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Energy levels and antisymmetric eigenfunctions are calculated, with the aid of normal coordinates, for
a nuclear Hamiltonian containing inter-nucleon potentials of the Hooke s law type. Such a nuclear model
exhibits the same shell structure as do the same nucleons moving without interaction in a common har-
monic-oscillator central 6eld. Modifications in the Hamiltonian —use of force parameters which depend on
A, cutting off of forces at hnite range, inclusion of spin-orbit forces—are discussed in connection with shell
structure and the nuclear photoeffect.

I. INTRODUCTION

A~ESPITE the more fundamental status of meson
theory, it remains interesting to study approxi-

mate nuclear Hamiltonians which depend on nucleon
variables only. Even in this approximation the com-

plexity of the many-body problem has led to the use
of various simplifications, such as the single-particle
(or central-field) model, the alpha-particle model, the
liquid-drop model, and various other collective models.
The occurrence of nuclear shells has refocused attention
on the single-particle model, ' whose recent successes
do not seem to be wholly understood.

The purpose of this paper is to discuss a nuclear
model first proposed by Houston, ' studied by Margenau
and Warren, ' and, more recently, by Krook, by Rosen,
by Post, and independently by the present authors. 4

The nuclear forces are assumed, in erst approximation,
to be ordinary central forces, obeying Hooke's law,
between all pairs'of nucleons. These forces do not
exhibit saturation, and in fact correspond to in6nite
binding energy. The one important advantage of study-

ing them is that one does not need to ignore the fact
that the nucleus is a many-body system; the eigen-

functions and eigenvalues of such a Hamiltonian can
be readily calculated with complete accuracy.

the nuclear mass number, and bj,;——b„, b„, or b„„accord-
ing as nucleons k and j are both neutrons, both protons,
or one of each.

It is possible in general to find normal coordinates
(n=1 A), linear homogeneous functions of

the Cartesian coordinates x~, yj„sI, of the nucleons,
such that Ho is a sum of squares of the normal co-
ordinates and their conjugate momenta a possible
form is

A
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where the P are constants, D is the sum of all the Ds;,
p '=$ '+r) '+i ', and sr ' is the sum of squares of the
momenta conjugate to $, rj, i One can. deal with this
Hamiltonian by converting the x& to the p, the y&

to the s}, and the zh to the f' all by the same unitary
transformation, which can thus be written

with its inverse
A

9 =Z rT,„,
k=1

TQ NORMAL COORDINATES
and the orthonormality conditions

The Hamiltonian used as a first approximation is Q +kaTja Q TaD aj 5jk

where y~ and rI, are, respectively, the momentum and
the position vectors of the kth nucleon, DI,; is a positive
constant, ns is the mass of a neutron or a proton, A is
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One of the constants P, say Pi, vanishes; yi is then
proportional to the position vector of the center of
mass. Another of the P's is nondegenerate; it and the
corresponding y are given by

Pz+i=A& y= Ps, — (6)

J.v)» (Zp: ~
ez+i=~ —

I Era-I I Z r„
LAZp i i L,Ag) s=z+i

where the protons are numbered from 1 to Z, and the
neutrons from Z+1 to A =Z+E. The remaining (A —2)

s H. Goldstein, Classical jiIechan jcs (Addison-Wesley Press,
New York, 1950), Chap. 10.

6In the most general form of the homogeneous normal-co-
ordinate transformation, the Tp are tensors of second rank.
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normal-mode oscillators have only two distinct p's:

P2=Pg= =Pz=Zby+Nb ~=P„—

ps+2= ps+8= =pA=Zbey++bm =p—n
(8)

The corresponding normal-mode vectors g are thus
highly arbitrary. It develops that the sum of coefFi-
cients in each of them vanishes, that y2 . yz depend
only on proton coordinates, and that yz+2 .

p& depend
only on neutron coordinates.

The antisymmetrizing procedure is applied to the
product generating functions rather than the wave
functions themselves. The omitted oscillators (1 and
Z+1) do not need to be included because their co-
ordinates are invariant under permutation of similar
particles. To antisymmetrize the product generating
function for (say) the protons, one forms the usual sum
of products with permuted nucleon coordinates and
spins. The determinant form is convenient; e.g. , for
the proton oscillators,

III. WAVE FUNCTIONS AND ENERGY LEVELS

The Hamiltonian in Eq. (2) is easily separable; the
eigenfunctions can be taken as products of plane-wave
functions of $&, g&, t& by Hermite functions of the
variables u2$2, u~g2, u2i 2,

.u~l ~, where u = (mP /h )'.
The energy values are sums of the energies inherent in
the separate normal coordinates with their conjugate
momenta. The internal energy of the nucleus, excluding
energy of motion of the center of mass, is

(9)

where the (3A —3) quantum numbers l, m, n„are
non-negative integers. These energies are, of course,
independent of spins. Any energy eigenfunction can be
made spin dependent through being multiplied by a
product of single-particle spin functions.

