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Cross-Section Theorem
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A cross-section theorem is derived for systems consisting of several identical particles. The total cross
section for all processes; elastic, inelastic, and ionization is given in terms of the imaginary part of a linear
combination of direct and exchange forward amplitudes.

' ' N a recent paper' the total cross section for the
~ ~ scattering of unpolarized low-energy electrons by
hydrogen was estimated. This estimation was accom-
plished by using the relation

One calculates the three-dimensional current j given
by

j=Im(h/rN) Q I
dr2@*V',++ dr,%*Vs% I, (3a)

spin 4

Q1=—Im fo(o) - di)LI fp(0 4) I'+
I gp(ti 4) I'j (1) in6nite radius be zero; that is,

in which formula kpsh2/2rrs is the energy of the incident
electrons, fp and gp are the direct and exchange ampli-
tudes for ground state scattering, and dQ is the element
of solid angle.

One of the early forms of the cross-section theorem
was derived by Feenberg' for the case that exchange
does not occur; the physical statement being that the
integrated Aux of current vanishes for steady state
processes, the existence of sources and sinks being
excluded as well as spin-dependent forces. It is easy to
extend this conservation law for systems that include
several identical particles, the electron-hydrogen prob-
lem being presented as the Grst application.

The antisymmetrical wave function is constructed
from the unsymmetrized solutions of Schrodinger's

equation and is

($12 421)XS+(4'12+4 21)XAr

with za and x& the symmetrical and antisymmetrical
spin functions, respectively, and the asymptotic coor-
dinate functions are:

4»(rr —o ~)=e' ' "14rp(rs)+Q r1 'e' ""+„(rs)f„(err4 1),

$12(r~~) Q r2 e 4r (rl)g 0 2 42)

4 21(t2—o rxr )= & eore24or p(rr)+g rs e'2""241„(rr)f„(82,4r2) r

r r r r

dr, j ds,+ dr, j ds, I=O. (3b)IJ J J

The sum over the spin is eGected to get

Im dr ds I4, V,4„+4„V,y„
2 ($12 ~1/21+$21 +1/12)j Or (3c)

the term J'dr1 J'j dss providing an identical contribu-
tion. The asymptotic forms of the wave functions are
employed in (3c) to get

dfl 2 L I f-I'+—I g-I' 2 I f-*g—.+f.g-*)j
&0

r i (imp 1 )
+Im dQr2 ikp cos8+e'"o"" . )

iso
X&fo(8,4) ', go(0,4')—I—+ cost)I f—o*((),4)

rg e(g 4) Je-12or(1-ooorr) 0 (4)

In (4) terms in r ' with l&2 are dropped. A partial
integration is effected on the second integral of (4) to
give the result

Q=(4~/kp) ImI fp(o) —xsgp(o) j
A (r ")=Z r 'e'"""'4-(r )C-(t),4 )

4r„are the hydrogen functions, np is the unit vector in

the direction of incidence, and g„means a sum over
all discrete states and an integration over the continuum.

'Howard Boyet and Sidney Borowitz, Phys. Rev. 93, 1225
(1954).' Eugene Feenherg, Phys. Rev. 40, 40 (1932).

with Q the total cross section for all processes: elastic,
inelastic, and ionization, Q being given by the first
integral of (4).

Equation (1) is obtained by omitting the cross terms
in (3c), or the equivalent way by using 4 4» and
omitting the spin summation in (3b), low-energy elec-
trons being assumed.

For energies sufficiently low to insure purely elastic
scattering, (3) takes a familiar form in terms of phase
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shifts as now demonstrated.

Qo

fs(g)+go(g) = P (2l+1)t exp(i2rii+) —1]Pi(cosg),
2+~ t=o

1
fs(g) —gs(g) = P (2l+1)Lexp(i2ri& )—17P&(cosg).

