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Statistical Atom with Angulax Momentum*
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By means of a variational principle, the method of Thomas and Fermi is extended, in a semiclassical
manner, to atoms with a net total angular momentum. The resulting equation for the potential, which is
valid for large angular momentum, is solved for small angular momentum, yielding approximate charge
and current distributions for atoms in I' and D states. Orbital magnetic hyperfine structure, and electric
quadrupole hfs are calculated as a function of atomic number, and it is shown that the first is in approximate
agreement with experiment,

I. INTRODUCTION In Sec. III we solve the previously mentioned
equation approximately, and use the resulting solution
to compute the magnetic field at the nucleus due to
electron motion. This is in fair agreement with experi-
ment. A corresponding calculation of q is in disagree-
ment with Sternheimer's results. %e will show that the
statistical model is invalid for calculating phenomena
of this type. The reason for this is that the statistical
model (with its inexact treatment of quantization
rules) leads to an atom model in which an excessive
degree of configuration interaction has taken place.
As a result the charge symmetric characteristics of
actual atomic states have been lost, although the
magnetic properties are affected to a much smaller
degree.

Atomic units (5=m, = e=1) are employed throughout
the paper.

HE method of Thomas' and Fermi' yields an
approximate charge distribution for atoms with

no net angular momentum. This method, because of
statistical approximations and inexact treatment of
quantization rules, is valid in the limit of large atomic
number (implying a large number of electrons and high
quantum numbers). In this limit, however, it is more
accurate than the single-particle Hartree' method, for
the statistical model is completely self-consistent,
whereas the Hartree method assumes separability of
the angular coordinates.

Certain atomic properties are particularly sensitive
to the amount of correlation between electrons. In
particular, the quadrupole coupling constant g can be
related to the magnetic hfs coupling constant, if it is
assumed that the last electron moves in a spherically
symmetric potential caused by the nucleus and core of
electrons. 4 Corrections to this, due to electron correla-
tion, have been calculated by Sternheimer' starting
from the Hartree single-particle model.

It was suggested by Rabi' that a completely self-
consistent statistical model for an atom with angular
momentum might, in the appropriate limit, be more
accurate than the Hartree model, since it would include
angular correlations and thus give immediately a result
corresponding to the quadrupole shielding effect found

by Sternheimer by a perturbation calculation. This

paper is devoted to the treatment of the statistical
model with a net total angular momentum.

In Sec. II, starting from a variational principle for
the total energy of the atom, while keeping the total
number of electrons and total angular momentum

constant, we obtain a diGerential equation for the
potential. It is then shown that this equation corre-

sponds to uniform rotation of the atom as a whole.
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IL DERIVATION OF THE BASIC EQUATION

As a starting point, we must determine the distribu-
tion of electrons in momentum space at some arbitrary
point in configuration space. If these electrons are to
have some net angular momentum about the origin,
then they must have some net linear momentum. Clearly
this can be best accomplished by displacing the usual
spherical distribution of a totally degenerate electron
gas (T=O) by an amount D, as indicated in Fig. 1.
This obvious result may easily be obtained formally,
by the proceedures well known in statistical mechanics
for maximizing the probability of the configuration in
phase space. 7 One must simply add the constraint of a
nonvanishing total angular momentum, to the usual
constraints of total number and total energy.

The procedure now consists of evaluating the total
energy of the atom, assuming that the atom consists of

FIG. 1. Distribution of
electrons in momentum
space at some arbitrary
point of configuration space.

7 R. W. Gurney, Introdlction to Statistical Mechanics (McGraw-
Hill Book Company, Inc. , New York, 1949), p. 35,
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completely degenerate electrons whose configuration is
specified by D(r) and Ep(r). The total energy is then
minimized subject to two constraints, namely that the
total number of electrons is S, and the total angular
momentum is J. The angular momentum is treated
classically, and J, is taken equal to J.

P~ +ps PpPD~

(2pr Ii)'» Bpi,epg 2re " 10'' 6pr'

with the boundary conditions that

r(p—+s as r—+0,

rp —+0 as r—+~.

(12)1 2 2 ' 2peieatric+ s)I r sin 8.

The parameters X and p are determined through Eqs.
(4) and (5).

Examination of D(r) ='Ar sin8 shows that the model
corresponds to a rigid sphere rotating uniformly with
angular velocity X. The associated centrifugal potential
is —',X'r' sin'8, which makes the eGective potential at a
point r:

where

and

2 f 1
e(r) = I dy Pp

(2m-8)'~ .ph.„3pr-'
VN=potential of the nucleus,

lV = dre (r),

J= JI drrX D(r)e(r) = drD(r)r sin8e(r)

(4)

Thus we see that Eq. (10) can be obtained immediately
from the usual Thomas-Fermi equation with the
insertion of this effective potential. We have established
the interesting fact that a statistical atom with angular
momentum rotates as a whole.