It is expected that the exclusion principle rules out
many of the lower energies permitted in Eq. (9). This
matter has been investigated by means of antisym-
metrized wave functions, which can be obtained with
the aid of the generating function for the Hermite
functions:7

f(e,u$) =exp (—I'+2uu) —-', u'P)

=g exp( —~~u'P) H„(uj)I"/e!. (10)
n 0

Such generating functions involving the normal co-
ordinates associated solely with protons (2&n&Z)
can be multiplied together and multiplied by proton
spin functions; they then generate a complete set of
spin-dependent eigenfunctions of the part of Ho in-
volving protons alone. The most general procedure is
to use one independent auxiliary variable (like e above)
with each of the normal coordinates $2, g2, fz The.
neutron states can be dealt with similarly. These two
product generating functions can then be multiplied
together to generate the product eigenfunctions for all
the normal-mode oscillators except No. 1 (center of
mass) and No. Z+1 (e vs p).

7 Obviously one would like, if possible, to choose the normal co-
ordinates in such a way that interchange of two similar particles
is equivalent to interchange of two normal-mode oscillators,
perhaps with some of the normal coordinates also changed in sign.
E. B. Shanks of the Vanderbilt Mathematics Department has
proven that such choices are impossible except in a fev physically
uninteresting cases.

G„=exp[—Q (U '+-', u„'p ')]6,

where 6 is a Z)&Z determinant with elements

a„„=s„(m)exp(2 Q T„sT„.usU ys).
a, P 2

(12)

Here U is the vector whose Cartesian components are
the independent auxiliary variables I, e, m . The spin
function s„(m) is the eth (i.e., first or second) of two
independent spin functions for the mth particle; for
example, s~(m) and s~(m) might correspond to the spin
of the mth particle having a s component of 5/2 and—5/2, respectively.

The generating function G„ for the proton normal
modes 2 Z is so defined as to be antisymmetric under
interchange of space and spin coordinates of any two
protons. Thus, if G„ is expressed as a power series in
the components of the U, the coeS.cient of each sepa-
rate product of powers of all these components is an
(unnormalized) antisymmetric energy eigenfunction for
the normal modes 2 Z, with the corresponding energy

E„=Q (l +m +n +-,')k(P./m)l —g DI,g. (13)

The quantum numbers l, m„, e are, respectively, the
powers of the I, v, and z in the term in question.
Because of the P here are all equal LEq. (8)g, the
energy E„depends only on the sum E„of these quan-
tum numbers and is in general degenerate.

If the power series representing G„ is regarded as a
Taylor series in the e, n, z, one can see that any one
of the antisymmetrized eigenfunctions mentioned above
is proportional to one of the derivatives of G„with
respect to the I, v, m evaluated with these variables
all equal to zero; the order of differentiation with re-
spect to any one of the variables is equal to one of the
quantum numbers t, m, e; the total order of the
derivative is thus the total excitation of the proton
oscillators 2 .Z above their apparent ground-state
energy, in units of k(P„/tet)'* Examinat. ion of the deriva-
tives of G„reveals that all vanish below a certain total
order E~, which depends on how many protons are
present and on how equally they are divided between
the two spin functions. For a given number of protons
with given spin functions, E„ is just the same as it
would be if the protons moved independently as iso-
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A

M=+ ls =M„+M„+M„„, (14)

z A

where Ms—=Pp and M„—= P p are the angular
cx 2 CX —Z +2

momenta of protons and neutrons about their respective
centers of mass, and M„~=pz+t is the angular mo-
mentum of relative motion of neutrons and protons.