2jko tm

+Pf 7yf ) Hf — V $f
2lss 2fir

g2

Vf ——— -+
I ~f—(»/m)&fl I vf+( i/M)bl

The three-dimensional current is

Consequently, from (5) Q becomes a well-known form:
j=kIm Q ~ tdq;~ d(;@*Vie

eo~ &2M+m ~
Q=—Q (2l+1)[3 sin'g i+sin' l,r+J

k(l' &~
(6)

1
X— dz tdy;V*V1,@

+— dz dg,%*~„4 ~, (6a,)
ls, a 6 )

(;= i'i —rN, (f= i'i —rp,

mri+m (1'p+ rN)
X

The derivation of (5) assumed infinite nuclear mass,
consequently, (5) is only approximate. That this result
is true for a nucleus of finite mass is now sketched for
the scattering of protons by hydrogen, the result for
electron scattering will then follow by the appropriate
changes in charge and mass. and the conservation of integrated Aux is

Let r~ and r~ be the proton coordinates and r~ the
electron coordinate, all with respect to a fixed coordinate Ir 1 (' p r

system. The following coordinate transformations are
son &2M+m &

used' 4:

MrN+mri
gz= &P—

p Pf —~x
M+m

Mrp+mr,
+—

I
dz II d(, I ds&;.+*&&;4 1=0. (6b)

The asymptotic form of the wave functions are

py py pi. .

4 = —v'+ —('
SS P2 ns

P,vp(v,~~)=e'"' o '4o(k)

pq py ps
Yf 4) E~ Yf+ Kf)

Pb P2 m
4NP("fi ) 2 "ff e g~(gfA'f)~~(4f)~

(6c)

) P2=
M (M+m)

2M+m
4»(~f ")=e'""' "4o(4)

where m= electron mass and M =proton mass.
The transformed Hamiltonian becomes

with
H Tg= TP;+H;+—V;= Tgf+Hf+ Vf,

vz', T„=— V7,',
2(2M+m) 21is

by noting that (y;,$,) are transformed into (yf $f)
upon interchanging proton coordinates. As in (2) the
antisymmetric wave function is

P(4'pN WNp)Xs+(fpN+QNp)X~] exp(ik' z). (6d)-

g2 g2

~q;—(f /m)t') Iv'+( /M)8'I
' J. D. Jackson and H. Schifi, Phys. Rev. 89, 359 (1953).
4 Edwin, C. Kemble, Fmmdaraeetal Prr'NceP/es of QNamtam.

31'ecfiarcecs (McGraw-Hill Book Company, Inc. , New York,
1937), p. 64.

The erst integral in (6b) gives no contribution since
X only appears as a plane wave coordinate. The second
integral ((~Do) likewise gives no contribution. In fact,
by the use of the integral equation formulation as in
the paper by Borowitz and Friedman' it can be shown
that this integral gives no contribution. Consequently

' S. Borowits and B. Friedman, Phys. Rev. 89, 441 (1953).
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if (6d) is inserted in (6b), (6b) becomes

Im dz dg; ds~; Qptr*V~+ptv+ilrxp*V7@Prrp

', (4—pt—r*VpaPtsp+P~p*V v,&ptr)]=0, (6e)

and using (6c) (y,—+co) leads to (5) for the total cross
section. That this, likewise, is valid for the electron-
hydrogen problem follows immediately. (One could use
the [Z,pf, pyj system with the corresponding functions
from (6c) but the results are identical. )

The remaining system containing two identical par-
ticles that is easily treated is the two-body problem.
The result is

The first six of these spin functions are symmetrical
in the coordinates and 2 and 3, while the last two are
antisymmetrical in 2 and 3. The total wave function is
constructed as

"(123))f"s(123)+P ~(231)g" (231)
+li' "(312)X"'(312)

~ (Sb)

where the superscripts label the type of symmetry of
the last two indices. z are the spin functions given by
(Sa) and f are the asymptotic form for the wave func-
tions on a sphere at infinity as given in (Sc):

Ps(123) = exp(ikosno' ri)/os(2, 3)
T$~00

+p ri tststl—rip s(2 3)f s(e Q )
Q= (S~/k, ) Im[f(O) —,'f(~)j. Pa)

Ps(231) =Q ri exp(ik srt)P s(3~2)g~s(8i~yi)~
(The additional factor of 2 arises from the fact that

in this problem there are two particles per unit area,
i.e., one particle per unit area in each beam on the
suttee surface. )' The cross section Q, for this case, is

P"(123)=0,

P"(231)=P ri ' exp(ik "ri)P "(3,2)g„"(Ht,gi),
f'$~00 n

(Sc)

+s I f( A)+f( r +&) I j~ ( ) pg(312) g r —i exp(ik zr )p z(3 2)g A(g )
It is perhaps interesting to conclude the applications

of this conservation theorem by considering a three-
electron problem; vis. , the scattering of electrons from
helium for unpolarized incident electrons as before.

