convenient to select the following
eight orthonormal spin functions”:

a(Da(2a(3), B(1B(2)B(3),
1
v—gﬂa(l)a(Z)ﬁ ) +a(1)8(2)a(3)+8(Da(2)a3)],

1

%[3 1B B3)+B(1)a(2)8(3)+a(1)8(2)8(3)],

1 .
:/—6[06(1)a(2)6(3)+a(1)ﬁ(2)a(3)—26(1)a(2)a(3)], (8a)

1
—\—/—6[5(1)6 (2)a(3)+B(1)a(2)8(3)—22(1)8(2)8(3)],

1

Ea(l)[a(Z)B 3)—a(3)8(2)],

1
\*/—Zﬂ(l)[ﬂ(Z)a(3)—ﬂ(3)a(2)]~

8 N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
lisions (Oxford University Press, London, 1950), p. 100.

7 L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Company,
Inc., New York, 1949), p. 229.
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The first six of these spin functions are symmetrical
in the coordinates and 2 and 3, while the last two are
antisymmetrical in 2 and 3. The total wave function is
constructed as
W=y5:4(123)x48(123)+¢54(231)x4:5(231)

+y5:4(312)x4+5(312),  (8b)
where the superscripts label the type of symmetry of
the last two indices. x are the spin functions given by

(8a) and ¢ are the asymptotic form for the wave func-
tions on a sphere at infinity as given in (8c):

lps (123) =exp (ikosno . rl)z,bos (2,3)
+Z rl_leik"”‘xbns(zys)fns (01,¢'1),

lp‘s (231) = Z 71—1 exp (’iknsrl)klfns (372)81»8 (01,¢1)7

710 n
¥5(312) =3 rit exp (iknSr)¥a"(3,2) 805 (01,91), (8c)
¥4(123) =0,
IPA (23 1) = Z ri ! exp (iknArl)‘l/nA (3)2)gﬂA (011¢1)7
71— n
Y4(312) =3 rit exp (tkatr1)¥at(3,2) gn? (01,01) .
7130 n

In (SC) ‘pns(3:2)=¢ns(2;3) and \//nA(3,2)= ”lbnA(zys):
these coordinate wave functions being solutions of
Schrédinger’s equation for helium. The direct and ex-
change amplitudes f, and g,, as well as the propagation
numbers k,, are distinguished by superscripts in order
to associate them with the proper helium wave func-
tions; e.g., .5, g5, and &, belong to ¢,5. It is assumed
that ¢,,%, and ¢,4 form complete orthogonal sets of
symmetrical and antisymmetrical solutions to the
helium wave equation, and ), represents a summation
over discrete states and integration over the continuum
as before. ’

Exactly as before, one constructs the three-dimen-
sional current vector and sets the total integrated flux
equal to zero. This leads to the following results for the
total cross section.

Q= (r/ko®) Im[_fo5(0)—g¢5(0) ],
Q=71‘QS<—S+%QT<—S,

(9a)

with
and
Qses=2, (kn‘s/ko‘s)fdﬂl fuS—ga51%
for singlet-singlet transitions;
Ores=3 5kt /o) [ 401 g4
for singlet-triplet transitions.?

8 Bates, Fandaminsky, and Massey, Trans. Roy. Soc. (London)
A243, 111 (1950).
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Similarly, for the initial state a triplet state (of
helium) the coordinate functions are obtained by
changing superscripts in (8c). The results of this case
becomes

Q= @n/ky*) Im[ fo*(0)—go*(0) ], (9b)
with
0=10rr+10Qser,

and

Orer = (b /b) [ 40| fut—gut 242184 ),
for triplet-triplet transitions, and
Qscr= (kuS/ket) f 49| 8,517

for triplet-singlet transitions.

From the examples considered, it is seen that the
total cross section is given by an integral of interference
terms consisting of plane and spherical waves; thus,
the general structure can be displayed as

Q= (47/ko) Im4 (0)

= —2r Ref 72 Sinedﬂ(l‘!‘COSﬁ)A (g)eikr(l—-cosﬂ),
0

with 4(6) some linear combination of direct and
exchange amplitudes. It is instructive to transform the
variable of integration by the substitution

u=r(1—cosh),

MAPLETON

and pass to the limit #—. Then, Q becomes
Q=—4r ReAd(0) f duetr,
0

Consider the quantity I defined by

A2
= —4m Red4 (0) duetrv

0

with A=2m/k. Transform this integral by the change
of variable #=v—7, to obtain

kA2
= —47 ReA (0)eikro f dveire,

0

The integral that appears as a factor in I is of the same
type (apart from angular dependence) that appears in
the Kirchoff formulation of Huygen’s principle.® This
integral would then correspond to an integration over
the first Fresnel zone (of a plane or spherical surface).
An evaluation of I shows that 7=2Q and in scalar optics
the integral over the first Fresnel zone is also twice the
total contribution. Moreover, the phase of the con-
tribution of the integral in I is shifted by #/2 with
respect to the phase of the contribution from the center
of the first zone, also as in scalar optics. Since cos(ku)
is odd and sin(k%) is even on the range 0<% <)\/2, it
is clear why only ImdA (0) appears in the expressions
for Q.
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