It is well known that a single three-dimensional iso-
tropic harmonic oscillator with Cartesian quantum
numbers l, ns, e is in a mixture of angular momentum
states with eigenvalues given by L=l+es+I, l+m
+I—2, l+m+ts 4, . 0 or 1. Th—erefore, an energy
eigenfunction for the proton normal modes 2 Z, with
total quantum number E„, is in general a mixture of
eigenfunctions of M„' and 3II„, (with eigenvalues
L~. (L„+1) .k', and L~,A, respectively), with Is assum-
ing all integral values from 0 to E„, and I„,ranging
between &I.„.A complete set of simultaneous eigen-
functions of proton energy, 3f„',and M„, can be formed
as linear combinations of proton oscillator eigenfunc-
tions with a common E„but various values of the
separate E, m, e . For any given Z, the ground state
splits into the same eigenstates of M„' and M„, as if

tropic harmonic oscillators. A similar result holds for
the neutron oscillators Z+2, ~, A. The center-of-mass
oscillator (No. 1) and the neutron-proton oscillator
(Z+1) are unaffected by antisymmetry.

The fact that the Pauli exclusion principle aGects
the ground-state energy of the set of interacting nu-
cleons in just the same way as if they did not interact,
suggests that nuclear shell behavior may be a property
of independent collective modes of motion rather than
of independent particles moving in an average central
Geld. However, the Hamiltonian Hs (which gives closed
shells at X or Z= 2, 8, 20, 40, 70, and 112) needs to be
modified if it is to give the correct shells, perhaps
through inclusion of spin-orbit interactions of the type
r)&y s, or tensor forces.

IV. PARITIES, ANGULAR MOMENTA, AND
MAGNETIC MOMENTS

It is easily seen that any energy eigenfunction for
the internal oscillators (excluding center-of-mass func-
tions) has a parity which is that of the sum of all the

A

quantum numbers, g(1 +m +e ). Also, from Eqs
cx 2

(3)—(6), although the "orbital angular momentum"

p =—y )&~ of a given normal-mode oscillator cannot
be expressed in terms of the orbital angular momenta
Ms= rsXps of the nucleons, the total orbital angular
momentum of the nucleus with respect to a Axed origin

A A

can be expressed either as +Ms or as Pp, for these
k i a~i

sums are equal.
Furthermore, if M is the angular momentum of the

nucleus with respect to its center of mass,

the protons moved independently in a harmonic-
oscillator well; likewise, M'„' and M„, for a given
S.M„,'=0 in the ground state.

If the spin functions s„are chosen to correspond to
spin "up" and spin "down, " the wave functions
generated are eigenfunctions of 5„ the 2' component
of total spin. Linear combinations of generating func-
tions which dier through interchange of spin functions
can be chosen so that they generate eigenfunctions of
S. and S'. The antisymmetrized ground state of Hp
always has S„and S„each equal to 0 or ~2k, according
as Z and X are even or odd.

Thus parity, and orbital and spin angular momenta,
for the ground state of any nucleus are just the same
as if the nucleons of each type moved without interact-
ing in their own harmonic-oscillator central fields.
Because Ho does not lead to interaction moments, ' the
same statement applies to ground-state magnetic
moments.

~
o de= (s.e'h/mc) (cVZ/A),

with the excited state being at an energy above ground
of

E—E,=h(Ab„„/m) &. (16)

If one calculates b„~ and D for the deuteron so as to
get the correct binding energy (2.23 Mev) and a reason-
able wave function (mean separation of 3.16X10 "cm
as in a square well of radius 2X10 "cm), one obtains

b s 3.37X10ss Mev/cm',

D= j.0.15 Mev,

V=O at r=7.76X10 "cm,
he=5.28 Mev.

(17)

The fact that hv is in the neighborhood of the calculated
energy of maximum photoelectric cross section" (4.46
Mev) is little better than a coincidence in the case of
the deuteron, in which no transfers of energy need to
occur before disintegration (i.e., the lifetime of the
intermediate state is extremely short).
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V. RADIATIVE TRANSITIONS

The n es p oscillator (Z+1) in the present treat:ment
resembles the oscillator discussed by Goldhaber and
Teller et u/. ' in connection with the nuclear photoeGect.
In fact, the only nonvanishing electric-dipole matrix
elements from the ground state are those which corre-
spond to single excitation of this oscillator. To Grst
order, then, the electric dipole transitions have the
integrated cross section,
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Equation (16) implies that the resonant energy of the
photoeffect varies as (Ab„o)&. Experiment" reveals a
proportionality to approximately A '~' in the medium
and heavy range, so one must assume that b„~ is
approximately proportional to A~~', i.e., that many-
body forces are present. Inasmuch as the form of Bo
rules out exchange forces and velocity-dependent forces
with saturation properties, it is not surprising that
many-body forces should need to be invoked here,
even though their form is oversimpli6ed. In keeping
with the assumed form, one should take DI,~ for each
pair of nucleons to be a decreasing function of A, also,
so that the ground states of heavy nuclei are not too
negative in energy (zero energy being defined as the
lowest energy at which one or more nucleons can escape
to infinity from an actual nucleus).