III. APPROXIMATE SOLUTION AND APPLICATIONS

We are interested in atoms in I' states (J=1), and
hence X small. Thus we may solve Eq. (10) by a
perturbation method. Expanding the right-hand side
in powers of X' and p, we obtain

Lwhere (r,8, p)pare spherical polar coordinatesj. We
have anticipated the result and set D(r) in the Bp

direction. We now eliminate the variable Pp(r) in favor
of e(r), and introducing the Lagrangian multipliers )~

and p, we have for the quantity to be minimized
and

e(r) = ep (r)+)i'ei (r)

p(r) = pp(r)+) 'p, (r),
(14)

1
e(r) = (2pp) l+ (2pp) '*()i'r' sin'8 —2p,). (13)
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where q 0 satisfies

V'q p(r) =—(2q p)1=4prep,
3'f

drn(r) Viv+X drrD sin8n(r)+p, dre(r). (6) and;s the well k„owns sol„t,on to the Th~~~~ Ferm,
.

equation. From Eqs. (4) and (7),
A straightforward variation with respect to D yields

D(r) =Xr sin8. (7)
I r' sin'8e(r)dr. (16)

where

X'r' sin'8 5 (3'')"e**
+-

2 3 10m'

e(r)
q (r') = Viv —

J
dr =potential at r'.

[r—r'
f

Variation with respect to e(r), with the double integral
in the potential energy taken into account, yields

Thus we may set e(r) =ep(r) in Eq. (16), and obtain X

directly with a relative error of only X' (typically
&=0.03). By the well-known change of variables this
may be put in universal form, i.e., the atomic number
Z may be eliminated.

Inserting Eq. (14) into Eq. (10) we obtain

4 2
7'ppi ——

(2 happ) 'ppi =—
(2 happ)

' (X'r' sin'8 —2p), (17)

1 1
ei(r) =—(2 pp) 1ppi+ (2 imp) '(X'r' sin'8 —2ii). (18)

7r2 27r2
(10)Prp= —(2(lp —p)+X'r' sin'8) l,

3' ' V. Bush and S. H. Caldwell, Phys. Rev. 38, 1898 (1931).

We eliminate D(r) and solve for e(r). Invoking La- which is an eigenvalue equation for ii. We thus have
place's equation, we obtain
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obtained from the Hartree method, are compared with
experimental values (obtained from Av and known
nuclear magnetic moments) in Fig. 2. Note how the
statistical method averages the effect of shell structure.

The quadrupole coupling constant g is given by

60
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~
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In order to get a more accurate result, the theory and
calculations were repeated including exchange. '

q 0 now
has the property of being zero outside of a cut-off
radius ro. In the perturbation analysis we assumed that
ro did not change with the introduction of angular
momentum. Allowing for a change in ro is possible, "
but rather complicated. Including this eGect would
not affect the magnetic hyperfine coupling, nor would
it change the results for the quadrupole coupling in an
essential way. For the theory with exchange the
equation cannot be put in to universal form, and
numerical calculations were carried through for Z=18,
Z=50, and Z=84."

In order to compare with experiment, we calculated
the magnetic field at the nucleus due to the orbital
motion of the electrons.

I'3(t)Xr
dr.

2nsc~ r'
(19)

Thus, with negligible error

8(X q
(2q o)'«r

9pr (137) "p

This gives, in the nonexchange approximation,

H=ZJ(0. 73X104) gauss. (21)

This, as well as values including exchange, and values

P P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930)."P. Gomb6s, Die Statistische Theoric des Atoms used ihre
Amrperrdungen (Springer Verlag, Berlin, 1949), p. 79.

"We are indebted to Dr. L. H. Thomas who kindly supplied
us with solutions to the statistical atom with exchange.
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FIG. 2. Magnetic field at the nucleus, due to electron orbital
motion, as a function of atomic number.

For Z= 18, q 1 was evaluated and shown to contribute
to q an amount of the same order of magnitude as the
contribution of the second term in Eq. (18). Using
only this second term, we obtain in the nonexchange
approximation

)t (2g p)rrdr
277rJ2

80
~ (2ppp)1r4dr

-2 (23)

The integral is weakly divergent at large r, and must
be cut oG at a reasonable value, yielding

q = —(J'/Z**) (0.002). (24)

For the model with exchange, in the same approxi-
mation

and
$18 —2.2 X&0, q50= —9.0X 10

q84= —4.5X10—4.

It will be observed that these values are two orders of
magnitude smaller than Sternheimer's results.

That this is reasonable may be seen by noting that
the statistical model does not take into account properly
the spatial charge distribution associated with quantum-
mechanical angular momentum. The statistical atom
model can not hope to yield properties which vary in
the characteristic way of the Periodic Table, even
though one has explicitly inserted the proper angular
momentum. In particular, q changes sign in actual
atoms according as one considers atoms with one more
or one less electron than corresponds to a closed shell.
The magnetic properties do not behave in this manner,
since the connection with angular momentum is more
direct. (We may note how the atomic magnetic moment:
is given directly by the angular momentum, whereas
the atomic quadrupole moment is only indirectly

'

related to the angular momentum. )