First, the initial state of the target is selected to be a
singlet state. It is convenient to select the following
eight orthonormal spin functions'.

a(1)a(2)a(3), P(1)P(2)P(3),

—[n(1)n(2)P(3)+a(1)P(2)a(3)+P(1)a(2)n(3)j,
%3

1—[P(1)P(2)n(3)+P(1)n(2)P(3)+n(1)P(2)P(3)],

1
L (1) (2)P(3)+ (1)P(2) (3)—2P(1) (2) (3)j, (S )

TI~OO n

In (Sc) |t'r s(3,2)=f (23) and f„~(3,2)= —l(„(2,3),
these coordinate wave functions being solutions of
Schrodinger's equation for helium. The direct and ex-
change amplitudes f„and g„, as well as the propagation
numbers k„, are distinguished by superscripts in order
to associate them with the proper helium wave func-
tions; e.g. , f„s, g s, and k„s belong to p„s. It is assumed
that f„s, and f„" form complete orthogonal sets of
symmetrical and antisymmetrical solutions to the
helium wave equation, and Q„represents a summation
over discrete states and integration over the continuum
as before.

Exactly as before, one constructs the three-dimen-
sional current vector and sets the total integrated Aux

equal to zero. This leads to the following results for the
total cross section.

1
-[P(1)P(2)n(3)+P(1)n(2)P(3)—2cr(1)P(2)P(3)],

6

with

and

Q= (sr/ko ) Im[fo (0)—go (0)],

1. S+-S g T+-Sp

Qe S=Z(k /ko ) d~ If

(9a)

—(1)L (2)p(3)--(3)p(2) j,
v2 for singlet-singlet transitions;

12&3 — 3&2 Qr-e=3 Z(k-'/ko')

e N. F. Mott and H. S. W. Massey, The Theory of Atomic Col for sjnglet trjplet -transjtjons. s

lisiols (Oxford University Press, London, 1950), p. 100.' L. I.Schiff, Qscorstscm 3f'echomics (McGraw-Hill Book Company, s Bates, Fandaminsky, and Massey, Trans. Roy. Soc. (London)
Inc., New York, 1949), p. 229. A245, 111 (1950).
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Q= —4s. ReA (0)
~

die"".
0

Similarly, for the initial state a triplet state (of and pass to the limit r +~—. Then, Q becomes
helium) the coordinate functions are obtained by
changing superscripts in (Sc). The results of this case
becomes

with

and

Q= (3w/k ")™Lf"(o)—fo"(0)j

Q=oQr r+oQs r,

(9b) Consider the quantity I de6ned by

I=—4s. ReA (0) Jg~i kts

for triplet-triplet transitions, and

with X=2s/k. Transform this integral by the change
of variable u=v —ro to obtain

~ rp+X/2

I= —4s. ReA (0)e '""' due'"c
~rO

Qs-r =Z(k-'/ko") «I g-'I'

for triplet-singlet transitions.
From the examples considered, it is seen that the

total cross section is given by an integral of interference
terms consisting of plane and spherical waves; thus,
the general structure can be displayed as

Q= (4s/ko) ImA (0)

rs sine jg(l+cogg)A (e)sior(l—cost)

Jo

The integral that appears as a factor in I is of the same
type (apart from angular dependence) that appears in
the Kirchoff formulation of Huygen's principle. ' This
integral would then correspond to an integration over
the 6rst Fresnel zone (of a plane or spherical surface).
An evaluation of I shows that I= 2Q and in scalar optics
the integral over the first Fresnel zone is also twice the
total contribution. Moreover, the phase of the con-
tribution of the integral in I is shifted by s./2 with
respect to the phase of the contribution from the center
of the erst zone, also as in scalar optics. Since cos(ksi)
is odd and sin(kl) is even on the range 0&I&X/2, it
is clear why only ImA(0) appears in the expressions
for Q.
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