A nucleus with the Hamiltonian Bo, having absorbed
a photon, is unable to disintegrate; it can only return
to ground by re-emission of the photon. The fact that
actual nuclei emit particles or undergo 6ssion upon
absorbing gamma rays indicates not only that the
Hooke's-law forces should be cut oG at some 6nite
range, but also that the normal-mode oscillators interact
with each other strongly enough to permit the rs tts p
oscillator to share its energy with the others in most
cases before emitting a photon. Possibly the same per-
turbation can produce both eGects. A complete account
of the process mould explain how the energy goes into
the particular mixture of normal-mode states which

corresponds to emission of one nucleon, emission of two
nucleons, or 6ssion. The fact that in an emission process
the center of mass of the neutrons moves away from
that of the protons indicates that the I es p oscillator
remains excited with a certain probability. One would

expect the same eGect in photo6ssion to produce an
unequal division of charge between the fragments. A

perturbation now being studied is

—$Bsi exp[(rs —r;)'/Xsss 1), (18)

which replaces the quadratic inter-nucleon potentials

by Gaussian potentials. The effect of such a perturba-
tion is dificult to calculate because the Gaussian terms
involve all the products of the nucleon position vectors
or of the normal-mode vectors. It is tempting to cut
o8 the forces by means of an B' which, like the original

Vo, is a sum of terms for the diferent normal-mode
oscillators, or to start with a V which is such a sum.
However, it does not seem easy to 6nd such a sum
which is still symmetric under interchange of like
particles, and even if available, such a potential would
not contain the interaction of normal-mode oscillators
needed to account for emission of one or two particles.

According to the nuclear model under discussion, by

"Montalbetti, Katz, and Goldemberg, Phys. Rev. 91, 659
(1953).

far the most probable photon absorption raises the I-p
oscillator to its 6rst excited state. If, as seems likely,
ss n, n -p,-and p-p forces are approximately equal, the
Hooke's-law nucleus has no other excited levels much
below this one. But actually the energy of this level is
positive, or in the continuum. Thus it would appear
that Bo, unmodi6ed, cannot possibly account for the
many excited states of nuclei which are stable against
nucleon emission. Possibly the cutting-oG procedure
discussed above will suKciently lower some of the
other excited states in relation to the 6rst excited state
of the I-p oscillator, or maybe the spin-orbit forces
needed to produce the correct shells will resolve much
of the degeneracy of the present ground energy and
thus lead to the proper excited states.

The fact that neutron capture by a nucleus is more
often followed by several gamma rays in cascade than
by a single gamma ray to ground" suggests that the
photon-excited nucleus from which a neutron is emitted
is in a state orthogonal to some of those produced by
neutron capture. Possibly some of the latter have their
excess energy mainly in excitation of other oscillators
than the ss-p oscillator. If so, their gamma rays do not
arise from electric dipole transitions. In fact, because
the rs-p oscillator is the only one which can ever undergo
an electric dipole transition, and its excited states are
in the continuum, the present model indicates that Zj.
transitions will not be observed at all, except in con-
junction with emission or capture of one or more
nucleons. " This is true, however, only if the relative
energies of the nuclear states are not much changed by
perturbations. If Bs is perturbed as in Eq. (18), or by

A

spin-orbit couplings (e g , Pss M.s .or So M„), some of
4=1

the ground states of Bo may be raised and some of the
"first excited" states (of opposite parity) may be
lowered to negative energies, so that a nucleus which
cannot emit a particle can still emit an Ej p ray,
followed by another p ray which is associated with no
change of parity.

UI. CONCLUSIONS

It appears that ordinary inter-nucleon forces obeying
Hooke's law lead to a nuclear model having the same
ground-state energy, parity, angular momentum, and
magnetic moment as ',the single-particle harmonic-
oscillator model. The model exhibits saturation if the
force parameters depend properly on A. Cutting o6
of the forces at 6nite range and addition of spin-orbit
coupling seem likely to give correct shells, may also
yield correct excited bound states, and will aGect mag-
netic moments in ways as yet unknown. Possibly, too,
such considerations may provide a new point of view
toward such other phenomena as surface vibrations,
fission, and nuclear reactions and scattering.
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